
 

    

                          

 
 

 
 
 
 
 

Soutenue par Roman  KORKIKIAN  
le 27 Octobre 2016 
h 
 

THÈSE DE DOCTORAT 
 

de l’Université de recherche Paris Sciences et Lettres   
PSL Research University 

 

 

 

 

Préparée à l'Ecole normale supérieure de Paris 

Dirigée par David NACCACHE 

 
h 
 

 

Side-Channel and Fault Analysis in the Presence of Countermeasures: 

Tools, Theory and Practice 

 

 

 

 

COMPOSITION DU JURY : 

 

 
M. GUILLEY Sylvain 
TELECOM-ParisTech, Rapporteur  
 

M. GOUBIN Louis 
Université of Versailles-St-Quentin-en-
Yvelines, Rapporteur  

 
M. VUILLEMIN Jean 
École normale supérieure, Membre du 
jury 
 

M. VAUDENAY Serge 
École polytechnique fédérale de 
Lausanne, Membre du jury 

 
M. KOCHER Paul 
Rambus, Membre du jury 

 

Mme. TRICHINA Elena 
Rambus, Membre du jury 

 
 
 
 

 

 
Ecole doctorale n° 386 

 
SCIENCES MATHEMATIQUES DE PARIS CENTRE 

 

Spécialité  INFORMATIQUE 





ACKNOWLEDGEMENTS

At the very first, I want to thank my mother Elena Korkikian and father Gevork Korkikian. Even though
they have their own struggles, they always put mine first. Without them and their tremendous support
there is no way that I could have made it so far.

In full gratitude I would like to acknowledge David Naccache for his guidance as my thesis advisor during
these years. You encouraged, inspired, and assisted me in the pursuit of this higher education degree.

I also thank my co-authors and my fellow labmates for the stimulating discussions Eric Brier, Jean-Michel
Cioranesco, Quentin Fortier, Diana Maimut, , Guilherme Ozari de Almeida, Sylvain Pelissier, Adrien Pommellet,
Rodrigo Portella do Canto, and Jean Vuillemin. It was a true pleasure working with you all.

I am most grateful to Elena Trichina for her encouragement and practical advice. I am also thankful to her
for reading my reports, commenting on my views and helping me understand and enrich my ideas. She
supported me since the very beginning.

I would like to pay tribute to my jury Jean Vuillemin, Serge Vaudenay, Paul Kocher, and Elena Trichina
for agreeing to serve on this thesis committee. I express my particular gratitude to my thesis referees
Sylvain Guilley and Louis Goubin for their availability and dedication. I am very honoured to have such a
prestigious committee.

The research work presented in this thesis was supported by Altis Semiconductor and the association
nationale de la recherche et de la technologie. Thank you for giving me the opportunity to start my own
research.

I would like to extend my profound gratitude towards my current employer NagraVision and my team
Security Evaluations and Attacks. Thank you for supporting me especially towards the end of this thesis,
and for offering me the possibility to apply the knowledge I accumulated.

I want to thank my teachers and professors without whom I would not have been able to start my thesis.
I am especially indebted to Renaud Pacalet who introduced me to cryptography and hardware security,
to Sergey Pashkov for teaching me moving forward despite all difficulties, to Igor Simakov and Valentin
Kuprianov for giving me a taste of science.

I want to express my sincere thanks to Natacha Laniado for helping me in difficult moments. Last but not
least, I want to thank Ekaterina Leonova for supporting me throughout the development of this work.





A sacrifice to be real must cost, must hurt, must empty ourselves.

– Blessed Mother Teresa of Calcutta Roman Catholic Nun of Charity and Love





CONTENTS

1 Introduction 13
1.1 A Brief Introduction to Secure Communication . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Cryptographic Terminology and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Block Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.1 Substitution-Permutation Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.2 Feistel Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Public Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.1 Diffie-Hellman’s Key Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.2 The Rivest-Shamir-Adleman Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.1 RSA Digital Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Side-Channel Attacks 29
2.1 Why Circuits Leak? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 CMOS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.2 Additional CMOS Side-Channels and Power Transformations . . . . . . . . . . . . 34

2.2 CMOS Leakage Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 A Taxonomy of Side-channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Simple Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Model-Response Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.3 Template Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.4 Algebraic Side-Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Side-Channel Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Fault Attacks 47
3.1 Fault Attack Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Timing Constrains in Digital ICs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.2 Fault Injection Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.3 Basic Fault Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Differential Fault Analysis Against SPNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1 Ciphertext-Based Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Plaintext-Based Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Fault Attack Against CRT-RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Fault Attack Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Instantaneous Frequency Analysis 59
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 The Hilbert Huang Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 First Step: Empirical Mode Decomposition. . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Second Step: Representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 AES Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Hilbert Huang Transform and Frequency Leakage . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.1 Why Should Instantaneous Frequency Variations Leak Information? . . . . . . . . 65
4.3.2 Register Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.3 Power Consumption of One AES Round . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.4 Hilbert Huang Transform of an AES Power Consumption Signal . . . . . . . . . . 69

4.4 Correlation Instantaneous Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 72



4.4.1 Correlation Instantaneous Frequency Analysis on Unprotected Hardware . . . . . 73
4.4.2 Correlation Instantaneous Frequency Analysis in the Presence of DVS . . . . . . . 73

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Distinct Key Distribution and Statistical Indistinguishability 77
5.1 Statistical Indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Hamming Weight Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Blind Fault Attacks Against SPNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Hamming Weight Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.2 Key Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Substitution Layer Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Multi Fault Attacks on Protected CRT-RSA 89
6.1 The State-of-The-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 Device Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 The Laser Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4 Preparatory Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.5 Two Fault Attacks Against CRT-RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.6 Practical Issues of Multi Fault Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Defensive Leakage Camouflage 103
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2 Models and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.1 One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2.2 Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2.3 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Why Euclidean Distances? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3.1 Multivariate Normal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3.2 Multivariate Normal Distribution: Taking Correlation into Account . . . . . . . . . 111

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.5 Conclusions and Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8 Buying AES Design Resistance with Speed and Energy 119
8.1 The Proposed AES Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.2 Energy and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.2.1 Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.2.2 Power Scrambling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2.3 Transient Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.2.4 Permanent Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.2.5 Runtime Configurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.5 Further Research: Ghost Data Attacks? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9 Conclusion 129

Index 130

Bibliography 133

List of Main Abbreviations 151

A Statistical Distances for Various S-boxes 155

B List of Publications 159



LIST OF FIGURES

1.1 Shannon’s model of a secrecy system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 A model of an embedded secrecy system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Embedded security pyramid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 A typical SPN-based block cipher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 AES encryption flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 AES decryption flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7 A typical Feistel network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.8 DES round function f(Ri−1,K

[i]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.9 Diffie-Hellman key exchange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.10 RSA key generation, encryption and decryption. . . . . . . . . . . . . . . . . . . . . . . . . 26
1.11 RSA digital signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 CMOS inverter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 CMOS inverter layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Inverter electrical model during a transition. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Summary of static leakage currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 CMOS inverter layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Averaged assets values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 A taxonomy of block cipher side-channel attacks. . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Difference of means. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.9 Correlation coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.10 Mutual information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.11 SCA countermeasures mind-map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Synchronous representation of digital ICs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Fault attack countermeasures mind-map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Illustration of the EMD: (a) is the original signal u(t); (b) u(t) in thin solid black line, upper
and lower envelopes are dot-dashed with their mean mi,j in thick solid red line; (c) shows
the difference between u(t) and the envelope’s mean. . . . . . . . . . . . . . . . . . . . . . 62

4.2 Marginal Hilbert spectrum of the function cos((a+ bt)t). . . . . . . . . . . . . . . . . . . . 63
4.3 Hilbert amplitude spectrum of the function cos((a+ bt)t). . . . . . . . . . . . . . . . . . . . 64
4.4 Inverters switch simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Netlist of a 4-bit register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 Power consumption of register switch of 1 and 3 bits. . . . . . . . . . . . . . . . . . . . . . 67
4.7 Register switch of 1 and 3 bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8 Four AES last rounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.9 AES last round power consumption for 55 (red), 65 (blue) and 75 (black) register’s flip-flops. 69
4.10 Power spectra density for the signals shown on Fig.4.9a. . . . . . . . . . . . . . . . . . . . 70
4.11 Initial signal u(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.12 Power consumption of our experimental AES-128 implementation. . . . . . . . . . . . . . 71
4.13 Fourier and Hilbert power spectrum density of Fig. 4.11. . . . . . . . . . . . . . . . . . . . 72
4.14 Dependency between the Hamming distance of 9-th and 10-th AES round states and the

IF of the first IMF component at time 276 ns (corresponding to the beginning of the last
AES round). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.15 Maximum correlation coefficients for a byte of the last round AES key in an unprotected
implementation. Although the three attacks eventually succeed CPA>CSBA>CIFA. (a)
CPA (b) CSBA (c) CIFA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



4.16 Power traces of the FPGA AES implementation. The unprotected signal is shown in red.
The DVS-protected signal is shown in black. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.17 Maximum correlation coefficient for a byte of the last round AES key with simulated DVS.
(a) CPA (b) CSBA (c) CIFA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Hamming weight probability distribution Prk
[
HW(xin),HW(S(k ⊕ xin))

]
for AES. . . . . 79

5.2 Statistical distance for AES HWPDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Key recovery success rate of AES operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Confusion operation at round r + 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 Results of Hamming weight computation by fault injection. . . . . . . . . . . . . . . . . . 84
5.6 Key recovery success rate for different S-boxes Sr+1,j ◦A |Kr,j

(
XSP
r,j

)
. . . . . . . . . . . . 86

6.1 Instruction encoding in ARM architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Laser platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 Top layer of the chipset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4 Oscilloscope snapshot taken during instruction skipping. . . . . . . . . . . . . . . . . . . . 99
6.5 Snapshot taken during two fault attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.6 GPIO corruption during laser shots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1 3D power trace representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Determining the smallest sphere containing at least one point of each color. . . . . . . . . 107
7.3 First two steps of the 2D color-spanning algorithm. . . . . . . . . . . . . . . . . . . . . . . 107
7.4 Step 3, splitR into two overlapping rectanglesRright and Rleft of length `

2 + r. . . . . . . . 107
7.5 Recursive problem size reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.6 Program output example in 2 dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.7 The optimal sphere (left) is different from the sphere found by the barycenter heuristic

(right) if the heuristic considers first the red, then the blue and finally the green points. . . 109
7.8 The experimental circuit used for power consumption measurements. . . . . . . . . . . . 113
7.9 Power trace of the circuit of Fig.7.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.10 Experimental results for n = 8. 3D and projected representations of the 256 experimental

measurements (represented as 8 color families of 32 points). . . . . . . . . . . . . . . . . . 115
7.11 Display of the rescaled solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.12 Experimental results for n = 8. Position of the optimal solutions. . . . . . . . . . . . . . . 116

8.1 AES encryption flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.2 AES decryption flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.3 Flow of computation in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.4 Unprotected implementation: Pearson correlation value of a correct (red) and an incorrect

(green) key byte guess. 500,000 power traces. . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.5 Power scrambling with a PRNG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.6 LFSR implementation: Pearson correlation value of a correct (red) and an incorrect (green)

key byte guess. 1,200,000 power traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.7 Power scrambling with tri-state buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.8 Tri-state buffers implementation: Pearson correlation value of the correct key byte (green)

and a wrong key byte guess (red). 800,000 power traces. . . . . . . . . . . . . . . . . . . . . 123
8.9 Transient fault detection scheme for AES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.10 Permanent fault detection scheme for AES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.11 AES design’s inputs and outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.1 Statistical distance for 4-to-4 LED and TWINE S-boxes. . . . . . . . . . . . . . . . . . . . . 155
A.2 Statistical distance for 6-to-4 DES S-boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.3 Statistical distance for 8-to-8 AES and Safer++ S-boxes. . . . . . . . . . . . . . . . . . . . . 157
A.4 Statistical distance for 8-to-32 CAST S-boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . 158



LIST OF TABLES

2.1 Current flowing through the inverter during logic level change. . . . . . . . . . . . . . . . 32
2.2 Information that can be obtained with side-channel leakage. . . . . . . . . . . . . . . . . . 37

5.1 Specification of the operation S[r+1]
j ◦A |

k
[r]
j

(
S

[r]
j

)
for different ciphers. . . . . . . . . . . 85

5.2 Number of faults used to recover a key from the operation S[r+1]
j ◦ A |

k
[r]
j

(
S

[r]
j

)
for

different ciphers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 Running time for points randomly chosen in the 3-dimensional unit cube, averaged over
10 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Running time for points randomly chosen in the 4-dimensional unit cube, averaged over
10 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.1 29 possible AES-block configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2 Number of configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.3 Unprotected AES, LFSR and tri-state buffer designs synthesized to the 45nm FreePDK

Open Cell Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.4 Spartan3E-500 utilization summary report. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128





CHAPTER 1

INTRODUCTION

Summary

Cryptology continues to co-evolve with state-or-the-art communication and computing technologies.
Just as previous technological breakthroughs, such as the telegraph, radio, electro-mechanical devices,
and personal computers, compelled cryptography to replace broken or weak ciphers, the advert of
widespread embedded devices induces new cryptographic vulnerabilities. Material vulnerabilities
appear at circuit-level, where a malicious user can measure or physically stress transistors’ states.
Physical observations can be correlated to the processed data by side-channel analysis. Malicious data
modifications lead to fault attacks. The emergence of these low layer attacks arises an assumption that
cryptography is necessary for private communication and secure processing, but it is not sufficient. As
such, cryptographic algorithms must be protected from malicious analysis.

This chapter describes secure embedded design essentials. Section 1.1 presents a brief introduction
to the history of cryptology, which highlights changes in cryptography after several technological
breakthroughs. Section 1.2 describes terminology and cryptographic concepts used throughout the thesis.
Section 1.3 provides the technical details of SPN and Feistel block ciphers. Section 1.4 briefly explains
public key cryptography and Section1.5 describes digital signatures. All the described cryptographic
algorithms are referenced in the following chapters.
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1.1 A Brief Introduction to Secure Communication

Private communications and secure processing relies on cryptography, defined as the study of techniques
for securing digital information, transactions, and distributed computations. The first evidence of
cryptography can be traced back to the Ancient Times (about 3000-2000 B.C.), in Babylonia and the Old
Kingdom of Egypt [Dar04]. Cryptanalysis, the study of breaking cryptographic systems and gaining
access to the contents of ciphertexts, has co-evolved with cryptography. The history of encryption is the
history of "the contest of wits" between cryptography and cryptanalysis - new ciphers being designed
to replace old broken designs, and new cryptanalytic techniques being invented to crack the improved
schemes.

Encryption, as much as any other algorithm, can be seen as a sequence of instructions. These instructions
describe the computations that transform a plaintext (a clear data) to a ciphertext (a scrambled output).
Any computation ultimately involves a computing device, for instance, a smart-card, a tablet, a mobile
phone, a personal computer, etc. Hence, among other factors, the computing devices’ capabilities are
correlated to advances in cryptology, defined as the combined study of cryptography and cryptanalysis.

Looking back into the history of technology helps the understanding of cryptologic achievements. Before
the invention of the telegraph in 1844, all ciphertexts were handed physically. Telegraph communications
could be easily intercepted, so a need for secure communication over unprotected channels has appeared.
At first, a Vigenère cipher was widely used [Sin11]. In 1863, Friedrich W. Kasiski [Kas63] discovered
a solution to all periodic polyalphabetic ciphers, which until that time were considered unbreakable.
Therefore, Vigenère ciphers had to be replaced.

Just as telegraph changed cryptography in 1844, radio changed cryptography in 1895. Now transmissions
were open for anyone’s inspection, and physical security was no longer possible. Until 1917, transmis-
sions were encoded in Baudot code as for the use with teletypes [Mog08].1 The American Telephone
and Telegraph Company was very concerned with the ease of reading the Baudot code, so Gilbert S.
Vernam [Ver58] developed an encryption machine that added the plaintext electronic pulses to a key
to produce ciphertext pulses. Vernam’s encryption machine was never widely used but the addition
modulo-2 together with the use of the same keystream to encipher and decipher are the basis of modern
cryptography.

The use of cryptographic machines dramatically changed the nature of cryptology. Cryptography
became intimately related to machine design, and security personnel became involved in the protection
of these machines. The basic systems remained the same, while encryption methods became reliable and
electromechanical.

The next major advancement in electromechanical cryptography came with the invention of the rotor
machine by Theo van Hengel and Rudolf Pieter Cornelis Spengler [MPM+96]2. The rotor is a thick disk
with two faces, each with 26 brass contacts separated by insulating material. Each contact on the input
(plaintext) face is connected by a wire to a randomly chosen contact on the output (ciphertext) face.
Each contact is assigned a specific letter. An electrical impulse applied to a contact on the input face
will result in a different letter being an output of the ciphertext face. A single rotor thus implements
a monoalphabetic substitution cipher. This rotor is set in a device that takes plaintext input from a
typewriter keyboard, and sends the corresponding electrical impulse to the plaintext face. The ciphertext
is generated by the rotor, and printed and/or transmitted.

German codes during the Second World War were predominantly based on the ’Enigma’ machine [Sin11],
which is an extension of the electromechanical rotor machine discussed above. Enigma defined a
polyalphabetic substitution cipher, with a period before the repetition of the substitution alphabet that
was much longer than any message, or set of messages, sent with the same key. Marian Rejewski
could build the first brute-search electro-mechanical device that was dubbed the bomba kryptologiczna
or cryptologic bomb. Rejewski has written [Rej82] about the device: "The bomb method, invented in the
autumn of 1938, consisted largely in the automation and acceleration of the process of reconstructing daily keys.
Each cryptologic bomb (six were built in Warsaw for the Biuro Szyfrów Cipher Bureau before September 1939)
essentially constituted an electrically powered aggregate of six Enigmas. It took the place of about one hundred
workers and shortened the time for obtaining a key to about two hours."

1The symbol rate measurement unit, known as the baud, is derived from Baudot’s name.
2Previously, the invention had been ascribed to four inventors working independently and at much the same time: Edward

Hebern, Arvid Damm, Hugo Koch and Arthur Scherbius.
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Shannon was one of the first modern cryptographers to apply advanced mathematical techniques to
cryptology. Shannon’s seminal paper [Sha49] introduces the fundamental secure private communication
model still in use as we write these lines. This model, illustrated on Fig. 1.1, describes a communication
between the two endpoints, sharing the same secret key K. A transmitter encrypts a plaintext P with
K, i.e., C = EK(P ). A ciphertext C is then sent to a receiver via an unprotected channel. The receiver
recovers the initial plaintext P by decrypting the ciphertext P = E−1

K (C). During transmission, C is
observed by an eavesdropper. Her3 goal is to learn P . The sender’s and the receiver’s goal is to secure the
communication channel, so that C could not be decrypted.

C = EK(P ) P = E−1
K (C)

Black Box Black Box

Transmitter Receiver
C

Eavesdropper

P

K

P

K

Figure 1.1 – Shannon’s model of a secrecy system.

In Shannon’s model, the cryptographic algorithms EK and E−1
K are assumed to be executed inside the

two Black Boxes. The adjective black means that Eve does not know the secret material used inside the
box, i.e., keys, look-up tables, etc. The word box is used to indicate that there is a mechanism inside the
box, which is a publicly known algorithm itself.

Shannon’s model was developed during an era in which cryptography was mostly reserved for military
and governmental use. During that epoch, cipher algorithm design was treated with the strictest
secrecy by nations. Nevertheless, when PCs became widespread, the need for encryption in commercial
applications increased. This created a need for public cryptographic algorithms. In 1973, the National
Bureau of Standards (NBS, which later became the National Institute of Standards and Technology or
NIST) issued a public call for a block cipher to be adopted as a standard by the U.S. government. NBS
approved the Data Encryption Standard in 1976 [oS77]. This was a historically significant trigger for
cipher development.

Just as telegraph and radio changed cryptography in the 19th century, embedded systems drastically
influenced cryptography and cryptanalysis at the end of the 20th century. As smart objects increasingly
find application in communication, medical, tracking, and other daily services, an adversary can gain
access to a device during the encryption process. Gaining physical access to those devices implies
that they can be examined and manipulated, so the Black Box assumption is being increasingly put in
question. This imposed a significant change in the adversarial model, namely, not only the channel but
also endpoints can be attacked as illustrated in Fig. 1.2.

In a nutshell, a physical system, processing a cryptographic algorithm, may suffer from different circuit-
level security flaws. Firstly, a device can leak information: physical observations and measurements may
be correlated to the processed data. Secondly, physical stress can modify the algorithm’s processing.
Malicious data modifications lead to fault analysis used for cryptanalysis [BS97].

Circuit-level vulnerabilities turned out to be serious threats on par with cryptanalytic attacks [CP02],
middleware vulnerabilities [KDK+14], and software vulnerabilities [SMWO11]. Embedded system
design became a systematic problem considered at different abstraction levels [HSTV06], as illustrated in
Fig 1.3. These levels are:

• Protocol level, which performs a security-related function and applies cryptographic methods, often
as a sequence of cryptographic primitives. A protocol describes how algorithms should be used.

3As is customary in cryptography, we often refer to the sender as "Alice", to the receiver as "Bob", and to the eavesdropper as
"Eve".
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C = EK(P ) P = E−1
K (C)

Gray Box Gray Box

Transmitter ReceiverFaulty and correct C, P
side-channel data

Eavesdropper

P

K

P

K

Figure 1.2 – A model of an embedded secrecy system.

The following functions are typical examples of protocol level abstractions:

– Key agreement

– Entity authentication

– Secure multi-party computation

• Algorithm level, consisting of the design of cryptographic primitives such as hash functions or block
ciphers. For example, AES [AES01], SHA [FIP95], DES [oS77], and others.

• Architecture level, consisting of secure hardware/software partitioning and embedded software
techniques to prevent software attacks.

• Microarchitecture level, which deals with the hardware design of the required modules (processors
and cryptoprocessors) specified at the architecture level.

• Circuit level, which requires implementing transistor-level and package-level techniques to thwart
various physical-layer attacks, such as side-channel and fault analysis, which are the subject of this
thesis.

TLS,
IKE, ZKP, CRP

AES, LED, DES

Harvard/Von Neumann,
OS, Embedded software

RNG, PUFs, IP blocks

nMOS, pMOS, transistors

Protocol level

Algorithm level

Architecture level

Microarchitecture level

Circuit level

Figure 1.3 – Embedded security pyramid.

The two lowermost levels attracted a lot of attention since the middle of the 1990s. First of all, timing
attacks, introduced by Kocher in 1996 [Koc96], showed that the microarchitecture level can be used to
unveil secret cryptographic keys. That same year, Boneh et al. [BDL97] proposed a theoretical attack
revealing a private RSA key by a single random fault injection. Then, in 1998 [KJJ99], Kocher showed
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that a circuit’s power consumption could also compromise system secrecy. These three articles launched
the field of hardware attacks. The low level attacks led to a conclusion that cryptography is necessary
for private communication and secure processing, but that is not sufficient. As such, cryptographic
algorithms must be protected from malicious analysis, specifically side-channel and fault attacks.

The ultimate goal of this thesis is to analyse several popular protective schemes, as well as to show ways
in which they can be broken. Particular attention is paid to:

• Adapt the Hilbert Huang Transform to break hiding side-channel countermeasures.

• Describe key-dependent distributions leading to "blind" key exposure, i.e., without knowledge of
plaintexts and ciphertexts.

• Show that the injecting of multiple faults is feasible against complex systems.

1.2 Cryptographic Terminology and Concepts

The following list of terms and basic concepts is used throughout this thesis. The definitions are taken
from [HPSS08, MVOV96, MP13].

• A denotes a finite set called alphabet of definitions. A = {0, 1} is the frequently used binary alphabet.
Note that any alphabet can be encoded in terms of the binary alphabet.

• P denotes a set called the plaintext space. According to Shannon’s model illustrated on Fig. 1.1,
P ∈ P called a plaintext is an initial data encrypted by a transmitter.

• C denotes a set called the ciphertext space. In Shannon’s model, an element C ∈ C is called a
ciphertext.

• K denotes a set called the key space. An element K ∈ K is called a key.

• Each element K ∈ K uniquely determines a bijection from P to C, denoted by EK . EK is called an
encryption function or an encryption transformation. Note that EK must be a bijection if the process is
to be reversed for a unique plaintext message to be recovered from each distinct ciphertext.

• An element KD ∈ K determines a bijection from C to P , denoted by DKD . DKD is called a
decryption function or decryption transformation.

• The process of applying the transformation EK to a plaintext P ∈ P is referred to as encrypting P
or the encryption of P .

• The process of applying the transformation DKD to a ciphertext C ∈ C is referred to as decrypting
C or the decryption of C.

• An encryption scheme consists of a set {EK : K ∈ K} of encryption transformations and a corre-
sponding set

{
DKD : KD ∈ K

}
of decryption transformations with the property that ∀K ∈ K there

is a key KD ∈ K such that DKD = E−1
K ; that is, DKD (EK(P )) = P for all P ∈ P . An encryption

scheme is also referred to as a cipher.

• The keys K and KD are referred to as a key pair and are sometimes denoted by (K,KD). Note that
K and KD could be identical.

• M is the set of messages which can be signed.4 M consists of strings of symbols from A.

• S is a set of elements called signatures, possibly binary strings of a fixed length.

• SignA is a transformation from K ×M to S, called a signing transformation for entity A5. The
transformation SignA is kept secret by A, and will be used to create signature for messages from
M.

• VerA is a transformation from the set K−1 ×M×S to the set {true, false}. VerA, called a verification
algorithm for A’s signatures, is publicly known, and is used by other entities to verify signatures
created by A.

4To prevent ambiguity between a plaintext P ∈ P and an RSA’s prime number p the messages space notationM for asymmetric
ciphers is different from the plaintexts space notation P used in symmetric ciphers.

5The names of Alice and Bob are usually abbreviated to A and B respectively
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Definition 1 [Ring] A ring is a nonempty set R together with two operations, "+" and "·" such that:

1. (R,+) is an abelian group;

2. · is associative, that is for all a, b, c ∈ R, a · (b · c) = (a · b) · c;

3. left and right distributive laws hold: for all a, b, c ∈ R

a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a

Definition 2 [Field] Let R be a ring.

1. R is a ring with identity if the ring has a multiplicative identity.

2. R is commutative if "·" is commutative.

3. R is an integral domain if it is commutative with identity and a · b = 0 implies a = 0 or b = 0, for
any a, b ∈ R.

4. R is a division ring (also called a skew field) if a nonzero element of R form a group under "·".

5. R is a field if it is a commutative division ring.

If p is prime, then the set Fp of integers modulo p with its addition, subtraction, multiplication, and
division rules is a field. Finite fields are also sometimes called Galois fields, after Évariste Galois [Gal97],
who studied them in the 19th century. Yet another notation for Fp is GF(p), in honor of Galois. An
additional notation for Fp is Zp, although in number theory the notation Zp is more commonly reserved
for the ring of p-adic integers.

Definition 3 [Symmetric Cipher] An encryption scheme {EK : K ∈ K},
{
DKD : KD ∈ K

}
is called

symmetric cipher (also symmetric-key, single-key, one-key, and conventional [Mol06]) if for each key pair
(K,KD), it is computationally easy to determine K knowing only KD, and to determine KD knowing
only K.6

Two types of symmetric ciphers are commonly distinguished: block ciphers and stream ciphers.

Definition 4 [Block Cipher] A block cipher is an encryption scheme that splits the plaintext P into strings,
called blocks, of fixed length n, called the block length, over an alphabet A, and enciphers one block at a
time.

Stream ciphers are, in one sense, very simple block ciphers having block length equal to one.

Definition 5 [Keystream] Let K be the key space for a set of encryption transformations. A sequence of
symbols K1,K2,K3 . . .Ki ∈ K, is called a keystream.

Definition 6 [Stream cipher] Let A be an alphabet of q symbols and let EK be a simple substitution
cipher with block length 1 where K ∈ K. Let P1, P2, P3 . . . be a plaintext string and let K1,K2,K3 . . .
be a keystream from K. A stream cipher takes the plaintext string and produces a ciphertext string
C1, C2, C3 . . . where Ci = EKi(Pi).

Most well-known symmetric encryption techniques are block ciphers. Two important classes of block
ciphers are substitution ciphers and transposition ciphers.

Definition 7 [Simple Substitution Cipher] Let A be an alphabet of q symbols and P be the set of qn

strings of length n over A. Let K be the set of all permutations over A. Define for each K ∈ K an
encryption transformation EK as:

EK(P ) = (K(P1),K(P2), . . . ,K(Pn)) = (C1, C2, . . . , Cn) = C

where P = (P1, P2, . . . , Pn) ∈ P . In other words, replace (substitute) each symbol Pi ∈ A in an n-tuple
by another symbol K(Pi) ∈ A according to some fixed permutation K. EK is called a simple substitution
cipher or a mono-alphabetic substitution cipher.

Definition 8 [Simple Transposition Cipher] Consider a symmetric block encryption scheme with block
length n. Let K be the set of permutations of the set {1, 2, . . . n}. For each K ∈ K define the encryption
function

EK(P ) = (PK(1), PK(2), . . . , PK(n))
6In most practical symmetric ciphers K = KD .
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where P = (P1, P2, . . . , Pn) ∈ P is the message space. The set of all such transformations is called a
simple transposition cipher.

The modern design of most block ciphers is based on the concept of iterated product ciphers. Product
ciphers were suggested and analysed by Claude Shannon in his seminal publication [Sha49]. To describe
product ciphers, the concept of composition of functions is introduced.

Definition 9 [Composition of Functions] Let S,T , and U be finite sets and let f : S → T and g : T → U
be functions. The composition of g and f , denoted g ◦ f (or simply gf ), is a function from S to U defined
by (g ◦ f)(x) = g (f(x)) for all x ∈ S.

Definition 10 [Product Cipher] A product cipher is a composition of t ≥ 2 transformationsEK1EK2 . . . EKt
where each EKi , 1 ≤ i ≤ t, is either a substitution or a transposition cipher.

The composition of substitutions and transpositions repetitively applied by a block cipher is called a
round. A substitution is said to add confusion to the encryption process whereas transposition is said to
add diffusion. Product ciphers carry out encryption in multiple rounds, each of which uses a different
subkey derived from the original key. One widespread implementation of such ciphers is called a Feistel
network [Fei73], named after Horst Feistel, and notably implemented in the DES cipher. Many other
realizations of block ciphers, such as the AES, are classified as Substitution-Permutation Networks.

In practical ciphers, confusion is often implemented as a set of look-up tables or S-boxes, denoted as S.
An S-box is a nonlinear transform used to map a b-bit element into q-bit element:

S : F2b → F2q (1.1)

During the confusion stage the current n-bit string is fed into an array of m S-boxes, where n = b×m.
The same set of S-boxes may be used in each round, or S-boxes may change from round to round.

The diffusion layer, denoted as D, is a linear transform that reshuffles n-bit inputs.

D : (F2b)
m → (F2b)

m (1.2)

The main purpose of diffusion is to spread small input variations over a significant amount of output
bits. D is designed so that the output bits of any given S-box are spread over different S-boxes in the
next round.

A key mixing operation, denoted as A, combines the n-bit input with an n-bit round key Ki.

A |K[i] : F2n × F2n → F2n (1.3)

The round keys K [i] are derived from the master key K according to a key schedule algorithm. The key
schedule is often made of a simple confusion-diffusion operations set.

Digital signature is another fundamental cryptographic primitive, which is used in authentication and
non-repudiation. The process of signing combines a message and some secret information held by the
signing entity into a binary string called a signature.

Definition 11 [Digital Signature] A digital signature scheme consists of three probabilistic, polynomial
time algorithms (Gen, Sign, Vrfy) along with an associated message spaceM = {mi} such that:

• The randomized key-generation algorithm Gen takes as input the security parameter r (in unary). It
outputs a pair of keys (Kpub,Kpriv) where Kpub is called the public key or the verification key, and
Kpriv is called the private key, the secret key, and the signing key.

• For security parameter r, the (possibly randomized) signing algorithm Sign takes as input a secret
key Kpriv and a message m ∈M and outputs a signature s. We write this as s← SignKpriv

(m).

• For security parameter r, the deterministic verification algorithm Vrfy takes as input a public
key Kpub, a message m ∈ M, and a (purported) signature s. It outputs a single bit b, with b = 1
signifying “accept” and b = 0 signifying “reject”. We write this as b← VrfyKpub

(m, s).

To describe fault attacks against block ciphers the following definitions are required:

Definition 12 [The Hamming Weight] The Hamming weight of a string x over an alphabet of definitions
A is defined as a number of non-zero symbols in the string. More formally, HW(x) = |{i : xi 6= 0}|.
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Definition 13 [T-Radical Branch Number] T-radical branch number BT of a linear diffusion layer D is
defined as:

BT (D) = min
HW(x)=T

{HW (D (x))}, x ∈ (F2b)
m

Definition 14 [Entropy] Let X ∈ F2b be a discrete random variable. Then, the entropy of X is defined to
be the following quantity expressed in bits

H(X) = −
∑
x∈F2b

Pr[X = x] log2(Pr[X = x]) (1.4)

Note that if variable X is uniformly distributed (i.e., Pr[X = x] = 2−b, ∀x ∈ F2b ) then H(X) = b.

Theorem 1 [Primitive Root Theorem] Let p ∈ N be a prime number. Then there exists an element g ∈ Fp
whose powers give every element of Fp, i.e.:

Fp = {1, g, g2, . . . , gp−2}

Elements with this property are called primitive roots of Fp or generators of Fp.

The number of primitive roots in the finite field Fp is given by Euler’s phi function φ(p− 1).

Definition 15 [Euler’s Phi Function] Euler’s phi function (also known as Euler’s totient function) is the
function φ(p) defined as follows

φ(p) = #Fp = #{0 ≤ a ≤ p : GCD(a, p) = 1}

Theorem 2 [Fermat’s Little Theorem] Let p ∈ N be a prime number and let a ∈ N. Then

ap−1 =
{

1 mod p if p - a
0 mod p if p | a

where p - a denotes that a is not divisible by p and p | a denotes that a is divisible by p.

1.3 Block Ciphers

1.3.1 Substitution-Permutation Networks

A Substitution Permutation Network (SPN) is a composition of invertible transforms. A typical SPN-based
block cipher, shown on Figure 1.4, consists of Nr rounds described by equation (1.5).

EK : A |K[Nr ] ◦
mn

i=1
S[Nr]
i ◦

(
Nr−1

,
r=1

A |K[r] ◦ D[r] ◦
mn

i=1
S[r]
i

)
◦A |K[0] (1.5)

where the notation
fm
i=1 S[r]

i indicates S-box outputs concatenation.

Note that the very first and last operations performed in this SPN are sub-key mixing operations. This is
called whitening and is regarded as a useful way to prevent an attacker from even beginning to carry out
an encryption or decryption operation if the key is unknown.

At the last round, D is not applied. Consequently, the encryption algorithm can also be used for
decryption, if appropriate modifications are made to the key schedule and if all the transformations
D[r], S[r]

i , and A |K[r] are replaced by their inverses. To ensure invertibility the SPNs’ S-boxes must be
bijective.
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Plaintext

A |K[0] : K [0] mixing

S[1]
1

. . . . . .S[1]
j S[1]

m

Round 1D[1]: diffusion

A |K[1] : K [1] mixing

. . . . . .S[r]
1 S[r]

j S[r]
m

Round 1 < r < NrD[r]: diffusion

A |K[r] : K [r] mixing

. . . . . .S[Nr]
1 S[Nr]

j S[Nr]
m

Round Nr
A |K[Nr ] : K [Nr] mixing

Ciphertext

Figure 1.4 – A typical SPN-based block cipher.

The Advanced Encryption Standard

The Advanced Encryption Standard (AES) is an SPN-based block-cipher that processes 128-bit blocks and
supports keys of 128, 192 or 256 bits [AES01]. Key length is denoted by NK = 4, 6, or 8, and reflects the
number of 32-bit words in the key. At start, the 128-bit plaintext P is split into a 4 × 4 matrix S of 16
bytes called . The state goes through a number of rounds to become the ciphertext C.

The number of rounds Nr is a function of NK . Possible {Nr, NK} combinations are {10, 4}, {12, 6} and
{14, 8}. A particular round 1 ≤ r ≤ Nr takes as input a 128-bit state S[r] and a 128-bit round key K [r]

and outputs a 128-bit state S[r+1]. This is done by successively applying four transformations called
SUBBYTES, SHIFTROWS, MIXCOLUMNS and ADDROUNDKEY.

P ADDROUNDKEY

K [r] C

SUBBYTES SHIFTROWS MIXCOLUMNS

(Nr times)

Figure 1.5 – AES encryption flowchart.

AES encryption starts with an initial ADDROUNDKEY transformation followed by Nr rounds consisting of
four transformations, in the following order: SUBBYTES, SHIFTROWS, MIXCOLUMNS and ADDROUNDKEY.
MIXCOLUMNS is skipped in the final round (r = Nr). If during the last round MIXCOLUMNS is bypassed,
we can look upon the AES as the 4-block iterative structure shown in Fig. 1.5. Decryption has a similar
structure where the order of transformations is reversed (Fig. 1.6) and where inverse transformations are
used (Note that ADDROUNDKEY is idempotent).
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C ADDROUNDKEY

K [r] P

INVMIXCOLUMNS INVSUBBYTES INVSHIFTROWS

(Nr times)

Figure 1.6 – AES decryption flowchart.

1.3.2 Feistel Networks

A Feistel Network illustrated on Fig. 1.7 is an alternative block cipher design [oS77]. The building blocks,
such as confusion, diffusion, and key mixing, are the same; the difference is at the high-level design.
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L0

f(R0,K
[1])

K [1]

R1

L1

f(R1,K
[2])

K [2]

Ri

Li

f(Ri−1,K
[i])

K [i]

RNr−1

LNr−1

f(RNr−1,K
[Nr])

K [Nr]

P C

Round 1 Round 2 Round 2 < i < Nr Round Nr

Figure 1.7 – A typical Feistel network.

Similar to SPNs, a Feistel network operates in a series of rounds. Each round applies a round function
that needs not be invertible. Round functions typically contain components like S-boxes and mixing
permutations, but a Feistel network can deal with any transformation irrespective of their design [KL07].
A Feistel network applies a set of subkeys K [1],K [2], ...,K [r] derived from a master key K.

The i-th round of a Feistel network operates as follows. The input to the round is divided into two
halves of size n/2 denoted Li−1, Ri−1 (with L and R denoting the "left half" and "right half" of the input,
respectively). The i-th round function fi takes an n/2-bit input Ri−1 and a round key K [i] to produce an
n/2-bit output. The output (Li, Ri) of the round is given by

Li = Ri−1

Ri = Li−1 ⊕ fi(Ri−1,K
[i])

Splitting an n-bit plaintext into two n/2 values gives the initial left L0 and right R0 halves.

A Feistel network is invertible regardless of the round functions fi. Given the output (Li, Ri) of the i-th
round, (Li−1, Ri−1) can be computed as follows:

Ri−1 = Li

Li−1 = Ri ⊕ fi(Ri−1,K
[i])
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Data Encryption Standard

DES is the most famous Feistel network cipher. This section provides a high-level overview of the DES
main components. The detailed description can be found in the DES specification [oS77].

Ri−1
32 bits

E

E(Ri−1)
48 bits K [i]

48 bits

S4 S5S3S2S1 S6 S7 S8

D

D(S[E(Ri−1)⊕K [i]])
32 bits

Figure 1.8 – DES round function f(Ri−1,K
[i]).

The DES block cipher is a 16-round Feistel network with a block length of 64 bits and a key length
of 56 bits.7 The DES key schedule derives 48-bit round keys K1, ...,K16. All rounds apply the same
non-invertible round function f(Ri−1,K

[i]) illustrated on Fig. 1.8. The round function transforms a
32-bit input Ri−1 and a 48-bit round key K [i] into a 32-bit output as follows:

f(Ri−1,K
[i]) = D(S[E(Ri−1)⊕K [i]])

An input Ri−1 is expanded to 48-bit value R′i−1. This is done by simply duplicating half the bits of Ri−1,
denoted byR′i−1 = E(Ri−1) whereE represents the expansion function.8 Following this step, computation
proceeds similary to an SPN: the expanded value R′i−1 is xored with the round key K [i], and the resulting
value is divided into 8 blocks, each of which is 6-bit long. Each block is passed through a (different)
S-box that yields a 4-bit output. All S-boxes outputs are concatenated into a 32-bit value. As a final step,
a mixing permutation D 9 is applied to obtain the round function’s output.

An initial permutation (IP) of the 64-bit input block is added to the DES beginning. To maintain the
property that the encryption network can be reused for decryption, DES requires the inverse operation
IP−1 to be applied to the output of the network.

1.4 Public Key Cryptography

If Alice and Bob want to exchange messages using a symmetric cipher, they must first agree on a secret
key K. The eavesdropper (Eve) monitors the communication channel between the sender and receiver,
so the key K cannot be sent in clear. A solution for secure key exchange was proposed by Whitfield

7Every 8-th bit of 64-bit key is used for parity.
8Be aware that the expansion function notation E is different from the encryption notation EK .
9To avoid confusion with a plaintext notation P , the standard DES mixing permutation notation P is replaced by D.
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Diffie and Martin Hellman [DH76].10 As usual, there are spaces of keys K, plaintextsM, and ciphertexts
C. However, an element K ∈ K is a pair of keys:

K = (Kpriv,Kpub)

composed of the private key and the public key, respectively. For each public key Kpub there is a corre-
sponding encryption function:

EKpub :M→ C

and for each private key Kpriv there is a corresponding decryption function:

DKpriv : C →M

These have the property that if the pair K = (Kpriv,Kpub) belongs to the key space K, then:

∀m ∈M : DKpriv

(
EKpub(m)

)
= m

For an asymmetric cipher to be secure, it must be difficult for Eve to compute the decryption DKpriv(c)
function even if she knows the public key Kpub. Note that under this assumption, Alice can send Kpub to
Bob using an insecure communication channel, and Bob can send back the ciphertext EKpub(m), without
worrying that Eve will be able to decrypt the message m.

1.4.1 Diffie-Hellman’s Key Exchange

Diffie-Hellman’s key exchange solves the secure key exchange problem over unprotected channels,
where all traffic is observed by Eve. The protocol relies on the Discrete Logarithm Problem (DLP), i.e., the
absence of an efficient general method for computing discrete logarithms on conventional computers.

Definition 16 [Discrete Logarithm] Let g be a primitive root of Fp and let h > 1 to be an element of Fp.
The Discrete Logarithm Problem (DLP) in Fp is the problem of finding an exponent x such that

gx = h mod p

The number x is called the discrete logarithm of h to the base g and is denoted by logg(h).

The Diffie-Hellman protocol is illustrated on Fig. 1.9. The first step is to agree on a large prime p and a
primitive root g mod p. Secret values, that cannot be transmitted over the insecure channel, are shown in
red in Fig. 1.9. The prime p and the integer g are publicly known, e.g., they might be posted in a public
directory. The next step for Alice is to pick a secret integer xA. Bob picks an integer xB that he keeps
secret. Bob and Alice use their secret integers xA, xB to compute YA and YB respectively. YA and YB are
public, so Alice and Bob can exchange these values over the insecure channel. Finally, Bob and Alice use
their secret integers xA, xB to compute the values Y xAB mod p and Y xBA mod p, which are identical. This
common value is used to derive the shared key K.

Eve knows the values YA and YB , so she knows gxA mod p and gxB mod p. She also has the values of g
and p. If she can solve the DLP, then she can find xA and xB , which allows her to compute the shared
secret value K. Alice and Bob are safe unless Eve is able to solve the DLP. More precisely, they are safe
until Eve can solve the Diffie-Hellman Problem (DHP). The DHP is no harder than the DLP.

Definition 17 [Diffie-Hellman Problem] Let p be a prime number and g a generator. The Diffie-Hellman
Problem (DHP) is the problem of computing the value of gab mod p given ga mod p and gb mod p.

10It turns out that the concept of public key encryption was originally discovered by James Ellis while working at the British
Government Communications Headquarters (GCHQ). Ellis’s discoveries in 1969 were classified by the British government and were
not declassified and released until 1997, after Ellis’ death. It is now known that two other GCHQ researchers, Malcolm Williamson
and Clifford Cocks, discovered the Diffie-Hellman key exchange algorithm and the RSA encryption scheme, respectively, before
their rediscovery and public dissemination by Diffie, Hellman, and Rivest, Shamir, and Adleman. To learn more about the
fascinating history of public key cryptography, see for example [Ada97, Ell97, HPSS08, Sin11].
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Diffie-Hellman Key Exchange

Alice Bob

xA
$←− Zp xB

$←− Zp

YA = gxA mod p YB = gxB mod p

p, g, YA

YB

K = Y xA
B mod p K = Y xB

A mod p

Figure 1.9 – Diffie-Hellman key exchange.

1.4.2 The Rivest-Shamir-Adleman Algorithm

Bob and Alice have the usual problem of exchanging secret information over the insecure channel.
Diffie-Hellman key exchange accomplishes the task of secure communication relying on the conjectured
hardness of the DHP. The RSA public key algorithm is based on another paradigm, namely, the difficulty
of factorizing large numbers.

RSA is the acronym of the initial letters of the surnames of Ron Rivest, Adi Shamir, and Leonard
Adleman, who first publicly described the algorithm in 1977 [RSA78]. RSA key generation, encryption,
and decryption are summarized on Fig. 1.10. All the secret algorithm’s components are shown in red.

Alice’s secret key is a pair of large primes p and q. Her public key is the pair (N, e) consisting of the prod-
uctN = pq and an encryption exponent e relatively prime to (p−1)(q−1), i.e., GCD (e, (p− 1)(q − 1)) = 1.
Bob takes his plaintext and converts it into an integer m = N . Bob encrypts m using the public key

c = me mod N

The integer c is the ciphertext, that Bob sends to Alice over the insecure channel. Using Fermat’s Little
Theorem Alice can recover the plaintext m by computing

cd mod N = med mod N = m1+k(p−1)(q−1) mod N = m mod N

A crypto scheme is said to be malleable if the attacker is capable of transforming the ciphertext into
another ciphertext which leads to a known transformation of the plaintext [PP09]. The attacker does not
decrypt the ciphertext; however, he is capable of manipulating the plaintexts in a predictable manner. In
case of RSA this is easily achievable. Let the attacker to replace the ciphertext c by rec, where r ∈ N. If
the receiver decrypts the manipulated ciphertext, he computes:

(rec)d = redmed = rm mod N

The malleable ciphertext problem can be resolved by padding, which embeds a random structure into the
plaintext before encryption. Modern techniques such as Optimal Asymmetric Encryption Padding (OAEP)
for padding RSA messages are specified and standardized in Public Key Cryptography Standard #1
(v2.2) [Lab12].

The security of RSA depends on the adversary inability of computing d from the public key (e,N), which
is equivalent to the problem of factoring N into its prime factors p and q as is proven by Bach [BMS86].
Therefore the primes p and q must be correctly chosen. Choosing p and q as strong primes has been
recommended as a way of maximizing the difficulty of factoring N [RS97].

The definition of a strong prime is given in [RS97]. Let |p| be used to denote the length of p in binary. The
following definition is using English words "large prime" that are clarified with specific recommendations
on sizes.
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The RSA public key cryptosystem

Alice (sender) Bob (receiver)
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m = cd mod N

Figure 1.10 – RSA key generation, encryption and decryption.

Definition 18 [A Strong Prime] A prime p is considered to be a strong prime if the following conditions
are satisfied:

• p is a large prime (say, |p| ≥ 256).

• The largest prime factor of p− 1, denoted p−, is large (say |p−| ≥ 100). That is

p = a−p− + 1

for some integer a− and large prime p−.

• The largest prime factor of p− − 1, denoted p−−, is large (say |p−| ≥ 100). That is

p− = a−−p−− + 1

for some integer a−− and large prime p−−.

• The largest prime factor of p+ 1, denoted p+, is large (say |p+| ≥ 100). That is

p = a+p+ − 1

for some integer a+ and large prime p+.

Definition 19 [Factorization Problem] The integer factorization problem (FACT) is the following: given
a positive integerN , find its prime factorization, i.e., find pairwise distinct primes pi and positive integers
ei such that N = pe1

1 p
e2
2 . . . pekk .

The best achieved factoring results against 768-bit RSA was reported by [KAF+10]. The authors applied
number field sieve factoring method [LLJMP93].

RSA algorithm is also based on another problem, namely, the e-th root problem (ERP).

Definition 20 [e-th Root Problem] Let G be a group and e < |G| be an integer. An element b ∈ G is called
eth root of an element a ∈ G if we have:

be = a
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If GCD(e, |G|) holds, then an eth root always exists and is unique.

Definition 21 [e-th Root Problem] Given a group G of unknown order, a positive integer e < |G| and an
element a ∈ G, find an element b ∈ G such that be = a.

1.5 Digital Signatures

Symmetric and asymmetric encryption schemes solve the problem of secure communication over
insecure channels. Digital signatures solve a different problem, analogous to the purpose of a pen-and-ink
signature on a physical document. The signer (Alice) has a message m and she wants to create an
additional piece of information s that can be used to prove the message m belongs to her. The verifier
(Bob) wants to ascertain that the pair (m, s) originates from the signer.

1.5.1 RSA Digital Signature

The RSA algorithm can also be used for signing a message m and verifying its signature. The signature
algorithm is similar to decryption, except that the message m is "decrypted" with the private key (d, p, q)
as shown on Fig. 1.11. The validity of the signature s is verified similarly to the RSA encryption

se mod N = med mod N = m

The RSA digital signature

Alice (signer) Bob (verifier)
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Check that m = se mod N

Figure 1.11 – RSA digital signature.

The NSA document [NSA15] recommends to use at least 3072-bit modulus when RSA is used for key
establishment and authentication. The computation of RSA signatures can be accelerated by a factor four
using the Chinese Reminder Theorem (CRT) [QC82] where a private key is given by the components
(p, q, dp, dq, iq) with dp = d mod (p− 1), dq = d mod (q − 1) and iq = q−1 mod p. The CRT-RSA process
is the following:
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First compute:

sp = mdp mod p
sq = mdq mod q

Then compute a final signature using, either Garner’s recombination method:

s = CRT(sp, sq) = sq + q
(
q−1(sp − sq) mod p

)
(1.6)

or Gauss’s recombination method:

s = CRT(sp, sq) =
(
spq(q−1 mod p)

)
+
(
sqp(p−1 mod q)

)
(1.7)



CHAPTER 2

SIDE-CHANNEL ATTACKS

Summary

Data and computation are the physical quantities in a physical structure, for example, the charge on a
capacitor or a transistor’s state. As embedded systems increasingly find applications in communication,
medical object, tracking, and other services an adversary can access a device and analyse device’s
physical quantities. Leaked physical information can be used to extract secret data by side-channel
attacks.

Side-channel attacks are a serious concern as with moderate efforts they allow to extract secret infor-
mation from various embedded systems. Companies and institutions spend money to research and to
develop countermeasures against side-channel attacks. As we write these lines a query "Differential
Power Analysis" on Google patents service [Goo] results in more than 4,000 entries. Similar query on
IEEE Xplore digital library [IEE] results in more than 6,500 publications.

Side-channel attacks, i.e., the methods exploiting device’s physical leakage, are explained in this chapter.
Section 2.1 discusses static and dynamic power dissipation in CMOS circuits. Section 2.2 explains what
type of information can be extracted with different side-channels. Section 2.3 sub-divides SCA into 4
groups: simple, model-response, template, and algebraic attacks, and presents three statistical distinguishers:
Difference of Means, Pearson Correlation Coefficient, and Mutual Information. Section 2.4 describes
side-channel countermeasures.
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2.1 Why Circuits Leak?

The physical interpretation of data processing (a discipline named the physics of computational systems
[MC80]) draws fundamental comparisons between computing technologies and provides physical lower
bounds on the area, time, and energy required for computation [Ben73, Key75]. In this framework, a
corollary of the second law of thermodynamics states that in order to perform a transition between states,
energy must be lost irreversibly. A system that conserves energy cannot make a transition to a definite
state and thus cannot make a decision (compute) ([MC80], 9.5).

At any given point in the evolution of a technology, the smallest logic devices must have a definite
physical extent, require a certain minimum time to perform their function and dissipate a minimal
switching energy when transiting from one state to another. Therefore, side-channel leakage is inherited
from the nature of computations and cannot be avoided.

At the current technology evolution step CMOS devices are the most pervasive. The following sections
explain power dissipation of a CMOS inverter as a basic logic element. Inverter’s power consumption is
the cornerstone of all the CMOS side-channel physical leakages.

2.1.1 CMOS Power Dissipation

The CMOS inverter is the atomic element of all CMOS-semiconductor logic cells. An inverter (Fig. 2.1a)
consists of an nMOS and a pMOS transistors that switch synchronously. When an input logic level is 1,
a pMOS is open while an nMOS drains the output signal to the ground as shown on Figure 2.1b. The
opposite happens when an input logic level is 0, an nMOS does not conduct while a pMOS connects the
output to the Vdd line as shown on Figure 2.1c.

An inverter’s physical layout is illustrated on Figure 2.2, where Vcc is a ground level, Vdd is the power
supply, Vin is an input signal, Vout is the inverter’s output, TPNP is a parasitic bipolar transistor (p+/N-
well/p+), TNPN is a parasitic bipolar transistor (n+/P-substrate/n+). The shunting resistors Rwell and
Rsub represent the effective resistance from the well tap to the PNP base and the substrate tap to the NPN
base respectively. p-type substrate is shown in gray and n-type substrate is shown in red.

As stated at the beginning of this chapter, to perform computations energy must be consumed irreversibly.
A CMOS inverter consumes and transforms electrical energy supplied from Vdd and Vin. The inverter’s
power dissipation consists of two components: dynamic and static leakages.

Dynamic Power Dissipation (DPD) occurs when signals change their logic state and transistor energy is
drawn from the power supply to charge up internal nodes. A small amount of current also flows from
Vdd to the ground when the p- and n- channel transistors turn on shortly simultaneously during logic
transaction.

Static Power Dissipation (SPD) occurs in a stable logic mode when no transactions are performed. When
the semiconductor is powered up it continues to leak a small amount of power at almost all n− p and
p− n junctions.

Dynamic Power Dissipation

DPD has attracted most of cryptanalysts’ attention as the major cause of side-channel leakage. A
state, when an inverter’s output is changing, is called transiting. When transiting an inverter can be
represented as the circuit shown on Figure 2.3 with two switches, load capacitance CL and node’s
capacitances CP 6= CN , associated with the gate’s fanout and with the routing wires, as well as the
parasitic capacitances.

DPD consists of two components: one is the switching power due to charging and discharging of load
capacitances, the other is short-circuit power due to the non-zero rise and fall time of input waveforms.

Short-Circuit Power Dissipation The short-circuit current isc flows from Vdd to the ground when the
p- and n- channel transistors turn on shortly at the same time during logic transaction. Short circuit
power dissipation accounts for more than 20% of total power dissipation [Gan]. Short circuit current
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Figure 2.1 – CMOS inverter.
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Figure 2.2 – CMOS inverter layout.

depends on the input’s transition time, capacitive load, and transistor sizes of the logic gate [VS94]. As
clock frequency increases transitions increase and so does short-circuit power dissipation.

Switching Power Dissipation When the logic level changes from 0 to 1 a pMOS transistor cuts the
connection between the Out and the Vcc so there is almost no current going through CL. In contrast
a switch from 1 to 0 opens the nMOS transistor so an additional current iL flows through CL. When
there is no transition, i.e., input logic level remains constant, energy is not wasted on capacitive charge.
Consequently, the current flowing through the inverter can be computed as shown in Table 2.1.

Dynamic leakage is very dependent on parasitic capacitances. These parasitic capacitances define an
upper limit of the clock frequency of a transistor and form unbalanced power consumption during logic
level change [MRM00, Uye92].

Static Power Dissipation

Static leakage becomes increasingly important since n- and p- regions are heavily doped. SPD is usually
not taken into account for side-channel attacks due to the ulterior dependency between binary data
and measurement. However, static power consumption can be used for side-channel attacks as recently
shown by [Mor14a].
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Table 2.1 – Current flowing through the inverter during logic level change.

Transition Value of i
0→ 0 i ≈ 0
1→ 1 i ≈ 0
0→ 1 i ≈ isc

1→ 0 i ≈ isc + iL
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Figure 2.3 – Inverter electrical model during a transition.

The static power of CMOS inverter PLEAK is determined by the leakage current through each transistor:

PLEAK = ILEAKVdd

where Vdd is the supply voltage, and ILEAK is the cumulative leakage current due to all the leakage
components.

Six channel leakage mechanisms are illustrated on Fig. 2.4.

• I1 is the reverse bias p− n junction leakage;

• I2 is the subthreshold leakage;

• I3 is the oxide tunneling current:

• I4 is the gate current due to hot carrier injection;

• I5 is the Gate Induced Drain Leakage (GIDL);

• I6 is the channel punch trough current.
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Figure 2.4 – Summary of static leakage currents.

Currents I2, I5, I6 are off-state leakage mechanisms so SPD is data-dependent. I1 and I3 occur in both
ON and OFF states. I4 can occur in the off-state, but more typically occurs during the transistor bias
states in transition.

p-n Junction Reverse Bias Current I1 The diode is reverse-biased when the n-type semiconductor is
connected to the positive voltage (Vdd) and the p-type terminal is connected to negative voltage or ground
((Vcc)). As illustrated on Fig. 2.5 there are several reverse-biased p− n junctions causing leakage in the
inverter:

• p-well to n-well

• n+ to p-well when the input voltage Vin is high

• p+ to n-well when Vin is low.

When the diode is reverse-biased, there is a very little flow of current due to minority carriers1. When
the bias voltage is increased above a certain voltage called reverse breakdown voltage, current increases
very rapidly [PSSG10].

Subthreshold Leakage I2 The threshold voltage, commonly abbreviated as Vth, of a transistor is the
minimum gate-to-source voltage differential required to create a conducting path between the transistor’s
source and drain. The subthreshold leakage is the current between the source and the drain when the
gate-to-source voltage is below the Vth, i.e., when a transistor is OFF. Subthreshold current flows because
of the diffusion current of the minority carriers in the channel [DN07]. Subthreshold leakage is the most
important contributor to static power in CMOS.

Tunneling Into and Through Gate Oxide I3 Gate oxides are critical for the scaling of transistor dimen-
sions. Drain current sensitivity is defined by gate oxides. Thinner gate oxides provide better sensitivity,
and hence the maximal switching frequency. However, the reduction in the oxide thickness to nanome-
ters causes a current flow between the substrate and the gate through the oxide. This current is caused
by carriers tunneling through the insulator [Cha13]. The tunneling of electrons (or holes) from the bulk
and source/drain overlap regions through the gate oxide potential barrier into the gate (or vice-versa) is
referred to as gate oxide tunneling effect.

Hot Carriers Injection from Substrate to Gate Oxide I4 In a transistor, due to the high electric field
near the Si/SiO2, interface electrons or holes can gain sufficient energy from the electric field to cross the
interface and enter the oxide layer. This effect is known as hot carrier injection. The injection from Si to

1Of the order of nano-Ampere to micro-Ampere
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Figure 2.5 – CMOS inverter layout.

SiO2 is more likely for electrons than holes as electrons have a lower effective mass than that of holes
and the barrier height or holes (4.5 eV) is superior than that of electrons (3.1 eV) [TN98].

Gate Induced Drain Leakage I5 This leakage current component was observed in DRAM trench
transistor cells and in EEPROM memory cells [SPS01]. The gate-induced-drain-leakage (GIDL) current is
generally known to originate from the difference between the vertical electric fields at the gate and the
drain. This leakage current is known to be very sensitive to gate oxide thickness, the drain concentration,
the lateral doping gradient, and the applied drain-to-gate voltage.

Punch through I6 Punch through in a transistor is an extreme case of channel length modulation where
the depletion layers around the drain and source regions merge into a single depletion region. The
field underneath the gate then becomes strongly dependent on the drain-source voltage, as is the drain
current. Punch through causes a rapidly increasing current with increasing drain-source voltage. This
effect is undesirable as it increases the output conductance and limits the device’s maximum operating
voltage [VZ04].

2.1.2 Additional CMOS Side-Channels and Power Transformations

Modern semiconductor devices include billions of transistors and interconnections in which data-
dependent current flows [Mor14b]. The data-dependent currents not only dissipate power, but also
transform electrical energy:

• Small moving charges produce a variable magnetic field, which itself produces a variable electric
field. When data-dependent currents flow through conductive elements, observed electromagnetic
activity can be used as a side-channel vector [AARR03,GMO01,QS01]. EM measurements introduce
several benefits to the attacker in comparison with power consumption. EM emissions can be
measured locally, over a small chipset’s area. EM acquisitions can also characterize the direction of
register switch from 0-to-1 or from 1-to-0 [PSQ07].

• In 2005 it was observed that not only signal amplitude, but also power spectrum, can leak secret
information [GHT05]. Following the introduction of Differential Frequency Analysis [GTC05],
power analysis on frequency domain was investigated in a thread of papers [Luo10,MG11,PGQK09,
SDB+10]. Frequency analysis applies Fourier transform to map a time-series into the frequency
domain. Since each Fourier point is a linear combination of all other sample points, a spectrum
is a direct function of the initial signal amplitude and hence, power spectra can also be used
in side-channel attacks. [Luo10] rightly noted that the term Differential Spectral Based Analysis
(DSBA) is semantically preferable because DFA does not exploit variations in frequencies, but
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differences in spectra. As a matter of fact all time-domain power models and distinguishers remain
in principle fully applicable in the frequency domain.

• This thesis shows that, in addition to the signal’s amplitude and spectrum, traditionally used
for side-channel analysis, instantaneous frequency (IF) variations may also leak secret data. To the
authors’ best knowledge, "pure" frequency leakage has not been considered as a side-channel vector
so far. By opposition to the constant frequency used in Fourier Transform IF is understood as local
phase differences that express frequency variations. The detailed description of this side-channel
vector is given in Chapter 4.

• Another exploitable effect occurs during transistor saturation when the consumed electrical energy
is freed during photon emission [Boi04]. When a current flows between the source and the drain,
electrons gain energy and accelerate due to the electrical field. The radiative de-excitation of the
charge carriers in the pinch-off zone generates photons which are visible in the near-infrared
spectral range [DBCR+10]. Photon emission side-channel analysis is not a theoretical attack but
a practically applied technique [TDF+14]. A photon emission signal can be measured with an
avalanche diode. Photonic emission analysis has a clear advantage when a small surface or an
entire semiconductor activity is observed both in time and space [KNSS13].

• Noise is an additional ’exotic’ side-channel vector reported in [GST14]. Inverter transactions
changes Vdd’s power domain which is filtered by an on-board capacitor. A capacitance tries to
maintain a stable Vdd level by emitting current to the power line and this activity creates vibrations
that can be recorded by a sensitive microphone.

CMOS energy transformations cause various physical phenomena which may be better localized and
more precisely measured than the electrical power dissipation.

2.2 CMOS Leakage Models

The previous section explained the dependency between logic levels, i.e., binary data, and CMOS physical
phenomena. The fact that modern semiconductor devices contain billions of transistors arises reasonable
doubts about the feasibility of data extraction; hence this section presents the essentials of side-channel
leakage models and the main statistical theorems used in side-channel attacks.

Physical responses, linked to the hardware states, categorize all side-channels models into two groups.
The first group contains all physical phenomena where leakage is defined by the current hardware state.
This is called the Hamming weight model. The second category requires the knowledge of the previous and
current hardware states since the difference between 0-to-1 and 1-to-0 transactions is negligible. This is
the Hamming distance model. Roughly speaking, the Hamming weight model exploits physical differences
between transactions 0-to-1 and 1-to-0, while the Hamming distance model exploits differences between
transactions and the stable state.

Noise and simultaneous activity contribute a significant part of the final measured current values, which
has to be taken into account during side-channel analysis. Side-channel assets, i.e., leakage of a targeted
operation, cannot be precisely measured for the following reasons:

1. Parallel hardware activity.

2. Environmental noise.

3. Measurement noise.

4. Device parameters’ variations, such as temperature, clock instability, etc.

Noise cannot be completely eliminated, so side-channel attacks are based on statistical methods and one
cornerstone of these methods is a law of large numbers [Sen13]. According to the law of large numbers,
as the number of identically distributed, randomly generated variables increases, their sample mean
(average) approaches their theoretical mean.

The law of large numbers allows to distinguish two values even with a significant amount of noise, as
illustrated by the following example. Consider two asset values equal to 0 and 1. Each time the asset
value is measured, Gaussian noise f(x, µ, σ), µ = 128, σ = 74 is added to the measurement. Figure 2.6a
shows the asset values averaged for 0 to 5,000 trials. Clearly, those values are converging to certain levels
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Figure 2.6 – Averaged assets values.

that are better illustrated on Figure 2.6b, which represents asset values averaged for 40,000 to 50,000
measurements. According to Figure 2.6b, graphs are converging to the asset values plus the expected
noise value, thus they can be easily distinguished.

Consider an encryption algorithm, executed by a hardware where a side-channel leakage can be mea-
sured. Hardware is composed of the circuit processing the encryption algorithm and additional blocks
used, for example, for communication. A side-channel emanation from the hardware, denoted by
χ(t), t = 1, ..., N , is recorded during each encryption. Sample χ(t) contains leakage from the algorithm’s
state χS(t), leakage from the rest of the circuit and noise are denoted together as θ(t).

χ(t) = χS(t) + θ(t)

What information can be gained from the side-channel measurement χ(t)? To answer this question a
leakage model has to be introduced.
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Table 2.2 – Information that can be obtained with side-channel leakage.

Time SPD2 DPD3 EM4 PSD5 IF6 Noise PEA7 TSA8

Hamming
weight 3 3 3 3 3 3 3 3 3

Hamming
distance 3 7 3 3 3 3 3 3 7

Temporal
location 7 7 3 3 7 3 3 7 7

Spatial
location 7 7 7 3 7 7 7 3 3
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Definition 22 [Leakage model function] A leakage model function is a mapping between the processed
binary data and the side-channel leakage signal χS(t).

A leakage model function quantifies the deterministic part of the side-channel related to the processed
data. A precise leakage model function, which for a given binary data S, outputs exact side-channel
leakage value χS(t) is difficult to develop. Instead, most of the models are approximated as a linear
dependency between a binary data S ∈ F2n and a leakage function χS(t). Thus for the Hamming weight
model this dependency is given by equation 2.1 and for the Hamming distance model by equation 2.2.

χS(t) = a0 + a1HW
(
S

[t]
1

)
+ a2HW

(
S

[t]
2

)
+ ...+ anHW

(
S[t]
n

)
(2.1)

χS(t) = a0 + a1HW
(
S

[t−1]
1 ⊕ S[t]

1

)
+ a2HW

(
S

[t−1]
2 ⊕ S[t]

2

)
+ ...+ anHW

(
S[t−1]
n ⊕ S[t]

n

)
(2.2)

where S[t]
i is the i-th bit of a current value S[t]; S[t−1]

i is the i-th bit of the previous state value S[t−1] that
was overwritten with a current value S[t]; ai are the weights.

When the Hamming weight model coefficients ai, i ∈ [1, n] are equal to 1 then the maximum information
that can be obtained from the leakage χS(t) is the Hamming weight of variable S. When those coefficients
form a unique sum for any S then the maximum gained information is the value of S. The same
observation applies to the Hamming distance model coefficients.

The best way to define model coefficients is to use profiling methods, such as linear regression analysis
[SLP05]. Problems and enhancements of leakage models were discussed in several papers [DPRS11,
HSS12]. A practical evaluation of an 8-bit microcontroller leakage model function reported in [ABDM00]
concludes that the choice of the model’s coefficients is critical for side-channel attacks and may lead to
erroneous results in the case of inadequate selection. In some cases an adversary can develop device-
specific or leakage-specific models [TOT+14].

Table 2.2 presents information that can be obtained from side-channel leakage. Apart from the binary
information, i.e., Hamming weight or Hamming distance, side-channel leakage can characterize time
and die spatial location of a targeted hardware. Thus side-channels can be used for reverse engineering
[Nov03, TQL+12].

2SPD - Static Power Dissipation
3DPD - Dynamic Power Dissipation
4EM - Electromagnetic Analysis
5PSD - Power Spectrum Density
6IF - Instantaneous Frequency
7PEA - Photonic Emission Analysis
8TSA - Temperature Side-Channel
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Figure 2.7 – A taxonomy of block cipher side-channel attacks.

Once an adversary can link side-channel leakage to binary data he can build models for the known
information and unknown key part and verify them with available physical experiments. The following
subsection provides a taxonomy of side-channel attacks.

2.3 A Taxonomy of Side-channel Attacks

Current state-of-the-art side-channel methods can be classified into four groups: simple, model-response,
template and algebraic side-channel attacks as given by Fig. 2.7. All these attacks perform operations over
a side-channel vector, i.e., side-channel samples of the same operation taken at the same temporal and
spatial location.

2.3.1 Simple Attacks

Simple attacks are based on direct leakage observations. Some cryptographic protocols can be broken by
observing the presence or the absence of operations in a power trace [Nov02]. Sometimes cryptographic
algorithms can leak Hamming weight information [Man03, SNK+12].

2.3.2 Model-Response Attacks

Model-response attacks compute a statistical bias (response) for each modelled subkey leakage. Model-
response attacks belong to the wider category of distinguishing attacks. The general definition of distin-
guishing attacks is a form of cryptanalysis that allows an attacker to distinguish the ciphertexts from
random data. This definition can be adapted to side-channel attacks, when an attacker builds data
models and verifies them with statistical likelihood estimators, such as difference of means [KJJ99],
correlation power analysis [BCO04], or mutual information analysis [GBTP08]. The efficiency of different
distinguishers was compared by several authors, e.g., [HRG14, WO11]. Correlation-enhanced collision
attacks can be also considered as distinguishing attacks, which verify a collision by cross-correlating
power traces [BDGP14, MME10]. Bias computation allows to further subdivide model-response attacks
into three groups:

1. Bias computed between a leakage model and a side-channel acquisition, for example Differential
Power Analysis, Mutual Information Analysis, etc. [BCO04, GBTP08, KJJ99].

2. Bias computed between two side-channel acquisitions, for example Collision Attacks [BK07,SWP03,
SLFP04].
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Algorithm 1 General first order side-channel attack algorithm

Require:
Pi : set of plaintexts i = 1, ...,M ;
Ci : set of ciphertexts i = 1, ...,M

χi(t) : side-channel measurement during encryption i = 1, ...,M , t = 1, ..., N ;
Ensure:

A key value K∗;
1: for all Kj ∈ F2q do
2: for 1 ≤ i ≤M do
3: L(Kj ,Si) = f(Pi, Ci,Kj) . Build a leakage model
4: end for
5: end for
6: for all Kj ∈ F2q do
7: for 1 ≤ t ≤ N do
8: I(Kj ,t) = ρ(L(Kj ,S[1:M]), χ

[1:M ](t)) . Compute the dependency
9: end for

10: end for
11: K∗ = argmaxKj

(
argmaxt(I(Kj ,t))

)

3. Bias computed between a side-channel vector and an algorithm-dependent distribution. This
method was introduced approximately at the same time for side-channel attacks [LDLL14] and
fault attacks [KPN14]. A detailed description of this method is given in Chapter 5.

In all cases an attacker has to build a model which includes known information and a secret data.
When the model is built correctly the likelihood estimation of the correct secret data shall result in a
distinguishable value. The cornerstone advantage of the last method, i.e., of a bias between a side-
channel vector and an algorithm-dependent distribution, is that an attacker does not need plaintexts and
ciphertexts to build a model. Instead he exploits built-in distributions which are unique for each subkey.
The details of this approach are given in Chapter 5.

All model-response attacks are based on distinguishers, noted as ρ(X,Y ) in Algorithm 1. A distinguisher
is an informal name designating a dependency measure between two random variables or two data sets.
Three popular distinguishers difference of means, Pearson correlation coefficient, and mutual information are
presented in the following subsections.

To describe distinguishers the following notations are required. A cryptographic device sequentially
encrypts M known plaintexts Pi (i = 1, ...,M) resulting in M known ciphertexts Ci (i = 1, ...,M).
Side-channel information, measured during encryption i, is denoted as χi(t), where t = 1, ..., N indicates
the sampling time. A (first order) attack targets a chosen state Si ∈ F2b that depends both on known data
Pi or Ci and on a small part of the key K.

In model-response attacks, where a bias is computed between a model and a side-channel vector, the
adversary predicts the side-channel leakage of an intermediate value, referred to as leakage function
or selection function. The prediction for the known data and key guess Kj is denoted by L(Kj ,Si) in
accordance with [GDMPV09]. An adversary computes L(Kj ,Si) for all i = 1, ...,M encryptions and all
key candidates Kj ∈ F2q and then applies distinguishers to detect a dependency between a model and
a real side-channel leakage χi(t). The position of the asset leakage χiSi(t) in the acquired trace χi(t) is
unknown, so all time samples t = 1, ..., N have to be examined. When all the parameters, such as time,
spatial location and the key guess, are correct the distinguisher will output a significantly different value
(maximal or minimal) from all other key candidates.

Let µ(Kj ,δ)(t) denote the empirical mean and σ2
(Kj ,δ)(t) denote the sample variance of all χi(t) when the

leakage function is L(Kj ,Si) = δ.

M(Kj ,δ) ≤M denotes the number of elements in a set for which L(Kj ,Si) = δ.

The general (first order) attack algorithm is described by Algorithm 1.
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Difference of Means

The difference of means is the first reported side-channel distinguisher [KJJ99]. The principle idea of
the attack is to classify all encryptions into two groups. The first group includes encryptions where the
target operation leaks a significant amount of side-channel information G(Kj ,δ) = {χi(t) | L(Kj ,Si) = δ}
while the second group includes all the encryptions where the target operation leaks less side-channel
information G(Kj ,γ) = {χi(t) | L(Kj ,Si) = γ 6= δ}. After selection the difference between means of the
two groups is computed. The resulting curve shall have significant spike for the correct key hypothesis at
the time of leakage function L(Kj ,Si), while for the wrong key guess the resulting curve would converge
to zero at all sampled points t = 1, ..., N .

The remarkable difference between the correct and the wrong key guesses can be explained by the law of
large numbers. When the side-channel samples are selected correctly, i.e., for the correct key and time,
then samples in both groups form different distributions as illustrated on Fig. 2.8a. Conversely, when the
selection is wrong, i.e., for the wrong time sampling or key, then the distributions of samples are close to
each other as illustrated on Fig. 2.8b. Formally the difference of means can be written as given in (2.3).

DKj (t) = µG(Kj,δ)(t)− µG(Kj,γ)(t) (2.3)

and the correct key K∗ = argmaxKj |DKj (t)|.

Difference of means can be replaced by the t-test [SC89]:

TKj (t) =
DKj (t)√

σ2
G(Kj,δ)

(t)

MG(Kj,δ)
+

σ2
G(Kj,γ)

(t)

MG(Kj,γ)

(2.4)

where σG(Kj,δ) and σG(Kj,γ) are groups’ standards deviations, MG(Kj,δ) and MG(Kj,γ) are groups’ cardi-
nalities.

Pearson Correlation

The difference of means does not take into account all possible leakage function values; hence, a logical
development is to group side-channel leakage according to the leakage function L(Kj ,Si) [BCO04]. For
example, if side-channel information grows linearly with Hamming weight, then a Pearson Correlation
Coefficient can identify the correct key:

ρKj (t) =
cov

(
χi(t), L(Kj ,Si)

)
σ (χi(t))σ

(
L(Kj ,Si)

) , for i = 1, ...,M (2.5)

When a key guess is correct then the average of side-channel measurements χi(t) grouped according
to the leakage function value L(Kj ,Si) has a linear trend. Conversely, when a key guess is wrong or if
sample time is incorrect, the averaged curve is flat as illustrated on Fig. 2.9.

Linear correlation techniques can be only applied when the binary model and side-channel leakage are
monotonic or linearly dependent. To address an arbitrary dependency between the binary model and
the side-channel leakage a Mutual Information Analysis can be applied.

Mutual Information

Mutual information is a measure of variable mutual dependency which can be of any type since this
estimator is based on joint distribution p(X,Y ):

IKj (t) =
∑

i∈[1,N ]

∑
∀L(Kj,Si)

p(χi(t), L(Kj ,Si))log

(
p(χi(t), L(Kj ,Si))
p(χi(t))p(L(Kj ,Si))

)
(2.6)
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Figure 2.8 – Difference of means.
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where p(x, y) is the joint probability distribution of X and Y ; p(x) and p(y) are the marginal probability
density functions of X and Y respectively.

Mutual information is non-negative and is equal to zero if and only if X and Y are independent random
variables. Similarly to the difference of means and to correlation techniques mutual information can
distinguish the correct key as illustrated on Fig. 2.10. The main difference can be seen on projections
of the joint probability p(x, y) and the marginal probabilities product p(x)p(y). When variables x and y
are mutually dependent, the joint probability p(x, y) is different from the marginal probability product
p(x)p(y) as illustrated on the X − Z and Y − Z projections of Fig. 2.10a otherwise the joint and marginal
probability are the same as on Fig.2.10b.

(a) Correct guess

(b) Wrong guess

Figure 2.10 – Mutual information.

2.3.3 Template Attacks

Template attacks as an evolution of distinguishing methods, attempt to assign a pattern to each key
value. The pattern includes the mean value µ|N |Kj

and the noise distribution Ω|N |Kj
[CRR03]. To build a

template of each possible key value an attacker needs full control over a device [CK14b] thus limiting the
practical applicability of template attacks.

Constructing the template consists in estimating the set of parameters (µ|N |Kj
,Ω|N |Kj

) as described by
Algorithm 2. The subsequent attack phase consists in acquiring the trace χK∗(t) from the target system
and identifying the key value K∗ using Baye’s rule:
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Algorithm 2 General template algorithm

Require:
Kj : set of keys Kj ∈ F2q ;

χiKj (t) : set of side-channel queries for Kj : t = 1, ..., N, i = 1, ...,MKj ;
Ensure:

A template for each key value (µ|N |Kj
,Ω|N |Kj

)

1: for all Kj ∈ F2q do

2: µ
|N |
Kj

= 1
MKj

MKj∑
i=1

χiKj (t) . Compute the averaged signal

3: ΘKj [i, :] =

 χ1
Kj

(t)− µ|N |Kj

· · ·
χ
MKj

Kj
(t)− µ|N |Kj

 . Compute the matrix of noise ΘKj

4: Ω|N |Kj
= 1

MKj

[
ΘT
Kj

ΘKj

]
. Construct the noise covariance matrix

5: end for

K∗ = argmaxKj

 1√
(2π)N |Ω|N |Kj

|
exp

(
−1

2(χK∗(t)− µ|N |Kj
)T ·

(
Ω|N |Kj

)−1
· (χK∗(t)− µ|N |Kj

)
)

where µ|N |Kj
and χK∗(t) contains N samples,

(
Ω|N |Kj

)−1
is an inverse noise covariance matrix, |Ω|N |Kj

| is the
determinant of the noise covariance matrix.

The computation complexity of Bayes’ rule strongly depends on the number of samples N . To simplify
and to speed up the computation the number of samples shall be reduced. Only meaningful samples,
called points of interests (POI), shall remain for template construction.

Depending on the reduction algorithm, template attacks can be classified into several groups. The first
group of template constructions assumes visual point selection [CRR03, RO05]. An adversary sums up
pairwise differences between all the averaged signals µ|N |K1

, ..., µ
|N |
K2q

and then selects NPOI ≤ N points

among the highest peaks, forming keys’ signatures µ|NPOI|
K1

, ..., µ
|NPOI|
K2q

.

Another approach is to use Principal Component Analysis (PCA) [APSQ06]. PCA is a statistical approach
allowing to identify patterns in data. PCA computes the eigenvalues of a covariance matrix and then
uses only the most significant of them, i.e., the highest eigenvalues.

Yet another pattern recognition method is Fisher’s Linear Discriminant Analysis (LDA) [CK14a]. LDA
is looking for a projection where samples are projected very close to each other. At the same time, the
projected means are as far as possible.

After the reduced template creation, given in Algorithm 3, the same Bayes’ rule can be computed with
the following equation:

K∗ = argmaxi

exp
(
− 1

2 (χK∗(tPOI)− µ
|NPOI|
Kj

)T ·
(

Ω|NPOI|
Kj

)−1
· (χK∗(tPOI)− µ

|NPOI|
Kj

)
)

√
(2π)NPOI |Ω|NPOI|

Kj
|


where index tPOI implies that only samples at POI positions are used for computation, χK∗(tPOI) and

µ
|NPOI|
Kj

have NPOI samples, Ω|NPOI|
Kj

and
(

Ω|NPOI|
Kj

)−1
are reduced to NPOI ×NPOI matrices. Storing and

processing the reduced template
(
µ
|NPOI|
Kj

,Ω|NPOI|
Kj

)
is more efficient that storing and processing the entire

measurement template
(
µ
|N |
Kj
,Ω|N |Kj

)
.

Template attacks have several drawbacks that restrict their experimental applicability:

• Computational artefacts during noise covariance matrix and inverse noise covariance matrix
computation.



2.4 Side-Channel Countermeasures 45

Algorithm 3 General template algorithm with reduced number of samples

Require:
Kj : set of keys Kj ∈ F2q ;

χiKj (t) : set of side-channel queries for Kj : t = 1, ..., N, i = 1, ...,MKj ;
Ensure:

A template for each key value (µ|NPOI|
Kj

,Ω|NPOI|
Kj

)

1: for all Kj ∈ F2q do

2: µ
|N |
Kj

= 1
MKj

MKj∑
i=1

χiKj (t) . Compute the averaged signal

3: µ
|NPOI|
Kj

= POI
(
µ
|N |
Kj

)
. Compute the reduced averaged signal

4: ΘKj [i, :] =

 χ1
Kj

(tPOI)− µ
|NPOI|
Kj

· · ·
χ
MKj

Kj
(tPOI)− µ

|NPOI|
Kj

 . Compute the matrix of noise ΘKj

5: Ω|NPOI|
Kj

= 1
NPOI

[
ΘT
Kj

ΘKj

]
. Construct the noise covariance matrix

6: end for

• LDA is highly dependent on the condition of equal covariances.

• Template attacks require a full access to an educative device (a sample to experiment with).

• Template attacks can output several candidates when side-channel information reveal only Ham-
ming weight.

Template attacks are usually applied to extract key information, for example Hamming weight. At the
same time template attacks can be used to characterize intermediate key-related information which will
later reveal the key value itself. One of these methods, called algebraic side-channel attacks, is based on
overdefined systems of equations created with Key Expansion procedures [CP02].

2.3.4 Algebraic Side-Channel Attacks

Algebraic attacks apply side-channel information to solve a system of overdefined equations [CP02].
Algebraic side-channels, however, require a profiling phase, as template attacks. Using side-channels
an attacker can recover simple targets, for example key Hamming weight, and then recover the key
value [RS10]. Therefore algebraic side-channel attacks inherit all the disadvantages of template attacks,
such as the need of an educative device.

2.4 Side-Channel Countermeasures

Chip manufacturers have been developing SCA countermeasures since Kocher’s first publication [KJJ99].
Countermeasures for all SCA physical vectors can be classified into several global groups, showed on
Fig. 2.11.

1. Leakage reduction curtails physical dependency of binary data on the logic level. The examples of
leakage reduction techniques are the following:

(a) Power attacks countermeasures:

• Balanced power consumption [MSQL05, TAV02, TV04]

• Trapezoidal power-clock voltage [JJKB16, KM08]

• On-chip capacitor network [MM14, Sha03]

(b) Timing and cache attack countermeasures:

• Constant time execution [KD09, JRE12]



46 Side-Channel Attacks 2.4

Power attacks
countermeasures

Detectors

Protocol-level

Randomi-
zation

Noise

Leakage
reduction

Figure 2.11 – SCA countermeasures mind-map.

• Restriction on the use of some instructions [YF13]

2. Noise consists in injecting an unpredictable component to the measured side-channel trace.

(a) Typical amplitude noise countermeasure against power analysis are:

• Randomly pre-charged data lines and registers before use [APRV07, RCN02]

• Randomly varying supply voltage [KGS+11, YWV+05]

(b) Typical temporal noise countermeasures against power, time and photon analysis include:

• Asynchronous circuits [BSR06, FML+03]

• The clock presenting instabilities in duty cycle or frequency [BLOW10, GOK+05]

(c) Combination of amplitude and time countermeasures:

• Dummy instructions [AG01]

3. Randomization changes secret data representation so that sensitive data is no longer processed in a
plain form. This countermeasure restricts model construction, so it can be applied for all the SCAs.
Randomization is typically implemented in the following ways:

• Masking and blinding combine the secret data with a random data that can be removed from
the final result [ITT02, TSG03]

• Homomorphism uses the arithmetic properties of public key cryptosystems to compute their
result in function in one of many ways [Cha83]

4. Protocol-level solutions consist in using leaky algorithms in a secure way. Protocol-level solutions
are typically implemented in the following ways:

• Limit the number of encryptions per key [MPR+11]

• Update keys continuously [Koc05]

5. Standard-cell-based detectors can recognize close EM probe location [HHM+14]. Various sensors
can detect package opening, close EM probe location or other circuit modifications used to improve
SCA.



CHAPTER 3

FAULT ATTACKS

Summary

The hardware processing can be transiently or permanently modified if the device is forced to operate
out of normal physical conditions. Device tampering can corrupt memory contents, change instruction
flow, or cause other precise modifications unveiling algorithm’s data. Computational errors are used by
fault attack to reveal cryptographic keys and other secret algorithm data.

A successful attack on a device requires two steps explained in this chapter: faults injection and faults
exploration. Section 3.1 describes fault injection techniques and explains fault models. Fault attacks
against SPN ciphers are explained in Section 3.2. Fault attack countermeasures are given in Section 3.4.
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3.1 Fault Attack Explanation

Any device requires a certain physical parameters to operate within a normal range. Flawless computa-
tion can not be guaranteed if those conditions are not met. A properly adjusted perturbation of a system
can modify intermediate registers’ data, change the program counter, skip instructions or create other
exact faults. By inducing specific errors, an attacker can probe the algorithm’s internals by comparing of
correct and faulty results.

The idea of physical fault injection into hardware is similar to software fuzzing [SGA07], which tries
to raise an exception or find a security breach by feeding software with invalid or unexpected inputs.
In the case of fault attacks an opponent applies physical stress (input) which can corrupt normal a
computational routine to:

• Modify intermediate data in the algorithm.

• Access an additional hardware/software functionality.

• Skip or switch-off protection mechanisms.

By injecting exact faults an attacker can, for example, break RSA with a single faulty result [BDL97] or
use faults as a side-channel leakage source [LSG+10]. The following subsections overview fault attacks
and explain basic key recovery techniques.

In this thesis only transient faults are considered, i.e., faults that affect only one or several instructions
during one execution. Permanent faults, i.e., circuit modifications that persists after reset, can also be
used. However, those faults are less applicable since they require expensive equipment, such as focused
ion beams [HNT+13].

3.1.1 Timing Constrains in Digital ICs

In synchronous sequential logic a device’s state changes only at discrete times defined by a clock signal.
This is necessary to synchronize internal operations. A device embeds many hardware blocks that use
the same clock, for example, each CPU operation can be considered as a separate digital circuit with its
critical path, i.e., the path between an input and an output defining the maximum signal propagation
delay tolerated by the circuit. In some cases, the propagation delay in 45-nm CMOS technology can be
reduced by temperature increase [KK06].

Registers latch data at rising clock edges. The computed data travels between registers and gets modified
by the intermediate combinatorial logic blocks between two such edges. Fig. 3.1 illustrates main time
constraints of a digital system.

1. Propagation delay dp is the time needed to propagate the data through combinatorial logic.

2. dCLK2Q the delay between the clock rising edge and the actual update of a register’s output.

3. tskew the skew or slight phase difference that may exist between the clock signals at the clock inputs
of two different registers

4. tset-up a duration for which a D flip-flop input must be stable before the clock’s edge to ensure
reliable operation.

Therefore, all the timing constrains contribute to the limitation of the circuit’s maximal operating
frequency (nominal circuit period). Indeed, to ensure proper circuit operation, the clock period Tclock
must be greater than the following sum [ADN+10]:

Tclock > dCLK2Q + dp + tset-up − tskew (3.1)

Any new data entering a register can be considered as a result of a combinatorial calculation involving
several registers outputting previous (input) data as illustrated on Fig. 3.1. The transformation of the
previous registers’ output into the next register’s input bit takes a determined delay. This delay depends
on the logic performed as well as on the data transiting through the logic. In addition, propagation time
varies with circuit temperature and power supply voltage.
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Figure 3.1 – Synchronous representation of digital ICs.

3.1.2 Fault Injection Techniques

The first paper to ever deal with the issue of fault injection was not a paper on the use of electronics in
the space environment, but a paper assessing scaling trends in terrestrial microelectronics [WM62]. In
this paper, the authors forecast the eventual occurrence of single event upset (SEU)1 in microelectronics
due to cosmic rays and further predicted that the minimal volume of semiconductor devices would be
limited to about 10µm per side due to these upsets. In fact, the authors wrote in 1962 that already at the
present time the essential part of semiconductor devices, the active region, is close to the minimum size
possible [WM62].

Later on, the first confirmed report of cosmic-ray-induced upsets in space was reported in [BSH75] and
the occurrence of soft errors in terrestrial microelectronics described shortly after the first observations of
SEU in space [MW79].

Subsequent research included studying and simulating the effects of cosmic rays on semiconductors
[FS04, DM03]. Cosmic radiation are very weak at ground level due to the Earth’s atmosphere, but their
effect becomes more pronounced in the upper atmosphere and outer space. This problem is further
compounded by the fact that the more RAM a computer has the higher is the chance of a fault occurring.
This provoked extensive research by organizations such as NASA and Boeing. Most work on fault
resistance was motivated by this sensitivity to charged particles. Considerable engineering endeavours
were devoted to the ’hardening’ of electronic devices designed to operate in harsh environments. This
has mainly been done using simulators to model circuits and study the effect of randomly induced faults.
Various fault induction methods have since been discovered but all have in common similar effects on
chips.

A first practical application of fault injection was proposed by [BDL97]. The authors presented a secret
recovery method from a random computational error caused by a fault injection. Since then the field of
fault attacks has been widely studied by many institutions and researchers [JT12].

Overclocking

Overclocking consists in decreasing the clock period Tclock (or, put differently, increasing clock frequency).
A sudden clock frequency increase can create a situation in which the bits on the critical path did not have
time to stabilize, so the flip-flops were not updated with a new clock cycle causing faulty data to be latched
instead [FT09]. This led several authors to use overclocking as fault injection means [ADN+10, SGD08].

1SEU is a change of state caused by one single ionizing particle (ions, electrons, photons...) striking a sensitive node in a
microelectronic device, such as in a microprocessor, semiconductor memory, or power transistors.
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A decreased clock period can potentially affect logical paths whose propagation times exceed the
decreased clock period minus the set-up time. From the attacker’s perspective the ability to control
precisely the clock period is crucial for inducing faults with precision. Note that temperature and power
supply changes may also be used to exert such control [KK06].

Although many manufacturers claim to implement high-frequency detectors in their clock signal-
processing logic, these circuits are often only simple filters that do not detect sudden short cycles [KK99].

Power Glitches

Power supply is another obvious external signal that can be maliciously tampered. Power glitches are
often used to induce faults in ICs by a sudden and short negative change on power supply [ABF+03,
BGV11]. The underlying fault injection mechanism was deeply investigated in a recent thesis [Zus14].
The main conclusion of the aforementioned thesis is that negative glitches increase the right part of
equation (3.1), namely, register setup time tset-up. The assumption that power glitches induce fault by
violating the target’s timing constraints is also supported by other researchers [BECN+06, TS09].

Another interesting conclusion is that positive glitches cause errors due to the overshoot effect. This effect
creates a power drop immediately after the positive glitch; hence, this drop can cause an error. According
to the aforementioned thesis [Zus14] positive glitches have the same effect as negative ones.

Successful power glitch injection depends on many parameters that can be controlled by an attacker:
nominal power supply; glitch depth, width, falling and rising edges; delay (in respect with the targeted
operation), IC temperature, and others. Several publications present optimized techniques to combine
and fine-tune glitch fault injection [CPB+14].

Optical Attacks

Lasers can imitate the effect of charged particles [GHJ92]. Laser radiation can ionize an IC’s semicon-
ductor regions if its photon’s energy exceeds the semiconductor’s band gap [SA03]. Laser radiation
with 1.06 µm wavelength can penetrate a semiconductor layer to a significant depth. With thinned
and polished silicon, laser fault injection can achieve outstanding results, including one bit modifica-
tions [ADM+10]. Apart from infrared laser, visible light, green laser and blue lasers can be used to inject
faults from the rear side of a chip.

There are two primary methods by which ionizing radiation releases charges in a semiconductor de-
vice: direct ionization by the incident particle itself and ionization by secondary particles created by
nuclear reactions between the incident particle and the struck device. Both mechanisms can lead to IC
malfunction [DM03].

• Direct Ionization: When an energetic charged particle passes through a semiconductor material it
frees electron-hole pairs along its path as it loses energy. When all of its energy is lost, the particle
comes to rest in the semiconductor, having traveled a total path length referred to as the particle’s
range. Direct ionization is the primary charge deposition mechanism for upsets caused by heavy
ions, where a heavy ion is defined as any ion with atomic number greater than or equal to two
(i.e., particles other than protons, electrons, neutrons, or pions) [DM03]. Lighter particles such as
protons do not usually produce enough charge by direct ionization to cause upsets in memory
cells.

• Indirect Ionization: Although direct ionization by light particles does not usually produce enough
charge to cause upsets, this does not mean that we can ignore these particles. Protons and neutrons
can both produce significant upset rates due to indirect mechanisms. As a high-energy proton or
neutron enters the semiconductor lattice it may undergo an inelastic collision with a target nucleus.

Electromagnetic Fault Injection

The first targeted electromagnetic (EM) fault injection techniques against a semiconductor device dates
back to 1995 [KFA+95]. The authors used a special probe in order to direct the faults to specific parts of
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the computer board, such the CPU buses. Back at that time EM perturbation was secondary with respect
to laser and heavy-ion fault injection techniques.

EM perturbations can locally tamper the circuit’s power consumption which makes EM attacks more
powerful than power or clock glitches. EM fault injection hardware is less expensive than laser setups
[PTL+11]. There are two main EM fault injection techniques:

1. EM harmonic, i.e., a stable sinusoidal signal generated at a given frequency, can introduce a
parasitic signal biasing or inject additional power into a block [AOP+09,MM09]. This fault injection
techniques is commonly applied against analogue blocks, such as ring oscillators [BBA+12].

2. EM pulse [OGSM16, OGST+15, PTL+11] that takes advantage of multiple metal loops presented in
modern semiconductor devices. The sudden EM variation yields a current in a metal loop thus
affecting signal propagation. This effect is similar to that of a power glitch; however, EM effect is
localized. Digital circuits are clocked; hence, to disturb their behaviour, EM pulses are preferable to
the injection of faults during a specific clock cycle in a controllable way.

3.1.3 Basic Fault Properties

A fault attack description must specify a fault model [GT04]. The model clarifies the attacker’s capabilities
and must include parameters such as a type of error, timing, location, precision of the fault injection, the
number of faults, etc. The latter is called an order of the attack, a term suggested in [DGRS09]; a first-order
attack assumes that an attacker is capable of inducing only one error during the algorithm’s execution,
while second-order models assume that injecting more than one error is possible.

An adversary is capable of inducing more than one fault during a single algorithm run. Generic modelling
of multi fault attacks becomes much more difficult as theoretically any set of parameter values for the
first fault may be combined with any set of parameter values for the second fault. Of course, one can
impose limitations, e.g., the same type of error can be induced twice (the hardware settings producing
the perturbation are difficult to modify between two faults). Even under these limitations, attacker’s
capabilities become more powerful. For example, an adversary may now induce faults in both a variable
and a procedure testing this variable, thus thwarting many countermeasures designed to withstand
single fault attacks.

Fault Location

Fault injection can be performed on different circuit parts, such as general registers, the program counter,
instruction decoders, etc. The resulting effect is mostly considered on registers and instructions, without
a detailed understanding as of where the actual fault was induced.

Register fault injection assumes two main parameters:

1. The number of modified bits:

• bit: only one bit is affected

• byte: an entire byte is modified

• multiple-bytes: two or more bytes are modified

2. A direction of bits flipping:

• stuck-at or unidirectional faults: bits can be modified only in one direction:

– zeros can be set to ones, but ones cannot reset to zeros;

– ones can be flipped to zeros, but zeros cannot be changed to 1.

• complement faults: all the bits are complemented to previous value

• pseudo-random: when the number and the value of bits affected by the fault depends on chip’s
state and physical impact. This fault is typical for clock glitching, when bits are not completely
updated and keep the previous value.
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• random: when the number and value of bits depend on the physical impact only. This
distribution is typical to laser fault injection.

Fault injection into CPU, i.e., instruction fault injection, has the following effects:

1. Instructions skipping: the number of instructions skipped with one fault injection.

2. Legit random instruction modification: the modified opcode can be correctly processed.

3. Controlled instruction modification: the modified opcode becomes one of the following:

• The contents of the register in the corrupted opcode is modified to another value.

• The jump is done in another location.

Generally, software implementations feature a significantly higher number of vulnerabilities, since
not only registers, but also instructions can be modified. This is why hardware implementations are
preferable for cryptography.

Fault Timing

The moment of fault injection must be carefully chosen. Most block ciphers can be attacked with faults at
their very early or very late rounds. Intermediate rounds cannot be easily attacked.

Attacks succeed with a certain probability. Usually, an attack is not guaranteed to be successful. Therefore
fault effects as well as control timing might require a probability or even a distribution to be defined. For
example, some physical attacks may have higher probability of resetting bit than of setting bit [Pai99].
No control over the location implies that a specific location is expected to be hit with a probability
1/(number of locations) if a uniform distribution is assumed, etc.

3.2 Differential Fault Analysis Against SPNs

DFA requires a pair of correct and faulty ciphertexts that are the result of the same plaintext encryption
[BS03, Gir05a, DLV03]. Since two encryptions perform identically up to the fault injection point, the
two ciphertexts can be considered as the outputs of a reduced-round block cipher where the inputs
are unknown but have a small difference [JT12]. Analyzing the propagation of this difference (called
differential) over the small number of rounds, an attacker can gain key information involved in these
rounds.

When the same plaintext cannot be encrypted twice, a ciphertext-based attack remains practical as shown
by [FJLT13]. A bias introduced at the input of an S-box can be used to distinguish the correct key from
other key candidates. Because the S-box is a pseudorandom permutation an input’s entropy computed
from all the faulty results with a wrong key guess would be indistinguishable from the entropy of a
uniformly distributed variable. The input’s entropy computed for the correct key candidate shall be
different due to the introduced bias. The multiple bit-reset fault model considered in [FJLT13] is a typical
fault that can introduce a bias.

While DFA uses a fault injected at the last SPN rounds, CFA exploits errors at the beginning of encryption
[Hem04, BK06]. CFA looks for a collision between genuine and faulty encryptions of plaintexts P and P̃
respectively. Since the encryptions perform differently up to the point when the fault compensates both
state values, the two plaintexts could be considered as the inputs to a reduced-round block cipher that
outputs a predictable differential after several rounds.

FAs against SPNs require either full control over the cipher’s input and/or the opportunity to inspect the
encryption’s result. Restricting the attacker’s access to the plaintext and the ciphertext is considered as
good countermeasure for systems where the secret data can not be easily modified, for example a shared
root key used in UMTS [NN06]. However, these countermeasures cannot protect the system against all
FAs.
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3.2.1 Ciphertext-Based Attacks

This section recalls ciphertext-based attacks against SPN ciphers, described in Section 1.3.1.

Attack on Round Nr

Consider a fault δ introduced before the S-box transformation in the last round Nr. Since all the SPN
operations are reversible the correct S[Nr] and faulty δ ⊕ S[Nr] states can be computed as follows:

S[Nr] =
mf

`=1

(
S[Nr]
`

)−1
◦A−1 |K[Nr ] (C)

δK[Nr ] ⊕ S[Nr] =
mf

`=1

(
S[Nr]
`

)−1
◦A−1 |K[Nr ] (C̃)

(3.2)

Equations (3.2) can be considered as a round-reduced cipher where two known inputs C 6= C̃ produce
an output with a predictable differential δK[Nr ] . For a given key candidate Kj ∈ F2n and ciphertext pairs
(C̃i, Ci) we have:

δ(Kj ,i) =
mn

`=1

(
S[Nr]
`

)−1
◦A−1 |Kj (C̃i)⊕

mn

`=1

(
S[Nr]
`

)−1
◦A−1 |Kj (Ci) (3.3)

The introduced error δ(K[Nr ],i) is assumed to be the outcome of a non uniformly distributed variable, i.e.,
H(δ(K[Nr ],:)) = h < b. Given the nonlinearity of the S-box the corresponding set of errors δ(Kj 6=K[Nr ],:)
(or simply δ(Kj 6=K[Nr ])) computed for all the pairs (Ci, C̃i) with a wrong key shall be uniformly dis-
tributed [SLIO12]. The set of errors δ(Kj=K[Nr ],:) (or δ(Kj=K[Nr ])) computed with the correct key shall be
nonuniformly distributed; hence, an error entropy can be used for key selection.

lim
i→+∞

H(δKj ) =
{
b if Kj 6= K [Nr]

h if Kj = K [Nr] (3.4)

The general entropy approach is described in [LRD+12], while a special case when HW(δKj ) = 1 is
described in [Gir05a].

When the same plaintext cannot be encrypted twice, ciphertext-based attacks still apply. In that case the
fault has to corrupt the input’s uniformity so the entropy would be smaller for the correct key guess as
stated by [FJLT13]. The fault that can corrupt the input’s uniformity is given by AND and OR fault models:

S̃[Nr] = δ ∧ S[Nr]

S̃[Nr] = δ ∨ S[Nr]

Attack on Round Nr − 1

Another generally considered ciphertext-based attack exploits computational errors before the last
D[Nr−1] permutation at round Nr− 1. Both correct S[Nr−1] and faulty δ⊕S[Nr−1] states can be computed
from the known ciphertexts:

S[Nr−1] =
(

D[Nr−1]
)−1
◦A−1 |K[Nr−1] ◦

mf

`=1

(
S[Nr]
`

)−1
◦A−1 |K[Nr ] (C)

δ ⊕ S[Nr−1] =
(

D[Nr−1]
)−1
◦A−1 |K[Nr−1] ◦

mf

`=1

(
S[Nr]
`

)−1
◦A−1 |K[Nr ] (C̃)

(3.5)

Note that the error space is a subset of (F2b)BHW(δ)(D), where BHW(δ)(D) is a HW(δ)-branch number,
introduced in Section 1.2. The differential δi can be written as a function of K |Nr−1|,K|Nr|, Ci, C̃i as
shown by equation (3.6).

δi =
(

D[Nr−1]
)−1
◦A−1 |K[Nr−1] ◦

mf

`=1

(
S[Nr]
`

)−1
◦A−1 |K[Nr ] (C̃i)⊕(

D[Nr−1]
)−1
◦A−1 |K[Nr−1] ◦

mf

`=1

(
S[Nr]
`

)−1
◦A−1 |K[Nr ] (Ci)

(3.6)
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To recover the correct key, the entropy of δ(Kj=K[Nr ]) obtained for the correct key has to be at least dis-

tinguishable from the entropy of the variable uniformly distributed over (F2b)BHW(δ)(D). Since equation
(3.6) exploits both round keys K |Nr−1|,K|Nr| the search key space has to be squared to (F2b)

2·BHW(δ)(D).

The expression (3.6) can be simplified if the key mixing operation is a bit-wise exclusive or (XOR) between
a round key and a state A |K (S) : K ⊕ S and permutation D is linear with respect to XOR:

δi =
(

D[Nr−1]
)−1

(
mn

`=1

(
S[Nr]
`

)−1
◦A−1 |KNr (C̃i)⊕

mn

`=1

(
S[Nr]
`

)−1
◦A−1 |KNr (Ci)

)
(3.7)

In this case the candidate key space is reduced to (F2b)BHW(δ)(D).

The attack against AES described by equation (3.7) can be applied if an error has entropy smaller than
32. The fault when up to three out of four bytes of MIXCOLUMNS’s input are modified is described
in [Gir05a, DLV03, PQ03], 4 bytes modification is presented in [MSS06, Muk09].

3.2.2 Plaintext-Based Attacks

Plaintext-based attacks, namely CFA, can be used when a cipher’s output cannot be directly accessed
while still remaining comparable to previous encryption results.

Attack on the First Round

Similar to the previously described last round attack in Section 3.2.1 we consider a fault δ introduced
after S-box transformation at the first SPN round. The correct S[1] and faulty S̃[1] states can be computed
as follows:

S[1] =
mf

`=1
S[1]
` ◦A |K[0] (P )

S̃[1] =
mf

`=1
S[1]
` ◦A |K[0] (P̃ )

(3.8)

Equation (3.8) can be considered as a round-reduced cipher where two known inputs P 6= P̃ produce an
output with a predictable differential δK[0] . An injected error δK[0] modified the state S̃[1] so that:

S[1] = S̃[1] ⊕ δK[0]

δK[0] = S[1] ⊕ ˜S[1]

δK[0] =
mn

`=1
S[1]
` ◦A |K[0] (P )⊕

mn

`=1
S[1]
` ◦A |K[0] (P̃ ) (3.9)

For a given key byte candidate Kj and byte pairs (P̃i, Pi) we have:

δ(Kj ,i) =
mn

`=1
S[1]
` ◦A |Kj (P̃i)⊕

mn

`=1
S[1]
` ◦A |Kj (Pi)

The errors δ(K[0],i) are assumed to be nonuniformly distributed, i.e., H(δ(K[0])) = h < b. Given the
properties of S-box the corresponding set of errors δ(Kj 6=K[0],∀i) (or δ(Kj 6=K[0])) computed with a wrong
key for all the encryptions of (Pi, P̃i) resulted in ciphertext collision shall be uniformly distributed. The
set of errors δ(Kj=K[0],,∀i) (or δ(Kj=K[0])) computed with the correct key shall converge to nonuniform
distribution. Therefore the error entropy can be used to distinguish the correct key candidate:

lim
i→+∞

H(δ(Kj)) =
{
b if Kj 6= K [0]

h if Kj = K [0] (3.10)

A special case when HW(δ(K[0])) = 1 is described in [BK06].
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To the author’s best knowledge both the general entropy case [LRD+12] and faulty ciphertexts only
attack [FJLT13] have not been adapted to the first SPN round yet. A comparison of equations (3.2) and
(3.8) shows that this adaptation is indeed possible as suggested by [JT12].

3.3 Fault Attack Against CRT-RSA

The pioneering CRT-RSA attack was published in [BL96]. The attack is based on several assumptions:

• The RSA implementation is using Chinese Reminder Theorem.

• The attacker can introduce the error either in sp or sq (exclusive).

• The attacker can record the faulty signature.

• The attacker knows either the correct signature or the initial message m.

Assume that the final signature is computed by Gauss’s recombination method (1.7)2:

s = CRT(sp, sq) =
(
spq(q−1 mod p)

)
+
(
sqp(p−1 mod q)

)
mod N

Suppose that the error appeared in computation of sp, and the faulty result is:

s′ = CRT(s′p, sq) =
(
s′pq(q−1 mod p)

)
+
(
sqp(p−1 mod q)

)
mod N

The difference between signatures can be computed as follows:

∆ = s− s′ =
(
spq(q−1 mod p)

)
+
(
sqp(p−1 mod q)

)
−
(
s′pq(q−1 mod p)

)
−
(
sqp(p−1 mod q)

)
=
(
spq(q−1 mod p)

)
−
(
s′pq(q−1 mod p)

)
= (sp − s′p)q(q−1 mod p) mod N

Therefore, the greatest common divisor (GCD) between ∆ and N is equal to q:

GCD(N,∆) = GCD(pq, (sp − s′p)q(q−1 mod p)) = q

Arjen Lenstra observed that the fault attack against CRT-RSA can be performed with the initial message
m [Len96]. If the error is induced during the sp computation then for the correct s and faulty s′ signatures
the following relationships are true:

se = (s′)e mod q
se 6= (s′)e mod p

The difference between (s′)e −m can be easily obtained:

(s′)e −m = (s′p)eq(q−1 mod p) + (s′q)ep(p−1 mod q)−m
= (s′p)eq(q−1 mod p) + (s′q)ep(p−1 mod q)− (sp)eq(q−1 mod p)− (sq)ep(p−1 mod q)
= (s′p)eq(q−1 mod p)− (sp)eq(q−1 mod p)
=
(
(s′p)e − (sp)e

)
q(q−1 mod p)

Therefore, the GCD between the modulus N and the difference (s′)e −m is equal to q:

GCD(N, (s′)e −m) = GCD(pq,
(
(s′p)e − (sp)e

)
q(q−1 mod p)) = q

2Fault attack against Garner’s recombination method is similar.
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Figure 3.2 – Fault attack countermeasures mind-map.

3.4 Fault Attack Countermeasures

Fault attacks are a real industrial security concern: to pass certifications, such as FIPS 140-1 levels
3 and 4 [PUB99], device manufacturers must prove that their products can resists attacks. Various
countermeasures are being developed to that end. Since there exist no generic countermeasures which
can prevent all attacks, the combination of different techniques is required to achieve a sufficient security
level.

Countermeasures deployment come at a price, so they are chosen to provide a good tradeoff between
hardware, performance and security level. In practice some deployed countermeasure may facilitate an
attack as shown in the Chapter 6.

Fault countermeasures can be subdivided into two groups: fault injection prevention and fault exploration
prevention.

1. Fault injection prevention make a device robust to physical stress:

(a) Active and passive shields are the layers covering sensitive semiconductor parts that make
blocks inaccessible to fault injection [ABCS06, TMA+02, MRL+06, CDG+14]. Active shields
have data passing through them. If the active shield connections are disconnected or modified
the chip will not operate anymore. Passive shields are opaque materials that cover a part of or
an entire device thus preventing optical fault injection or probing attacks.

(b) Detectors aim at preventing a specific fault injection method, such as an abrupt laser radiation
or a voltage glitch [ISYT13, ZDT+14, VSK13, BTL13].

2. Fault exploration prevention

(a) Hardware redundancy

• Error detection and correction techniques [MSY06] are efficient tools to check data in-
tegrity.

• Duplicating computation in space (hardware redundancy) is in general more secure that
duplicating computation in time (time redundancy) [MSY06]. One fault injection device
can break time redundancy protection if two identical faults are injected with different
delays. Hardware redundancy requires synchronous work of two independent fault
injection devices.

(b) Time redundancy
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• One approach is to verify the initial data by applying additional computations (different
from the original encryption). After signing a message with an RSA private key, for
example, verify the signature value with the corresponding public key. A similar method
can be used for (rounds of) block ciphers [KWMK02].

• Another approach is to perform twice the same computation. The double-data-rate
mechanism proposed by [MVL07] performs the second computation without affecting
throughput.

• Precomputed code signatures protects the integrity of the program flow [MS08].

(c) Operations hiding includes dummy instructions, execution randomization, code obfuscation,
bus and memory encryption, glue logic and other techniques [CK09, NM14].

(d) Blinding method consists in “infecting” computations , i.e., redundant computations which
get interwoven into output values in case of an error. Infecting countermeasures corrupt the
faulty output to a degree when no analysis can be performed [BHT09, YKLM03].

(e) Protocol countermeasures are the protection means preventing an attacker from collecting
enough information from the target system, for example, several stages of key derivation
[EABK14], re-keying when a new key is generated for each encryption [MSGR10].
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CHAPTER 4

INSTANTANEOUS FREQUENCY ANALYSIS

Summary

This chapter describes a signal characteristic, called instantaneous frequency, that supplements power trace
parameters, e.g., power amplitude and power spectrum, applied in side-channel analysis. By opposition
to the constant frequency used in Fourier Transform instantaneous frequency is understood as local
phase differences to express frequency variations.

These variations enable attacks because they depend on the processed binary data. The relationship
between binary data and frequency comes from the fact that higher power drops take more time to
converge power back to the nominal value. Instantaneous frequency analysis does not present specific
benefits when applied to unprotected designs where CPA and CSBA yields better results. However,
when instantaneous frequency is used as a side-channel vector, the effect of amplitude modification can
be discarded.
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4.1 Motivation

As CMOS state transition energy is essentially proportional to the number of switched bits, DPD is
the most popular side-channel attack vector. Because transiting also requires time, transition time and
processed data might be also related.

Historically, timing attacks were developed to extract secrets from software algorithms [Koc96] while
hardware algorithms were usually assumed to run in constant time and hence be immune to timing
attacks. The constant hardware execution time assumption is supported by the fact that usual block-
cipher hardware implementations require an identical number of clock cycles to process any data.
This chapter shows that this intuition is not always true, i.e., two different inputs may require distinct
processing time and can hence be distinguishable.

Energy consumed during each clock cycle creates a waveform in the power domain. A duty cycle, i.e., the
time during which the power wave is not equal to its nominal value, can be considered as the execution
time of a hardware implemented algorithm. As shown later the duty cycle may depend on the processed
data. Fourier transform can not determine local duty cycles since frequency is defined for the sine or
cosine function spanning the whole data length with constant period and amplitude. However,recent
techniques described in this chapter that can detect local frequencies and hence determine wave duty
cycle.

Dynamic Voltage Scrambling (DVS) is a particular side-channel countermeasure that triggers random
power supply changes aiming to decorrelate the signal’s amplitude from the processed data [BZ07,
KGS+11]. While DVS degrades DPA’s and DSBA’s performances, nothing prevents the existence of more
subtle side-channel attacks exploiting DVS-resistant die-hard information present in the signal. This
chapter successfully exhibits and exploits such DVS-resistant information.

Contribution. This chapter shows that, in addition to the signal’s amplitude and spectrum, traditionally
used for side-channel analysis, instantaneous frequency variations may also leak secret data. To the
authors’ best knowledge, "pure" frequency leakage has not been considered as a side-channel vector so
far. Hence a re-assessment of several countermeasures, especially, these based on amplitude alterations,
seems in order. As an example this chapter examines DVS, which makes AES implementation impervious
to power and spectrum attacks while leaving it vulnerable to Correlation Instantaneous Frequency
Analysis (CIFA), a new attack described in this chapter.

Organization. This chapter is organized as follows. Section 4.2 turns a signal processing algorithm
called Hilbert Huang Transform (HHT) into an attack process. Section 4.3 illustrates an HHT performed
on a simulated register switch and real power signal. Section 4.3 also motivates the exploration of
instantaneous frequency as a side-channel carrier. Section 4.4 compares the cryptanalytic effectiveness of
Correlation Instantaneous Frequency Analysis, Correlation Power Analysis and Correlation Spectrum
Based Analysis on an unprotected AES FPGA implementation and on AES FPGA power traces with a
simulated DVS. Section 4.5 concludes the chapter.

4.2 The Hilbert Huang Transform

The HHT represents the analysed signal in the time-frequency domain by combining the Empirical Mode
Decomposition (EMD) with the Discrete Hilbert Transform (DHT).

DHT is a classical linear operator that transforms a signal u(1), . . . , u(N) into a time seriesHu(1), . . . ,Hu(N)1

as follows:

Hu (t) = 2
π

∑
k 6=tmod 2

u(k)
t− k

(4.1)

DHT can be used to derive an analytical representation ua(1), . . . , ua(N) of the real-valued signal u(t):

ua(t) = u(t) + iHu (t) for 1 ≤ t ≤ N (4.2)

Equation (4.2) can be rewritten in polar coordinates as

ua(t) = a(t)eiφ(t) (4.3)
1Time series notation Hu(t) should not be confused with the entropy notation H(X).
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where

a(t) =
√

(u2(t) +H2
u(t)) and φ(t) = arctan

(
Hu(t)
u(t)

)
(4.4)

represent the instantaneous amplitude and the instantaneous phase of the analytical signal, respectively.

The phase change rate w (t) defined in equation (4.5) can be interpreted as an instantaneous frequency (IF):

w(t) = φ′(t) = d

dt
φ(t) (4.5)

For a real-valued time-series the definition of w(t) becomes:

w(t) = φ(t)− φ(t− 1) (4.6)

The derivative must be well defined since physically there can be only one instantaneous frequency
value w(t) at any given time t. This is insured by the narrow band condition: the signal’s frequency must
be uniform [KM10]. Further, the physical meaningfulness of DHT’s output is closely related to the
input’s fitness into a narrow frequency band [Boa92]. However, we wish to work with non-stationary
signals having more than one frequency. This is achieved by de-composing these signals into several
components, called Intrinsic Mode Functions, such that each component has nearly the same frequency.

Definition 23 [Intrinsic Mode Function] An Intrinsic Mode Function (IMF) is a function satisfying the
following conditions:

1. the number of extrema and the number of zero crossings in the considered data set must be either
equal or differ by at most one;

2. the mean value of the curve specified as a sum of the envelope defined by the local maxima and
the envelope defined by the local minima is zero.

4.2.1 First Step: Empirical Mode Decomposition.

EMD, the HHT’s first step, is a systematic way of extracting IMFs from a signal.

EMD involves approximation with splines. By Definition 23, EMD uses local maxima and minima
separately. All the local signal’s maxima are connected by a cubic spline to define an upper envelope. The
same procedure is repeated for the local minima to yield a lower envelope. The first EMD component
h1,0(t) is obtained by subtraction from u(t) the envelopes’ mean m1,0(t) (see Fig. 4.1):

h1,0(t) = u(t)−m1,0(t) (4.7)

Ideally, h1,0(t) should be an IMF. In reality this is not always the case and EMD has to be applied to
h1,0(t) as well:

h1,1(t) = h1,0(t)−m1,1(t) (4.8)

EMD is iterated k times, until an IMF h1,k(t) is reached, that is

h1,k(t) = h1,k−1(t)−m1,k(t) (4.9)

Then, h1,k(t) is defined as the first IMF component c1(t).

c1(t) def= h1,k(t) (4.10)

Next, the IMF component c1(t) is removed from u(t)

r1(t) = u(t)− c1(t) (4.11)

and the procedure is iterated on all the subsequent residues, until the residue rn(t) becomes a monotonic
function from which no further IMFs can be extracted.
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Figure 4.1 – Illustration of the EMD: (a) is the original signal u(t); (b) u(t) in thin solid black line, upper
and lower envelopes are dot-dashed with their mean mi,j in thick solid red line; (c) shows the difference
between u(t) and the envelope’s mean.


r2(t) = r1(t)− c2(t)
. . .

rn(t) = rn−1(t)− cn(t)
(4.12)

Finally, the initial signal u(t) is re-written as a sum:

u(t) =
n∑
j=1

cj(t) + rn(t), for 1 ≤ t ≤ N (4.13)

where, cj(t) are IMFs and rn(t) is a constant or a monotonic residue.

4.2.2 Second Step: Representation.

The second HHT step is the representation of the initial signal in the time-frequency domain. All
components cj(t), j∈[1, n] obtained during the first step are transformed into analytical functions
cj(t) + iHcj (t), allowing the computation of instantaneous frequencies by formula (4.6). The final
transform U(t, w) of u(t) is:

U(t, w) =
n∑
j=1

aj(t) exp
(
i

t∑
`=1

wj(`)
)

(4.14)

where j∈[1, n] is indexing components, t∈[1, N ] represents time and:

aj(t) =
√
c2j (t) +H2

cj (t) is the instantaneous amplitude;

wj(t) = arctan
(
Hcj (t+1)
cj(t+1)

)
− arctan

(
Hcj (t)
cj(t)

)
is the instantaneous frequency;

Equation (4.14) represents the amplitude and the instantaneous frequency as a function of time in
a three-dimensional plot, in which amplitude can be contoured on the frequency-time plane. This
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frequency-time amplitude distribution is called the Hilbert amplitude spectrum U(t, w), or simply the
Hilbert spectrum [HSL+98]. In addition to the Hilbert spectrum, we define the marginal spectrum or HTT
power spectral density h(w), as

h(wj) =
T∑
t=1

U(t, wj) (4.15)

The marginal spectrum measures the total amplitude (or energy) contributed by each frequency value.
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Figure 4.2 – Marginal Hilbert spectrum of the function cos((a+ bt)t).
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Figure 4.3 – Hilbert amplitude spectrum of the function cos((a+ bt)t).

To illustrate HHT decomposition consider the function u(t) = cos (t (a+ bt)). In Fig. 4.2a parameters a
and b were arbitrarily set to a = 1 and b = 0.02. Fig. 4.2a shows that the cosine’s frequency increases
progressively. Fig. 4.2b presents the Hilbert marginal spectrum of the signal u(t) = cos((1 + 0.02t)t).
Fig. 4.3a shows the contour of Hilbert’s amplitude spectrum, i.e., frequency evolution in time, and this
evolution is indeed nearly linear. The 3D Hilbert amplitude spectrum is illustrated in Fig. 4.3b.

4.2.3 AES Hardware Implementation

The AES-128 implementation used for our experiments runs on an Altera Cyclone II FPGA development
board clocked by an external 50MHz oscillator. The AES architecture uses a 128-bit datapath. Each AES
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Figure 4.4 – Inverters switch simulation.

round is completed in one clock cycle and key schedule is performed during encryption. The S-box
is described as a VHDL table mapped into combinational logic after FPGA synthesis. Encryption is
triggered by a high start signal. After completing the rounds the device halts and drives a done signal
high.

The implementation has no side-channel countermeasures. To simulate DVS, 200,000 physically acquired
power consumption traces were processed by Algorithm 4. Algorithm 4 splits a time-series into segments
and adds a uniformly distributed random voltage offset to each segment.

The rationale for simulating a DVS by processing a real signal (rather than adding a simple DVS module
to the FPGA) is the desire to work with a rigorously modelled signal, free of the power consumption
artefacts created by the DVS module itself.

4.3 Hilbert Huang Transform and Frequency Leakage

4.3.1 Why Should Instantaneous Frequency Variations Leak Information?

Most of the power consumed by a digital circuit is dissipated during rising or falling clock edges when
registers are rewritten with new values. This activity is typically reflected in the power consumption
trace as spikes occurring exactly during clock rising edges. Spike frequency, computed by the Fourier
transform, is usually assumed to be constant because clock frequency is stable. In reality, this assumption
is incorrect since each spike has its own duty cycle and consequently its own assortment of frequencies.

Differences in duty cycle come from the fact that the circuit’s power supply must be restored to its
nominal value after switching. Bigger amplitude spikes take more time to resorb than smaller amplitude
ones.

To illustrate these spike differences, consider the simple circuit in Fig. 4.4. Each parallel branch has
a resistor r, a switch Si and a capacitor C that simulate a single inverter when switched from low to
high. Resistor Rs and the current is represent the circuit’s static current and Ra is the resistor used for
acquisition. Initially all the switches S1 . . . Sk are open, so the current flowing through Ra is simply is.

Assume that at t0 = 0 all the switches S1 . . . Sk are suddenly closed. All capacitors start charging and
current flowing through Ra rises according to the following equation:

io(t) = is + k

(
Vdd
r
e−

t
rC

)
(4.16)

Equation (4.16) shows that current amplitude depends on the number of closed switches. However, there
is one more parameter in the equation, namely the time t that characterizes the switching spike. The
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current io needs some time to "practically" reach an asymptotic nominal value is and this time depends
on the number of closed switches k. Consider the time Tk required by io(t) to reach Γ% of its asymptotic
value, i.e. Γ

100 is:

io(Tk) = is − k
(
Vdd
r
e−

Tk
rC

)
= Γ

100 is (4.17)

This is equivalent to:

Tk = rC ln
(

100
100− Γ

Vdd
isr

)
+ rC ln (k) = α+ β ln(k) (4.18)

Equation (4.18) shows that convergence time has a constant part α and a variable part β ln(k) that
depends on the number of closed switches k. Equation (4.18) shows that both spike period and spike
frequency depend on the processed data and could hence in principle be used as side-channel carriers.
Nevertheless, power consumption is a non-stationary signal, which justifies the use of HHT.

The dependency between the number of switches and spike period in equation (4.18) is non-linear and
hard to formalize as a simple formula for a real circuit. Section 4.3.2 shows that the standard Hamming
distance model can be used in conjunction with instantaneous frequency.

4.3.2 Register Simulation

The relationship between processed binary values and power amplitude is a well understood phe-
nomenon [AARR03, BCO04, GBTP08, KJJ99]. However, to the best of our knowledge the dependency of
instantaneous frequency on processed data has not been explored so far. This may be partially explained
by the fact that the Fourier Transform, previously examined in some papers, is not inherently adapted
to non-stationary and non-linear signals. Fourier analysis cannot extract frequency variations from a
signal because frequency is defined as a constant parameter of the underlying sine function spanning
the whole data-set u(t). By opposition, HHT allows extracting instantaneous frequencies and exploiting
them for subsequent cryptanalytic purposes.

To illustrate information leakage through frequency variations, the power consumption of a 4-bit register
was simulated using the Virtuoso toolkit. Power supply was set to 1.5V and the circuit was clocked by a
50 MHz oscillator (Fig. 4.5).

Figure 4.5 – Netlist of a 4-bit register.

Two scenarios were simulated under identical temperature and voltage conditions:

Single Latch: The register was reset. After a sufficiently long time a high input IN2 was latched on
flip-flop FF4. At the next clock rising edge the D-latch updated its state and transmitted a 1 to Q3. The
simulation of the register’s power consumption shown in Fig. 4.6 (blue signal).
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Figure 4.6 – Power consumption of register switch of 1 and 3 bits.

Triple Latch: The register was reset. After a sufficiently long time a high input IN1 was latched on
three the flip-flops FF1, FF2, FF3. At the next clock rising edge the three D-latches updated their state
and transmitted 1s to their outputs. Again, the power consumption’s simulation is illustrated in Fig. 4.6
(red signal).
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Figure 4.7 – Register switch of 1 and 3 bits.
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In classic side-channel models [BCO04], the energies consumed for flipping 1 bit and 3 bits differ. Fig. 4.6
shows that such is indeed the case. As per our assumption, the frequency signatures of these two operations
are also different.

Fig. 4.6 shows that the recovery time following a 3 bits change is longer than the compensation time of 1
bit. This recovery time difference results in a frequency variation. Fig. 4.6 shows that the 3 bits’ current
spike has a longer pulse period than the 1 bit spike, therefore the 3 bits signal alteration presents a lower
frequency. Intuition suggests (and experiments confirm) that this difference will be detected by the HHT.

To show that HHT can detect frequency differences consider the power spectral density (PSD) of both
signals during 1 bit and 3 bits switch (Fig. 4.7a). The maximal spectral amplitude of the 1 bit change is
located at 4.99 GHz (point f1) while the maximal spectral amplitude of the 3 bits change (point f3) is at
4.55 GHz which is supportive of the hypothesis that HHT can distinguish frequency variations even in
non-stationary signals. As expected, Fig. 4.7b shows that two sine functions (4.55 GHz and 4.99 GHz)
correspond well to the side-channels’ shapes.

This shows that not only amplitude but also frequency varies during register switch. Logically, power
consumption increases as more bits are flipped. However, simulation cannot prove that this variation is
detectable in practice because frequency changes heavily depend on the Hamming weight of the data
stored in the register. That is why the next section carefully examines the effect of register alteration on
IF in a real AES FPGA implementation.

4.3.3 Power Consumption of One AES Round

To illustrate information leakage through frequency variation, the AES last rounds’ power consumption
was measured using a Picoscope 3207A with 250MHz bandwidth at 10G/s equivalent time sampling
rate. Every signal had 1,000 samples and 100,000 traces were acquired for various input plaintexts. A
power consumption example of the 4 last rounds is shown on the Fig. 4.8.

0 20 40 60 80 100
−20

−15

−10

 −5

  0

  5

 10

 15

Time, ns

P
o
w
e
r
,
 
m
V

Figure 4.8 – Four AES last rounds.

The AES last round was extracted from each power trace as shown on Fig.4.9a. The number of bits
switches in the AES last round was computed with the known key. Afterwards the traces with the same
number of bits switches were averaged.

In classic side-channel models [BCO04], flipping more bits would consume more energy. Fig.4.9 shows
that such is indeed the case for power consumption of 55, 65 and 75 bit flips where v75 > v65 > v55. As
per our assumption, the frequency signatures of these three operations are also different.

To show that HHT can detect frequency differences consider the power spectral density (PSD) of signals
during 55, 65 and 75 bits switchings (Fig. 4.10). The maximal spectral amplitude of the 55 bit change is
located at 51.18 MHz (point f55), that of the 65 bit change is at 51.12 MHz (point f65) and that of the 75
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Figure 4.9 – AES last round power consumption for 55 (red), 65 (blue) and 75 (black) register’s flip-flops.

bit change is at 50.73 MHz (point f75) which is supportive of the hypothesis that HHT can distinguish
frequency variations even in non-stationary signals because f55 > f65 > f75.

This shows that not only amplitude but also frequency varies during register switch. Logically, power
consumption increases as more bits are flipped. However, HHT was previously applied only for one
AES round and HHT’s applicability for the entire AES power traces must be verified. That is why the
next section carefully examines the effect of register alteration on IF when AES FPGA implementation is
sampled at a smaller rate.

4.3.4 Hilbert Huang Transform of an AES Power Consumption Signal

We start by performing a Hilbert Huang decomposition of a real signal. The analysis was performed on
the power trace of the previously described AES-128 implementation. The acquisition was performed
1 G/s real time rate with 1 GHz differential probe. Signals were averaged 10 times and had 1,000 samples
(Fig. 4.11).

EMD decomposed the power trace to five IMFs and a residue, shown in Fig. 4.12a. After decomposition,
each IMF was Hilbert Transformed to derive the power signal’s time-frequency representation. Fig. 4.12b
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is an IF distribution of Fig. 4.11.
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Figure 4.11 – Initial signal u(t).

Amplitude combination over frequency gave the power spectral density plot shown in blue on Fig. 4.13.
An important observation in Fig. 4.13 is that HHT spectrum shows the distribution of a periodic variable
over the main peak frequencies. Notably, the peak near 50 MHz that corresponds to the board’s oscillator
is not represented by a single point, but by a set of points. This data scatter can be explained by the fact
that the IF of AES rounds varies, and HHT distinguishes this variation.

The main difference between HHT and FFT spectra (see plot shown in red on Fig. 4.13) is that HHT
defines frequency as the speed of phase change and can hence detect intra-time-series deviations from
the carrier’s oscillation, whereas FFT frequency stems from the sine function, which is independent of
the signals’ shape.

So far, it was shown that IF varies for different rounds even within a given trace. However, an attack is
only possible when IF depends on the data’s Hamming weight.

The dependency is apparent in Fig. 4.14 showing the relationship between Hamming distance of the
9-th and 10-th AES round states and IF, taken from the first IMF component at the beginning of the
10-th round. Fig. 4.14 was drawn using 200,000 HHT-processed power traces. The thin solid line in
Fig. 4.14 represents the mean IF value, obtained from the first IMF component, as a function of Hamming
distance.
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Figure 4.12 – Power consumption of our experimental AES-128 implementation.
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Figure 4.13 – Fourier and Hilbert power spectrum density of Fig. 4.11.

45 50 55 60 65 70 75 80 85
335

340

345

350

355

360

365

Hamming distance

I
F
,

 
M
H
z

Figure 4.14 – Dependency between the Hamming distance of 9-th and 10-th AES round states and the IF
of the first IMF component at time 276 ns (corresponding to the beginning of the last AES round).

The principal trend is the ascending line. Fig. 4.14 corresponds well to the simulation of a register’s power
consumption since frequency is decreasing due to the increase in Hamming distance. The relationship in
Fig. 4.14 between Hamming distance and IF looks linear and therefore the Pearson correlation coefficient
can be used as an SCA distinguisher.

IF adoption for side-channel attacks presents some particularities. The disadvantage of the method is that
data scatter is higher than in usual DPA and hence the attack requires more power traces. Another issue
is that each time-series will be decomposed into a set of IMFs, hence every sample will be wrapped-up
with a set of IFs virtually multiplying the amount of data to be processed. However, the advantage is
that because frequency-based analysis is independent of local amplitude, CIFA can still be attempted in
the presence of certain countermeasures.

4.4 Correlation Instantaneous Frequency Analysis

This section introduces Correlation Instantaneous Frequency Analysis (CIFA) and compares its perfor-
mance with Correlation Power Analysis (CPA) and to Correlation Spectral Based Analysis (CSBA).
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4.4.1 Correlation Instantaneous Frequency Analysis on Unprotected Hardware

During the acquisition step 200,000 power traces were acquired at a sampling rate of 2.5 GS/s. Each
power signal was averaged 10 times to reduce noise. All traces were HHT-processed using the Matlab
HHT code of [BKMG07, BKMG12]. Most traces were decomposed into 6 components, but 5 and 7 IMFs
occurred as well. To reduce the amount of processed information only the first four IMFs were used.

Generally, each higher rank IMF carries information present in smaller instantaneous frequencies
(Fig. 4.12b), this is why IMFs from different power traces were aligned index-wise, i.e., all first IMFs from
every encryption were analyzed first, then all second IMFs and so on.

We chose the Hamming distance model and Pearson’s correlation coefficient to investigate CIFA’s
properties and compare CIFA with other attacks. Applied SCA algorithm is given in Algorithm 1.

CPA.CPA applied to power traces produces Fig. 4.15(a). Clearly, CPA outperforms CIFA. CIFA’s poorer
performance can be partially attributed to the power model, because IF is not linearly dependent on the
Hamming distance.

CSBA.Fig. 4.15(b) presents CSBA applied against Fourier power trace spectra with the same power
power model and distinguisher. The correct key byte can be distinguished from 2000 power traces and
on.

CIFA.The application of the selected power model and of the distinguisher to IFs yields Fig. 4.15(c)
where the correct key byte emerges from 16,000 power traces and on.

The three experiments seem to suggest that CSBA is superior to CIFA but inferior to CPA. That is CIFA
< CSBA < CPA.
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Figure 4.15 – Maximum correlation coefficients for a byte of the last round AES key in an unprotected
implementation. Although the three attacks eventually succeed CPA>CSBA>CIFA. (a) CPA (b) CSBA (c)
CIFA.

While it appears that CPA and CSBA outperform CIFA in the absence of countermeasures, we will now
see that CIFA survives countermeasures that derail CPA and CSBA.

4.4.2 Correlation Instantaneous Frequency Analysis in the Presence of DVS

As mentioned previously DVS alters power supply to reduce dependency between data and consumed
power. According to [BZ07, KGS+11] DVS is cheap in terms of area overhead since only a voltage
controller and a random number generator must be added to the protected design.
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Algorithm 4 Dynamic Voltage Scrambling (DVS) Simulator

Require:
A power trace u(1), . . . , u(N);
γ : the number of segments;
m : mean value of segment length m def= N/γ;
σ : standard deviation of segment length;
D : maximum offset for segment lifting;

Ensure:
a DVS-protected power trace u′(1), . . . , u′(N);

. Split a trace to a set of segments of normally distributed random length chunks
τ0 ← 1
τγ ← N
for i = 1 to γ − 1 do

τi ← τi−1 +N (m,σ)
end for

. Lift each segment by a uniformly distributed random offset `
for s = 1 to γ do

`s∈R [0, D]
for t = τs−1 to τs do

u′(t)← u(t) + `s
end for

end for

To simulate DVS all the traces of the unprotected AES were modified by Algorithm 4. Each power trace
was partitioned into γ segments of normally distributed lengths covering the whole dataset.1. Each
segment was lifted by a uniformly distributed random offset ` that did not exceed a predetermined value
D set to D = 12 mV.

A trace modification example is presented in Fig. 4.16, in which the trace of Fig. 4.11 was processed by
Algorithm 4.

Logically, DVS decreases power analysis performance by reducing the attacker’s SNR. We disposed of
200,000 DVS-modified power traces. All of which were used to mount power analysis attacks under the
same conditions as before, i.e., using Pearson’s correlation coefficient and the Hamming distance model.

The same final round key byte used for attacks against the unprotected implementation was targeted.
CPA and CSBA failed to detect the correct key byte even with 150,000 traces (Fig. 4.17(a),4.17(b). This
confirms the intuition that DVS has a beneficial effect on the required number of power traces.

However CIFA was able to recover the byte from 60,000 traces and on (Fig. 4.17(c)). This illustrates that
whilst CIFA is usually outperformed by CPA and CSBA, CIFA is much more resilient to DVS, to which
CPA and CSBA are very sensitive.

4.5 Conclusions

This chapter investigated the use of instantaneous frequency instead of power amplitude and power
spectrum in side-channel analysis. By opposition to the constant frequency used in Fourier Transform,
instantaneous frequency reflects local phase differences and allows to detect frequency variations. These
variations depend on the processed binary data and are hence cryptanalitically useful. The relationship
stems from the fact that after higher power drops more time is required to restore power back to its
nominal value.

IF analysis does not bring specific benefits when applied to unprotected designs on which CPA and
CSBA yield better results. However, CIFA allows to discard the effect of amplitude modification
countermeasures, e.g., DVS, because CIFA extracts from signal features not exploited so far.

1The mean m and the standard deviation σ were arbitrary set to m = 40 ns and σ = 5 ns in our experiment.
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CHAPTER 5

DISTINCT KEY DISTRIBUTION AND
STATISTICAL INDISTINGUISHABILITY

Summary

This chapter introduces a novel attack approach based on distinct key distributions presented in block
ciphers. Coupled with side-channel and fault information those unique key distributions prove to be a
significant threat to block ciphers since the side-channel and fault attacks can be performed blindly, i.e.,
without knowledge of ciphertext and plaintext.

This chapter presents a novel fault attack against SPN ciphers. The main advantage of the method is
an absence of necessity to know the exact cipher’s input and output values. The attack relies only on
the number of faulty ciphertexts originating from the same unknown plaintext. The underlying model
is a multiple bit-set or bit-reset faults injected several times at the same intermediate round state. This
method can be applied against any round thus any round key can be extracted. The attack was shown to
be efficient by simulation against several SPN block ciphers.

The new attack does not require a direct access to cipher’s input and output. The attack assumes the
following: (1) an attacker can encrypt several unknown plaintexts multiple times under the same key;
(2) encryption results can be compared between themselves without disclosing their values (this is
somewhat similar to the "generic model" often used in public-key cryptography [Mau05]); (3) a multiple
random bit-reset or bit-set fault can be injected during the encryption rounds.

The method infers information from the relationship between the number of faulty ciphertexts originated
from the same unknown plaintext and an intermediate state’s Hamming weight. The attack is based on
the fact that each SPN round comprises a key-involved operation that can reveal the round key if input
and output Hamming weights of this operation are known. Simulations show that this attack is practical
against LED, [GPPR11], AES [oSN01] and SAFER++ [MKK00] algorithms.

The attack is performed in two phases: fault injection and key search. The fault injection phase is used to
determine the Hamming weights of intermediate states. When a number of fault injections is limited, we
determine an occurrence probability for each possible Hamming weight value. The key search phase is
done in two steps. The first step applies a finite field equation to filter-out key candidates. The second
step assigns likelihood information to each key candidate which, in turn, reveals the correct key with
high probability.
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5.1 Statistical Indistinguishability

Statistical indistinguishability is a cornerstone of modern cryptography, underlying fundamental ap-
plications such as pseudorandom generators, secure encryptions, commitment schemes and much
more [GMR89, Gol98].

Statistical indistinguishability captures a situation in which the statistical distance between two distribu-
tions X and Y tends to 0 faster that any inverse polynomial, that is, it is so-called negligible function.

Definition 24 [Statistical Distance ∆] Given two random variables X , Y taking values in a set V , the
statistical distance is defined as:

∆(X,Y ) = 1
2
∑
∀v∈V

|Pr[X = v]− Pr[Y = v]|

Definition 25 [Negligible Function] A function f : N→ [0, 1] is called negligible, denoted as negl(n), if
for all c ∈ N there exists nc ∈ N such that f(n) ≤ n−c for all n ≥ nc.

Statistical distance can be defined in several manners, for example from the Kolmogorov-Smirnov
test [Haz01], Hellinger distance [Nik01], etc.

In this thesis statistical distance between two distributions X and Y over a domain Θ is defined as
Euclidean distance:

∆(X,Y ) =
√∑
θ∈Θ

(Pr[X = θ]− Pr[Y = θ])2

Definition 26 [Statistical Indistinguishability] Let |Xn : xi, xi ∈ VX , 1 ≤ i ≤ n| and |Yn : yi, yi ∈
VY , 1 ≤ i ≤ n| be two random sets. We say that Xn and Yn are statistically indistinguishable, written
Xn

s
≈ Yn, if their statistical distance is negligible:

∆(Xn, Yn) = negl(n)

Statistical indistinguishability allows defining leakage-immune functions F as in [CKN01].

Definition 27 [Leakage immune operation F ] The operation F (K,X) is leakage immune if F (K,X) s
≈

F (K ′, X ′) for all distributions (K,X) and (K ′, X ′).

In the rest of this chapter F () will denote leakage-immune operations whereas F̄ () will denote non-
leakage immune operations.

Leakage immunity is a fundamental principle used in many attacks including differential [BS91] and
linear [Mat94] cryptanalysis. SCA also applies this principle. First-order methods collect leakage statistics
of a single point per side channel measurement [KJJ99, BCO04]. This leakage usually stems from the
non-leakage immunity of an S-box related operation. High-order methods combine several leakage
points and build combined statistics to defeat countermeasures [Mes00, OMHT06].

Previous SCA operate with one-dimensional statistics, i.e., either a single leakage point or a function of
leakage points. This work shows that a subkey value can cause a unique distribution between several
side-channel points. This distribution is built without plaintext data, i.e., just with side-channel queries,
thus an attack can be applied when both xin and xout values are unknown. The following section
introduces unique subkey-dependent distributions which can be recovered with side-channel queries
only.

5.2 Hamming Weight Probability Distributions

As explained in Section 2.2 Hamming weight is the maximal information which can be inferred from
side-channel data, collected on modern CMOS devices. When the data itself is unknown the key might
be found from the recovered Hamming weights.

Consider a set of functions F̄1(k, xin), F̄2(k, xin), ..., F̄M (k, xin) defined for a given key k ∈ F2m and an
input vector Xin = {xiin}0≤i≤2m−1. Subkey recovery can be performed when each subkey k corresponds
to a unique Hamming weight distribution, introduced as follows:
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Definition 28 [Hamming Weight Probability Distribution (HWPD)] Hamming Weight Probability Distribu-
tion is a discrete probability distribution used to observe a set of Hamming weights:

Prk[h0, h1, h2, ..., hM ] =

∣∣∣∣∣∣∣∣∣
#xiin
2m :


HW(xiin) = h0

HW(F̄1(k, xiin)) = h1

...

HW(F̄M (k, xiin)) = hM

k, xiin ∈ F2m

∣∣∣∣∣∣∣∣∣
An HWPD can be computed for any set of operations F̄1, F̄2, ..., F̄M , however, only non leakage-immune
operations would provide key uniqueness. Note, that

m∑
h0,h1,h2,...,hM=0

Prk[h0, h1, h2, ..., hM ] = 1

To illustrate unique key distributions consider a typical block cipher operation F̄1 = S(k ⊕ xin). HWPD
can be computed by equation (5.1):

Prk[HW(xin),HW(S(k ⊕ xin))] (5.1)

Fig. 5.1 illustrates HWPDs (5.1) computed for AES using the two keys 0xBC and 0xC8. Clearly, the two
HWPDs can be visually distinguished and can thus serve for key recovery. To verify the uniqueness of
the HWPD a statistical distance between all subkeys ki, kj ∈ F2m can be computed as follows:

∆2
ki,kj

=
m∑

h0=0

n∑
h1=0

(
Pr
[
HW(xin) = h0,HW(S(ki ⊕ xin)) = h1

]
−

−Pr
[
HW(xin) = h0,HW(S[kj ⊕ xin]) = h1

])2 (5.2)

(a) HWPD for the key 0xBC (b) HWPD for the key 0xC8

Figure 5.1 – Hamming weight probability distribution Prk
[
HW(xin),HW(S(k ⊕ xin))

]
for AES.

A statistical distance between distributions (5.1) computed for all the subkeys ki, kj ∈ F28 using AES S-
box is illustrated on Fig. 5.2a. Figure 5.2a shows that statistical distances computed for (ki, kj), i 6= j are
never equal to zero, thus all HWPDs are different. Therefore, a HWPD uniquely defines an AES subkey
value. Similar statistical distances can be computed for other block ciphers as shown in Appendix A.

HWPD can be extended for several operations, for example k⊕ xin and S(k⊕ xin) as defined by equation
(5.3). In that case the statistical distance is given by the equation (5.4). The statistical distance computed
for all the AES subkey values is shown in Fig. 5.2b. Fig. 5.2a shows the statistical distance computed
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for HWPDs with two components, i.e., Prk
[
HW(xin),HW(S(k ⊕ xin))

]
, Fig. 5.2b shows the statistical

distance computed for HWPDs with three components Prk
[
HW(xin),HW(k ⊕ xin),HW(S(k ⊕ xin))

]
.

The colour of each square indicate the statistical distance value.

Again, there is no key pair which has identical HWPDs. Comparison between Fig. 5.2a and Fig. 5.2b
shows that the absolute statistical distance between key values became smaller when two F̄ functions
were applied.

Prk
[
HW(xin),HW(k ⊕ xin),HW(S(k ⊕ xin))

]
(5.3)

∆2
ki,kj

=
m∑

h0=0

m∑
h1=0

n∑
h2=0

(
Prki

[
h0, h1, h2]− Prkj

[
h0, h1, h2

])2
(5.4)

In the rest of the thesis a real HWPD will designate an HWPD constructed with side-channel measure-
ments, while a pattern HWPD will mean a HWPD constructed by simulation for each key guess. An
adversary may find a correct subkey by computing a statistical distance between a real HWPD and a
pattern HWPD. The smallest statistical distance shall correspond to the correct subkey.

Side-channel measurements are imprecise thus a real HWPD might be recovered with errors. Key
recovery rate depends on the percentage of erroneous Hamming weights used for HWPD computation.
Error tolerance can be verified by simulation when a certain percentage of Hamming weights is replaced
by wrong values. Key recovery success rates using HWPD (5.1) are illustrated in Fig. 5.3a and using
HWPD (5.3) in Fig. 5.3b.

As illustrated by Fig. 5.3 key recovery can tolerate errors in Hamming weight detection. The threshold
shown on the graphs indicates that up to 5 Hamming weight pairs for HWPD (5.1) and up to 33
Hamming weight triples for HWPD (5.3) can be wrongly detected before key recovery rate drops below
1. This tolerance allows applying HWPD key recovery in practice and the following section discusses the
practical aspects of this attack.

5.3 Blind Fault Attacks Against SPNs

The new attack targets an SPN operation between two rounds, r and r + 1, shown in Figure 5.4 in blue.
This operation can be described by equation (5.5).

S
[r+1]
j = S[r+1]

j ◦A |
k

[r]
j

(
S

[r]
j

)
, j ∈ [1,m] (5.5)

where S[r+1]
j ∈ F2b is an output of one S-box operation S[r+1]

j , A |
k

[r]
j

mixes a key part k[r]
j ∈ F2b with a

state part S[r]
j ∈ F2b .

For simplicity this cryptographic operation is denoted as:

F (k[r]
j , S

[r]
j ) = S[r+1]

j ◦A |
k

[r]
j

(
S

[r]
j

)
(5.6)

The input S[r]
j and output S[r+1]

j size b is 4-bit for the ciphers LED [GPPR11] and KLEIN [GNL12] while
8-bit input and output variables are used in AES [AES01], PRESENT [BKL+07] and SAFER++ [MKK00].
However any other possible S-box input size can be considered.

The main attacks idea is that a Hamming weight pair
(

HW(S[r]
j ),HW

(
F (k[r]

j , S
[r]
j )
))

can be used to

distinguish key values k[r]
j . This fact was demonstrated before in the section 5.2.

HWPD key dependency can be exploited when the Hamming weight of the operation’s input and output
are known to the attacker. So the first problem is to find the input and output Hamming weights for
operation F (k[r]

j , S
[r]
j ). To obtain a Hamming weight of an intermediate state a multiple bit-reset fault

model can be used:

S̃[r] = S
[r]
j ∧ e for S

[r]
j , e ∈ F2b (5.7)
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(a) Distance for HWPD Prk

[
HW(xin), HW(S(k ⊕ xin))

]

(b) Distance for HWPD Prk

[
HW(xin), HW(k ⊕ xin), HW(S(k ⊕ xin))

]
Figure 5.2 – Statistical distance for AES HWPDs.

where S[r]
j is a j-th part of the state in round r.

The maximum number of possible values for S̃[r]
j , denoted by λ = #S̃[r]

j , is a function of the data block’s
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(b) HWPD Prk

[
HW(xin), HW(k ⊕ xin), HW(S(k ⊕ xin))

]
Figure 5.3 – Key recovery success rate of AES operation.

Hamming weight HW
(
S

[r]
j

)
= h

[r]
j , as shown by equation (5.8).

λ = #S̃[r]
j = 2h

[r]
j (5.8)

Since each value of S̃[r]
j = S

[r]
j ∧ e will lead to a different output, equation (5.8) also links the maximal

number of observed ciphertexts and the Hamming weight of S[r]
j . For byte values the maximal number

of different ciphertexts is λ ∈ {1, 2, . . . , 256}while for nibbles λ ∈ {1, 2, . . . , 16}.

In this method, fault injection is used to determine the Hamming weight of the input and output state-
parts S[r]

j and S[r+1]
j used in equation (5.5). The manner in which Hamming weight is determined by fault
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Figure 5.4 – Confusion operation at round r + 1.

injection is illustrated in the next subsection 5.3.1. Once the Hamming weight of the pair S[r]D
j , S

[r+1]S
j

(S[r]D is state at round r after diffusion layer and S[r+1]S is state at round r + 1 after substitution layer) is
found, the attacker can search the correct key value using key sifting and key likelihood information, as
will be discussed in subsection 5.3.2.

5.3.1 Hamming Weight Computation

The attack assumes that a multiple bit-reset error1 e can be invoked in a middle cipher round:

S̃
[r]
j = S

[r]
j ∧ e for S

[r]
j , e ∈ F2b (5.9)

The error e is assumed to be uniformly distributed over the finite field F2b , hence all ciphertexts have
equal appearance probabilities. The value S̃[r]

j cannot be directly accessed, so the attack’s principal idea
is to determine the Hamming weight of this variable by injecting N` random multiple bit-reset faults
and observing the number of different outcoming ciphertexts.

Assume that Nc different ciphertexts are observed after N` fault injections. It is possible to compute the

probability that faults injected into a variable with the Hamming weight 2h
[r]
j could produce Nc different

ciphertexts. This can be considered as an occupancy problem [Fel68] where Nc out of λ bins are occupied
after throwing N` balls.

In the classical occupancy problem, the probability Pr(Nc = nκ) can be computed using equation (5.10)
given in [Har68].

Pr(Nc = nκ) =
{

λ!
(λ−nκ)!

α(nκ,N`)
λN`

for nκ ∈ {1, 2, ...,min(λ,N`)}
0 else

(5.10)

where α(nκ, N`) is the Stirling number of the second kind i.e.:

α(nκ, N`) = 1
nκ!

nκ∑
i=1

(−1)nκ−i
(
nκ
i

)
iN`

In the attack’s case the values Nc and N` are known but λ must be determined. To estimate λ a maximum
likelihood estimator λ̂ is built as a function of nκ and N`, i.e., equation (5.10) is computed for all the
values λi ≥ 2dlog2(nκ)e and amongst them the λi with the maximum probability is assumed to be correct:

λ̂ = arg maxλi Pr(Nc = nκ|λi) (5.11)

The above Hamming weight detection method was simulated for nibbles and bytes. A given number N`
of randomly generated multiple bit-reset faults were injected into a randomly generated variable x and
the number of different faulty values Nc were used to determine the Hamming weight of the variable
using formula (5.11). The total number of successfully determined Hamming weights was recorded for
105 trials and the success rate was computed for each number of faults N` as shown on Figure 5.5. On the

1The attack is also working with the multiple bit-set fault model.
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Figure 5.5 – Results of Hamming weight computation by fault injection.

average 15 faults sufficed to detect the Hamming weight of a nibble with a 99% probability. Determining
bytes with the same probability required 62 faults.

The occupancy problem and various estimators were previously discussed in [BF93], however the
maximum likelihood estimator was chosen due to the limited number of possible bins and computational
simplicity.

5.3.2 Key Search

An attacker has M pairs of Hamming weights
(

HW(S[r]D
j,i ),HW(S[r+1]S

j,i )
)
, i ∈ [1,M ] (i indicates an

encryption index) received for the same operation S[r+1]S
j,i = S[r+1]

j ◦A |
k

[r]
j

(
S

[r]D
j

)
.

In the following part, the notations
(
h

[r]
i , h

[r+1]
i

)
and

(
HW(S[r]D

j,i ),HW(S[r+1]S
j,i )

)
, i ∈ [1,M ] are inter-

changeable.

The key search process is performed in two steps. The first step, called key sifting, is a typical equation-
based approach when the key has to satisfy a set of finite field equations. The present attack uses M
pairs

(
h

[r]
i , h

[r+1]
i

)
to find the key candidates that satisfy the following constraint:

L =
{
k ∈ F2b |∀i ∈ [1,M ] ∃x ∈ F2b : HW(x) = h

[r]
i , HW(S[r+1]

j ◦A |k (x)) = h
[r+1]
i

}
(5.12)

Reducing |L| requires a significantly higher number of pairs than ciphertext- or plaintext-based attacks.

To perform second step, called key likelihood estimation, the HWPD

Prk
[
HW(x),HW

(
S[r+1]
j ◦A |k (x)

)]
is pre-computed for each key value k ∈ F2b and uniformly distributed x ∈ F2b . During this step the prob-
ability distribution function is computed for the list of obtained Hamming weight pairs Prr

[
h

[r]
i , h

[r+1]
i

]
.

Then the Euclidean distance between the Prr and Prk is computed for each key from the list k ∈ L:

∆(Prr,Prk) =
√ ∑
∀hi,hj

(Prr [hi, hj ]− Prk [hi, hj ])2 (5.13)

and the key candidate with the minimum distance is betted as correct:

k̂ = arg mink ∆(Prr,Prk) (5.14)
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Table 5.1 – Specification of the operation S[r+1]
j ◦A |

k
[r]
j

(
S

[r]
j

)
for different ciphers.

Cipher Exact operation
Size of S[r]D

j , S[r+1]S
j ,

and k[r]
j

Number of elements
in the S-box

LED S
[r+1]S
j = S

(
k

[r]
j ⊕ S

[r]D
j )

)
4-bit 16

AES S
[r+1]S
j = S

(
k

[r]
j ⊕ S

[r]D
j )

)
8-bit 256

SAFER++ S
[r+1]S
j = S

(
k

[r]
j + S

[r]D
j )

)
8-bit 256

Table 5.2 – Number of faults used to recover a key from the operation S[r+1]
j ◦A |

k
[r]
j

(
S

[r]
j

)
for different

ciphers.

Cipher Average number of
plaintexts

Average number of
faults per plaintext Total number of faults

LED 50 40 2,000

AES 250 120 30,000

SAFER++ 200 120 24,000

5.3.3 Simulations

The key search algorithm was simulated for LED, AES and SAFER++. Operation (5.5) of each cipher is
described in the Table 5.1. Note that LED and AES use bit-wise exclusive or as key mixing operation,
while SAFER++ applies byte addition. SAFER++ uses two kinds of S-boxes based on discrete logarithms
and exponentiation. In the present research work the logarithm-based S-box with 256 elements was
tested.

Key search was performed with known Hamming weights
(

HW(S[r]D
j,i ),HW(S[r+1]S

j,i )
)

that could have
been recovered at an earlier step by fault injection. The successful key recovery was recorded after key
sifting and key likelihood estimation and shown in the Figure 5.6 for the various ciphers considered.

As illustrated on Figure 5.6, key likelihood estimation significantly improves key recovery success
rate. Moreover, key sifting does not converge to 1, which justifies the usage of the key likelihood
estimation step. The average number of Hamming weight pairs needed to recover the correct key with
99% confidence is 50 for LED, 250 for AES and 200 for SAFER++.

Simulations reveal that our attack can be used to recover round keys. The total number of required faults,
given in Table 5.2, depends on the cipher’s S-box input size, key mixing operation and the number of
elements in S-box.

5.4 Substitution Layer Leakage

This section discusses practical aspects of the proposed fault attack, namely multiple bit-set or bit-reset
fault models, precise fault injection time and the required number of faulty ciphertexts.

Multiple Bit-Set or Bit-Reset Fault Model.

One of the attack’s main assumptions is that a multiple bit-reset (or multiple bit-set) can be caused by
fault injection. Previously, these fault models have been applied in various papers [BS03, FJLT13]. The
practical feasibility of bit-reset (or bit-set) fault injection was shown in a set of experiments. The multiple
bit-set fault model was observed during EM-glitch fault injection as described in [MDH+13]. [RSDT13]
reports that during laser fault injection to SRAM, bit-flip fault model is irrelevant, only bit-set (or bit-reset)
errors are feasible.
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(a) LED

0 100 200 300 400 500 600 700 800 900 1000

0

0.2

0.4

0.6

0.8

1

Number of hamming weight pairs

K
e

y
 r

e
c
o

v
e

ry
 s

u
c
c
e

s
s
 r

a
te

 

 

Success rate after key sifting

Success rate after key sifting and key likelihood estimation

(b) AES
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(c) SAFER++

Figure 5.6 – Key recovery success rate for different S-boxes Sr+1,j ◦A |Kr,j
(
XSP
r,j

)
.
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Precise Fault Injection Time and Space.

A second attack requirement is precise fault injection, i.e., the time and the location of a fault must be well
specified. This is a single fault attack since only one fault has to be injected during an encryption. The
identification of fault injection time and place can be done during the characterization phase when the
adversary has the full control over the device. To identify the processing time of the state value S[r]

j an
adversary may use side-channel based reverse engineering techniques as shown in [JT12, Nov03, GP08].
Once the time is identified the adversary can search a location for EM or laser fault injection. To
speed up the identification phase the number of cipher rounds can be reduced. Note that during the
characterization phase an adversary may have access to the cipher’s input and output but during the
attack this information is not accessible; hence, standard fault injection or side-channel attacks cannot be
applied.

The Number of Faults.

Simulation shows that approximately 120 fault injections are needed before the Hamming weights of the
8-bit input and output state values can be identified. This number of faults has to be multiplied by the
number of plaintexts required to recover the key value, i.e., the number of Hamming weight pairs needed
for key byte recovery. In total approximately 30,000 faults have to be injected before the correct key byte
value can be found for the AES and 24,000 faults for SAFER++. This number of faults is significantly
higher than for other FAs. However, our attack targets scenarios where other FA methods cannot be
applied. The increased number of faults seems a reasonable price to pay. Once the time and location of
fault injections are identified, it is just a matter of time to create this number of errors. In addition, our
attack targets individual nibbles or bytes depending the S-box sizes. After recovering several bytes with
our method, the rest of the key can be brute-forced.

Countermeasures.

Our attack is feasible against implementations where the number of different ciphertexts can be counted
while their actual values remain inaccessible. The most straightforward countermeasures against the
presented method are based on randomization. Infective countermeasures that replace the ciphertext
by a random number after a fault detection is one of them [LRT12]. This countermeasure outputs the
correct ciphertext C if no fault happens and when a fault is injected the output is masked with random
data C̆ = C ⊕ ((C ⊕ C̃) · η) where η is a random number. With this countermeasure, for the same fault
injected, there are multiple different faulty ciphertexts and thus Hamming weight computation cannot
be applied.

Another type of countermeasures, which is often used to defeat side channel analysis, is masking [KHL11].
In this case, the operation F = S[r+1]

j ◦A |
k

[r]
j

is changed to Fη = A |f(η) S’[r+1]
j ◦A |

k
[r]
j⊕η

where η is the

randomly generated mask, S’ is the new layer computed as a function of the mask and A |f(η) is the
unmasking operation. However, the states S[r]D

j and S[r+1]S
j change masks for each encryption, thus the

Hamming weight can not be determined.

5.5 Conclusions

In this chapter a new fault attack on SPN ciphers was described. This attack has conservative preliminary
assumptions. Namely, the adversary:

• does not know plaintext and ciphertext values.

• can encrypt several times a set of unknown plaintexts.

• knows the number of tampered encryptions performed for the same plaintext.

• can induce a multiple bit-reset (or bit-set) fault in a middle SPN round.
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It is shown that under these assumptions the adversary can derive the Hamming weight of an internal
round state. When a Hamming weight of the state before key mixing operation and a Hamming weight
of the state after confusion operation are known the round key can be recovered. To the authors’ best
knowledge this is the first fault attack that can be used to derive any round key. Also this is the first
attack based on Hamming weight of the internal state values.

Simulations confirm that our attack works in practice against AES, LED and SAFER++.



CHAPTER 6

MULTI FAULT ATTACKS ON PROTECTED
CRT-RSA

Summary

Since the first publication of a successful and practical two-fault attack on protected CRT-RSA surprisingly
little attention was devoted by the research community to an ensuing new challenge of multiple fault
injection. The reason for it seems to be two-fold. One is that generic higher order fault attacks are very
difficult to model and thus finding robust countermeasures is also difficult. Another reason may be
that the published experiment was carried out on an outdated 8-bit microcontroller and was thus not
perceived as a threat serious enough to create a sense of urgency in addressing this new menace.

This chapter presents two-fault attacks on protected CRT-RSA implementations running on an advanced
32-bit ARM Cortex M3 core. To the author’s best knowledge, at the time of publication this was the first
practical result of two fault laser attacks on a protected cryptographic application. Considering that laser
attacks are much more accurate in targeting a particular variable, our result suggest that for protecting
security-crucial applications software-only countermeasures may need to be complemented by some
hardware-based protection techniques such as shields, sensors, error correction methods, etc.
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6.1 The State-of-The-Art

Most papers develop theoretical attacks: typically they start by specifying a fault model and go on
describing how it can be used to break a cryptographic primitive. Sometimes simulations are used to
verify the success of the attack model, but practical experiments are rarely reported. Papers that describe
breaking real-life cryptosystem implementations exist, and they often play the role of a catalyst - for
both, attacks and countermeasures. We hope that this thesis falls into this category. We describe practical
multi-fault laser attacks on protected against single fault cryptographic implementations, which are
running on a powerful general purpose ARM-based microcontroller.

The only practically implemented second-order fault attack published in the open literature [KQ07a]
was carried out on a simple 8-bit microcontroller. Faults were generated by means of power glitches.
Considering that laser attacks are much more accurate in targeting a particular variable, the significance
of our result in attacking general-purpose 32-bit microprocessors cannot be overlooked. We describe
attack techniques to provide a reader with useful insights for understanding of threats of multi-fault
attacks and their impact on the implementation of cryptographic algorithms.

Until now the publication of Kim and Quisquater [KQ07a] is the only work describing a practical
implementation of a multi-fault attack on CRT-RSA in which they were able to break first order counter-
measures [CJ05]. The attack was implemented on Atmel’s 8-bit AVR microcontroller ATMega. The first
countermeasure is based on the Montgomery powering ladder which works on a pair of intermediate
results of the form (m[k−1],m[k]) and uses a relationship between them to perform a coherence check
on the computed value. The second countermeasure is an “infective” generalization of Shamir’s trick
initially presented in [Sha97]. In the generalized countermeasure CRT computations are carried out
modulo p× r1 and q × r2 (ri being a small random value), which allows to verify the result modulo r1 or
r2 afterwards, and, if an error is detected, to infect it using a specially computed random value [JPY01].

S∗p = mdp mod (r1 · p)S1 = mdp mod φ(r1) mod r1

S∗q = mdq mod (r2 · q)S2 = mdq mod φ(r2) mod r2

Both half exponentiations are check separately before the CRT recombination:

If S1 = S∗p mod r1 and S2 = S∗q mod r2 return S = CRT (S∗p , S∗q )

After the feasibility and the danger of the new class of attacks was demonstrated, there were very few
papers dedicated to their theoretical models and countermeasures. Notably, the two new second-order
countermeasures for CRT-RSA proposed in the original paper [KQ07a] were found to be weak and were
subsequently improved in [KQ07b]. In [BDL97] a second-order resistant infective method for CRT-RSA
was suggested, but as shown later, it can be broken with a single fault. The most serious analysis
of a second-order fault attack resistance for CRT-RSA was published recently in [DGRS09] where the
countermeasures of [KQ07b] were analyzed from an implementation standpoint, revealing their potential
vulnerability and, more importantly, a claim was made on a general second-order countermeasure. This
will be addressed at the end of this chapter.

The question that begs to be asked is – are second-order fault attacks relevant in real life? Can they be
implemented in practice on modern high performance devices? Our work allows us to answer this question
with full confidence – yes, they can.

The rest of this chapter is organized as follows. Section 6.1 recalls the notion of fault models. Section 6.2
and 6.3 detail the setting of a multi-fault attack: the device architecture and a laser bench, respectively.
Section 6.4 briefly describes a preparation process for a front side laser attack. Section 6.5 recalls two new
countermeasures for CRT-RSA from [BHT10]: a very efficient signature verification method for protection
against single-fault attacks and its extension to a second-order countermeasure by combining it with
infective computations. Implementations of these algorithms on a 32-bit ARM Cortex M3 microcontroller
were used as a test bench for our practical multi-fault laser attacks described in details in Section 6.6. In
conclusion we summarize an impact of this experiment on security engineering.
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6.2 Device Architecture

Feasibility of multi-fault attacks on cryptographic algorithms running on modern high performance
architecture is a challenging problem with a serious practical impact. For our experiments we had chosen
a general purpose microcontroller based on a 32-bit ARM Cortex M3 core – a CPU specially developed
for embedded applications [ARM] and widely used in medical equipment, PC peripherals, industrial
applications, alarm systems, etc.

The microcontroller is implemented as a System on Chip (SoC) and includes 512 KB of embedded flash
and 64 KB of embedded SRAM, both memories being accessed in one clock cycle. Many peripherals,
analog and digital, are present on the chip including I2C and USB interfaces, DMA, ADC, PLL, an
internal RC oscillator, independent watchdogs and timers. The SoC is manufactured using 130nm feature
size and six metal layers. All digital components are implemented in glue logic.

The device has a number of features intended for robustness in adversarial environmental conditions,
e.g., temperature sensors, embedded voltage regulator, etc. A Programmable Voltage Detector generates
an interrupt if the voltage drops below a predetermined threshold. In this case, it is up to the firmware
to implement a safe shutdown before the reset. The clock safety system generates an interrupt if the
main external clock is disconnected or broken and the microcontroller is automatically clocked with an
internal safe clock so the system can perform shutdown or a reset operation. Thus some low cost attacks
such as setup time violation [BBPP09] or clock glitches [ADN+10] were not possible.

The ARM architecture is based on a (modified) Harvard model [ARM] which separates code and data
and thus can simultaneously read them both from (distinct) memory address spaces. It uses different
buses for instruction and data signals. The Cortex M3 is characterized by a three stage pipeline unit
(instruction fetch, decode, execute/address compute) and normally does not include caches. In the User
mode, Cortex M3, which is a load-store machine and does not support operations directly from the main
memory, can access 16 general purpose 32-bit registers. Three of them have specific roles, namely: r13 is
dedicated to a stack pointer, r14 is a link register, and r15 is a program counter (PC). There is also a set of
registers representing a program status. These registers, called xPSR, store all the flags which are used
for conditional statements and exception checking. The relevant flags stored in these registers, as far as
control flow management goes, are: Z (zero result from ALU flag), N (negative result from ALU flag), C
(ALU operation carried out), and V (ALU operation overflowed).

Condition
field 0 0 0 Operation

code S
Source

register 1
Destination

register
Shift

register 0

Sh
if

t

1
Source

register 2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(a) Data processing and shift instruction

Condition
field 1 0 1 L 24 bit offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(b) Brunch and branch-link instruction

Figure 6.1 – Instruction encoding in ARM architecture.

Fig. 6.1 is an excerpt from the ARM reference manual [ARM, Yiu] and depicts two most common
instructions: a general purpose data processing instruction and a branch. The instruction encoding in
ARM architecture uses different fields to distinguish among possible instructions. The first field (bits 27
to 25) is used in order to split an instruction set into macro groups (data processing, load/store, branches
and co-processor dedicated instructions). Data processing instructions are further characterized by a
4-bit opcode (bits 24-21) which specifies the actual instruction to be performed.

Most of instructions can be executed conditionally, i.e., the instruction is committed only if a particular
condition is met, for example if the result of the previous instruction is zero or negative. As one can
see in Fig. 6.1 instructions have a 4-bit wide condition field which is checked at the time of execution.
If the condition is unmatched, the instruction has the same effect as NOP without any rollback penalty.
Conditional branches are thus implemented as simple conditional instructions distinguished by the
3-bit instruction class code 101 (bits 27-25) and nothing more. A special condition code (1110) is the one
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matching the “Always” condition and allows the normal execution of instructions. Thus, due to the
nature of the ARM architecture by injecting faults in registers we may:

• Modify the condition field of the instruction which may result in an instruction skip or a mistaken
branch;

• Modify the instruction itself, e.g., ADD instead of SUB;

• Alter a value on which the condition is checked: this will result in a wrong branch evaluation;

• Modify the program counter register r15;

• Change a destination address or a link register of a branch thus altering program flow.

The Cortex M3 processor supports several exception fault handlers. These handlers can detect faults
resulting from an error condition in instruction execution such as:

• Memory management fault, generated when program jumps to memory area where there is no
executable code;

• Accessing privileged operating system functions;

• An attempt by the processor to execute an undefined instruction;

• An important exception type is a hard fault which occurs because of an error in exception processing
or because an exception cannot be managed by any other exception mechanism. Hard faults were
regularly observed during our experiments.

6.3 The Laser Equipment

A laser platform which we used in our experiments was equipped with the YAG laser shown on Fig. 6.2,
a driving board on which a chip is mounted, a synchronization board which controls timing of the laser
shots, two cameras with separate monitors, a cooling/heating system, a LeCroy oscilloscope with 10
GHz bandwidth, and a personal computer. Two wavelengths, 532 nm green and 1064 nm infrared, can
be generated by the laser.

For the green laser 5× and 20×magnification lenses are available, and for the infrared 50× and 100×
magnification lenses can be installed. The laser aperture is about 35× 35 µm, and it can be reduced by
shutters to 1% of this area. The duration of the laser shot is fixed at 5ns. The laser’s aperture, energy,
displacement step and other parameters can be set up either manually or using the LabView interface
available on the computer.

The target chip is mounted on a driving board used to relocate its position for shooting. The step of the
driving table for both Y and X axes is equal 1µm. To target different timings of a program execution, a
synchroboard delays a trigger signal from the chip. The delay ranging from 10ns to hundreds of ms, can
be set via the LabView interface which also allows handling the start and end points of the driving board
and a displacement step as well as the number of shots in each position.

A driving table, a synchroboard and a chip are connected to a computer. It is also possible to connect
the laser terminal and an oscilloscope to the computer, but during our experiments these connections
were not established. The bench is controlled via a custom-designed LabView project. This software
runs under Windows XP.

To establish proper communication with a chip, one needs a special DLL library which opens the
connection on a serial port, an initialization file which specifies all parameters of the connection, such as
a port number and time before closing, and a scenario file, which determines the commands sent to a
chip. All projects for the chip (including crypto-libraries) were developed using KEIL tool-chain. We
also used special firmware containing handlers, exceptions and other functions.

To reduce the communication time between the computer and a chip, initially all data for attacked
algorithms (input parameters, cipher keys, plaintexts, etc.) were hard-coded. A program installed on
a chip was running in an infinite loop, and when the specific command from a computer arrived, a
cryptographic algorithm was launched. After finishing the algorithm, the program returned to the initial
infinite loop waiting for the next command.
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Figure 6.2 – Laser platform.

An algorithm according to which the bench is typically run is as follows:

1. The synchroboard is ready, the laser is charged, the chip is running and waiting for a command
from the PC.

2. The PC sends a command (e.g., start the execution of cryptographic algorithm) to the chip.

3. The chip starts execution and at some moment of time it raises up a trigger.

4. The trigger is recognized by the synchroboard.

5. The synchroboard generates another trigger for the laser with a predefined delay.

6. The laser receives the trigger and after the delay it shoots.

7. The chip outputs the result to a serial port.

8. This result is recorded by the computer.

9. The computer maintains the current state of the experiment, i.e., it moves the driving board, changes
the delay of the synchroboard if necessary and does other routines specified in the attack scenario.

10. While the driving board did not reach the end point, go to step 1.

This algorithm provides a good flexibility and allows the user to master a shot location and its time. The
user can easily change an attack scenario or bench parameters via a LabView interface. The bench records
all erroneous results together with exact bench settings when the error occurred; thus the attacker can
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infer for example timing information, type of errors, etc. which in turn allows her to repeat or fine-tune
an experiment.

6.4 Preparatory Steps

For modern SoC front side laser attacks face severe limitations with the growing complexity and use
of multi-level metals. In recent publications dedicated to front side laser attacks authors attacked
experimental ASIC containing simple IP, often just one crypto core [LPM+06, LAM+07, MRL+06]. To the
best of the author’s knowledge, practical laser attacks against modern multi-layered SoC with embedded
memories and powerful processors had not been presented in the open literature before this result was
published in 2010 [TK10].

The front side laser attack is usually performed with a green laser, and the back side with an infrared
laser. Given a particular wavelength, selecting an energy level and a size of the aperture depend on the
chip and attack scenario. An important parameter is focus. When the laser is focused, all its energy is
concentrated at a very small spot, typically covering few gates [GPLL09]. Depending on the goal, an
attacker can use either focused or defocused laser. With the focused laser the fault injection can be done
very precisely, while an advantage of the defocused laser is that it covers a larger area, so it can be used
for a preliminary scan of a SoC to identify vulnerable spots.

We describe an attack on a front side of the chip because some of the devices come in a BGA package
which make back side attacks impossible without device modifications. To perform a laser attack an
attacker needs to de-package the chip which can be done using, e.g., JetEtch II decapsulation system.

After having done it, we discovered the first obstacle: the SRAM and flash areas were completely covered
by metal tiles (see Fig. 6.3), thus no direct access to memory cells was possible. To investigate a possibility
to induce any fault at all, the overall chip area was scanned many times with a minimal displacement
step, and at every position several shoots were made. The microscope lens, its focus and energy levels
varied from one scan to the next because these parameters have an influence on the laser’s effect on the
IC.

Initially a digital logic area of the SoC was selected for an attack. The assumption was that it could
be possible to create a fault in the CPU logic or in registers. The scan has proven to be unprofitable.
Higher energy levels burned the chip, so we had to use the minimum energy. We run experiments with
both, focused and defocused laser. The aperture varied from 2% to 25%. But the result was the same –
whenever the laser shot, the chip either crashed or did not return any error. Five chips were destroyed
while shooting logic. The conclusion from this experiment was that inducing useful faults by shooting
this area is unfeasible.

SRAM and Flash were selected as the next targets. As discussed earlier, these areas are covered by metal
tiles. Although the opacity of these zones is very low, we hoped that it would be possible to penetrate
the gap between the tiles. However no experiments with shooting memory cells caused errors for all
tried energy levels and aperture sizes, so the conclusion was similar: inducing errors by targeting SRAM
and Flash areas is unfeasible.

The only remaining part was an area between the SRAM and Flash. This zone was not covered with
metal tiles; instead it was densely populated with connections highlighted by the red rectangle on
Fig. 6.3. As previously, we scanned the whole zone with an defocused laser and discovered that different
exceptions were raised during shooting. Hence we concluded that the laser can cause perturbations in
the microcontroller’s functionality. The next step was to find laser parameters causing computational
errors that remain undetected by the microcontroller.

After few days of experiments such parameters were found. We do not know the exact functionality
of the attacked area; one of the hypotheses is that these are buses and power tracks on the top layer,
registers, buffers, and decoders beneath. In any case the attack proved effective: once we mastered the
location and the timing, it became possible to achieve exploitable faults with very high repetition rate.
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Figure 6.3 – Top layer of the chipset.

6.5 Two Fault Attacks Against CRT-RSA

The first fault attack on CRT-RSA was presented in the seminal paper [BL96] where it was pointed out
that by injecting a single random fault into the computation of either sp or sq, a secret exponent can be
calculated by subtracting faulty and correct signatures and then computing the GCD of the result and
the modulus N . Some RSA implementations do not allow signing the same message twice; nevertheless,
as shown by [Len96] an enhancement of the attack described in [BL96], these implementation can be still
broken as an attacker needs only an incorrect signature and an initial message.

Due to performance advantages of CRT-RSA and its high vulnerability to fault attacks, securing its
implementation is an important and challenging task, attracting a lot of attention. We can distinguish
three main approaches. The first is an introduction of some redundant computations to perform internal
coherence checks aiming at verifying the result before returning it. The most known countermeasure of
thus type is proposed by Shamir and adapted for a CRT-RSA in many papers, e.g., [ABF+03, KQ07a].
The second approach consists in performing a consistency check directly at the exponentiation algorithm
itself, using Montgomery powering ladder; this method was suggested by Giraud [Gir05b] and enhanced
in [BHT10].

A general feature of these countermeasures is checking if some relation exists between two values. To
avoid the if-branching inherent to comparisons, Yen et al [SMKLM02] introduced a concept of infective
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Algorithm 5 Protected CRT-RSA signature generation

Require:

p : first secret prime number;

q : second secret prime number;

e : public key component, such that GCD (e, (p− 1)(q − 1)) = 1;

d : private key component d = e−1 mod (p− 1)(q − 1);

iq : modular inverse of q, i.e., iq = q−1 mod p;

m ∈M : a padded message to be signed;
Ensure:

A signature s ∈ S;
1: dp = d mod p− 1
2: dq = d mod q − 1

3: sp = mdp mod p
4: sq = mdq mod q
5: s = sq + q

(
q−1(sp − sq) mod p

)
. Signature s of the message m

6: ep = d−1
p mod p− 1

7: eq = d−1
q mod q − 1

8: mp = seq mod p
9: mq = sep mod q

10: m′ = q (iq(mp −mq) mod p) +mq . Re-computation of the message m for verification

11: if m′ == m then . Comparison of the initial and recomputed messages
12: return s
13: else
14: return error
15: end if

computations, which can be applied for both aforementioned methods.

The third, and simplest, countermeasure against fault attacks for any signature scheme is signature
verification following the signature generation. To implement this countermeasure For CRT-RSA, a public
exponent e must be accessible during computations, which may not be the case in some implementations.
Therefore, more sophisticated methods were developed which do not require the knowledge of e; instead
its value can be obtained from the available parameters dp and dq . For our attacks we had chosen a new
algorithm published in [BHT10] and presented below as Algorithm 5.

Algorithm 5 is much more efficient than other verification methods where a public exponent e is assumed
to be known or embedded as in [Joy09] or computed as in [ABF+03] because it is carried out on half-sized
data. For a short public key, the values ep and eq are usually equal to e hence the countermeasure
does not significantly increase the overall time of a normal signature operation. But as other first order
countermeasures broken in [KQ07a], it is based on a comparison of two values and thus does not protect
the system against second order fault attacks.

Algorithm 6, given in [BHT10], combines the conditional check and the infective method. The authors
claim that with this algorithm if the conditional check at Step 9 is bypassed, the output value will be
random and useless for recovering private exponent.

This countermeasure, however, can be broken with a single fault. Indeed, consider a situation when an
attacker can skip just the computations of the sum s+ sp at the step 12. All other operations have been
performed correctly, so the resulted signature is s′ = s− (s mod p) + sq − (s mod q). In this case the
difference between the correct and the faulty answers will be the following:

∆ = s− s′ = s− s+ (s mod p)− sq + (s mod q) = sp
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Algorithm 6 Second order resistant CRT-RSA signature generation with infective method

Require:

p : first secret prime number;

q : second secret prime number;

e : public key component, such that GCD (e, (p− 1)(q − 1)) = 1;

d : private key component d = e−1 mod (p− 1)(q − 1);

iq : modular inverse of q, i.e., iq = q−1 mod p;

m ∈M : a padded message to be signed;
Ensure:

A signature s ∈ S;
1: dp = d mod p− 1
2: dq = d mod q − 1

3: sp = mdp mod p
4: sq = mdq mod q
5: s = sq + q

(
q−1(sp − sq) mod p

)
. Signature s of the message m

6: ep = d−1
p mod p− 1

7: eq = d−1
q mod q − 1

8: mp = seq mod p
9: mq = sep mod q

10: m′ = q (iq(mp −mq) mod p) +mq . Re-computation of the message m for verification

11: if m′ == m then . In case the comparison is skipped infect the signature s with redundant data
12: return s+ sp − (s mod p) + sq − (s mod q)
13: else
14: return error
15: end if

Now the value of p can be found:

∆ = sp mod p

sp = ∆ + kp

sp −∆ = kp

GCD (sp −∆, N) = GCD (kp, pq) = p

An attack on Algorithm 6 requires skipping an operation. As we discovered, this is not difficult to achieve
on Cortex M3 architecture. RSA deals with 512, 1024, and 2048 bit numbers. There is no processor capable
of working with such scalability, thus different data structures, such as arrays of integers, are used to
handle large numbers, and subroutines are developed to perform operations such as add, compare, etc.
on these structures. Hence operations in lines 11-15 of Algorithm 6 are implemented as function calls. In
ARM architecture a single assembler instruction corresponding to a function call can be bypassed by a
laser shot as described in Section 6.6.

6.6 Practical Issues of Multi Fault Attacks

At first, the attack described in [BDL97] was performed in a “grey box” setting: we augmented the initial
cryptographic code with instructions that made an attack easier. For example, to find a time for a fault
injection, a trigger was raised at the beginning of the sp computations and dropped at its end. Using an
oscilloscope we observed that the overall computation took about 200 ms when run with an internal
clock (for this we simply removed a crystal oscillator from the device board). With an external clock the
device runs approximately 9 times faster. Once we knew the timing, we calculated the delay between
raising a trigger and the laser shot. It was even possible to use an external trigger (and thus conduct a
real black box attack). At one position we fired 20 shots. It took one day to produce about 40 incorrect
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results, all of which allowed recovering the prime p hence the attack against an unprotected CRT-RSA
was easy.

The next step was to test the ability to induce multiple faults into the protected CRT-RSA (described by
Algorithm 5), but the attack was not trivial.

An attack against Algorithm 5 assumes that one fault is induced while computing sp or sq and another
fault either skips the conditional check in line 11 or flips its outcome. The example below is the snapshot
of the assembler code corresponding to lines 11-15 of Algorithm 5.

0x08001160 A9FD ADD r1,sp,#0x3F4
0x08001162 A82B ADD r0,sp,#0xAC
0x08001164 F000F881 BL.W CompareBig (0x0800126A)
509: if (i == 0) {
510: /* write to vector of char */
0x08001168 B930 CBNZ r0,0x08001178
511: W32_to_W8(m.w,P_pOutput,P_pPrivCRTKey->modulus_size);
512: } else {
0x0800116A 4639 MOV r1,r7
0x0800116C F1060008 ADD r0,r6,#0x08
0x08001170 6822 LDR r2,[r4,#0x00]
0x08001172 F000FCF8 BL.W W32_to_W8 (0x08001B66)
0x08001176 E003 B 0x08001180
513: printf("Fault %d\n",i);
514: }
515: }
0x08001178 4601 MOV r1,r0
0x0800117A A004 ADR r0,{pc}+2 ; @0x0800118C
0x0800117C F002FC24 BL.W __1printf (0x080039C8)

Register r0 keeps the result of the comparison between two large numbers. If these two numbers are
equal a zero is returned. The syntax of the Compare and Branch on Non Zero (CBNZ) instruction is:

CBNZ Rn, label

This means that whenever Rn6= 0, the program jumps to label. This instruction does not change the
conditional flags, and is, in other words, equivalent to:

CMP Rn, #0
BNE label

This observation is important because previous attacks assumed that it is possible to flip the conditional
flag bit; however in the ARM architecture this flag bit is not often used as comparisons can be done
without it. There are several ways to skip the test in line 11 of Algorithm 5:

• Skip the execution of CompareBig; in that case register r0 may not keep any useful value;

• Force register r0 to 0 or induce a fault in such a way that the conditional check returns zero in all
cases;

• Skip the execution of CBNZ; in which case the microcontroller will just increase the program counter
thus going to the if-yes branch.

Among the three options, the last one is the most promising. To evaluate the feasibility of condition skip-
ping, CompareBig was modified to never return 0 as the result of comparison. Due to this modification,
the program’s normal behaviour was to print only zeros if m = m′ and the only way to get the correct
result was to skip the CBNZ.

Let us describe in detail how this has been achieved. The laser’s advantage is its ability to target a
spatial location, as small as a few gates, very precisely. This turns into a disadvantage when an attacker
does not know exactly where a targeted cell or a register is located. We started by scanning the whole
vulnerable area by the laser with a time step of 10 ns and the minimal displacement step of 100 nm while
the chip was running our specially designed assembly code that used the CBNZ instruction with the
same registers; the objective was to skip at least one CBNZ. To pinpoint the exact location where and
when CBNZ was executed we used a trigger signal. The laser needs a trigger commanding it to shoot
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Figure 6.4 – Oscilloscope snapshot taken during instruction skipping.

at a certain delay. A shooting must occur when the targeted instruction is executed, thus we need to
find this time precisely. By raising a trigger up somewhere in the program and dropping it down just
before the if-statement, so that the targeted CBNZ is executed in a clock cycle right after dropping the
trigger, we approximated a required delay for a laser shot. If the laser shot skipped the CBNZ instruction,
the program printed out the correct result, thus we had a means to know if instruction skipping was
successful. The laser shot can be seen on the oscilloscope by means of the differential probe which acts as
an antenna as illustrated on Fig. 6.4. Hence by correlating program outputs with oscilloscope traces we
were able to find the exact spatial positions of the laser shot which resulted in the required fault. It took
about one day to find this position.

The next step was to find a precise shot time for the non-customized code. The synchronization was done
again by correlating the oscilloscopes traces with the results of computations recorded by the computer.
By repeatedly adjusting the trigger delay with a 10ns step, we eventually found the exact shot time
targeting the CBNZ execution in the non-customized code. The time window for a shot was 190 ns; it is
slightly more than one clock cycle, which is equal to 125 ns. During this time window, 9 shots were fired.
Three out of the nine shots resulted in instruction skipping. Fig. 6.4 presents an oscilloscope snapshot
taken during a successful instruction skipping.

Thus the first objective was achieved: the location and the proper time window allowing the skipping of
the CBNZ consistently and with high probability was found. The next step was to synchronize a shot
with sp computations.

Unexpectedly a new problem appeared. The laser bench does not provide a possibility to set up different
delays for different triggers, i.e., if two triggers are raised up during one program execution then the
delays between the time of raising the triggers and the time of shots are exactly identical. Another
problem is the need to recharge the YAG laser between two shots. According to the laser’s documentation,
the minimal delay between shots is 200 ms for the laser to fully recharge. Actually the laser can shoot
earlier, but with a lesser energy. Fortunately, shooting with a minimal energy level was sufficient and the
interval between shots could be shortened.

Initially we checked that the delay used to skip the CBNZ instruction could also cause an error during
sp computations. To do that the chip was programmed with the CRT-RSA without countermeasures,
so if this delay allowed inducing such an error the erroneous output would lead to the seminal attack
described in [BDL97]. The result was successful; hence it had been proven that with the same delay it
was possible to skip the if-condition and to corrupt an exponentiation separately and independently
from the other exponentiation.

The final preparation step was to assemble code with all the triggers to attack a protected CRT-RSA. It
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Figure 6.5 – Snapshot taken during two fault attacks.

was done, but unexpectedly this setup did not produce the desired result: it was possible to observe that
an error occurred during the computation of sp because the comparison result was different (sometimes
it returned -1, sometimes 1,2 or -2), but it was impossible to skip the CBNZ instruction. Several days were
spent unsuccessfully searching for other delays and checking all parameters. Finally, we discovered the
reason: the time of the shot had been found when there were no errors in the sp computation. When an
error was injected, the computation time of functions such as CompareBig changed. This meant that
the time of raising the second trigger also changed and thus the shot did not coincide with the time of
execution of the CBNZ instruction.

To overcome this difficulty, the laser needs a “fixed point” for a trigger. First we changed CompareBig’s
code so that it runs in constant time, but that did not help. Apparently the execution time of functions,
such as long number multiplication, addition, etc., also slightly depends on the processed values. Hence
we used a workaround: just before checking the if-condition we inserted some useless but constant-time
computations. The trigger was raised at the beginning and dropped at the end of these computations
used as a fixed point for the trigger for the second shot.

The new timing was found much faster because the exact location of shooting had been already known.
Finally, for this setup it was possible to corrupt the value of sp and skip the CBNZ instruction. We
obtained several faulty results needed to recover private exponents. Fig. 6.5 presents a snapshot of the
oscilloscope during one of the successful attacks.

Yet another interesting observation: it is assumed that it is difficult to induce exactly the same fault
during two experiments. In our case the reality is opposite: because the time window for a two fault
attack (which is determined by the delay required for skipping the CBNZ instruction) is very small, it is
difficult to get different faulty results from the same input. Usually we got the same faulty outputs if we
run experiments sequentially.

During the previous experiments one significant power trace was found several times, see Fig. 6.6. On
that power trace one can clearly see that the trigger was dropped and immediately raised up again,
which should not have happened. Despite a strange trigger behaviour the program terminated without
any error. Initially we thought that it was one of unpredictable chip’s reactions, but after several such
patterns we decided to look at it closely and discovered that the occurrence of this pattern was strongly
dependent on the clock cycle, hence strongly dependent on the instruction.

The program’s logic is as follows. After the trigger is dropped, the if-condition has to be executed.
Resetting a trigger is implemented as a separate function GPIO_ResetBit and the last instruction in its
code is bx lr which returns the program to the main flow. This “branch indirect” instruction uses an
lr register as an indicator where to branch to. What happens if this instruction is skipped? Logically, the
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Figure 6.6 – GPIO corruption during laser shots.

program counter is incremented and the program enters into the subsequent function. At the end of this
function there is another bx lr instruction which should return the program to the main flow.

Assembler code examination revealed that it was compiled in such a way that the function raising the
trigger, GPIO_WriteBit, was located right after the function GPIO_ResetBit. It means that if the
return statement in GPIO_ResetBit is missed, then the program enters GPIO_WriteBit and starts
executing its instructions, until new bx lr is reached. At one point the program raises the trigger again;
that is what was observed on the oscilloscope.

To check this assumption, some additional functionality was added to GPIO_WriteBit so that just
before the end it printed a small message. We checked that this function was not called from anywhere
in the program, thus the only possibility for printing a message was to skip the return statement in
GPIO_ResetBits. This experiment was repeated several times and the message was often observed
confirming that the bx lr instruction was consistently skipped.

It is a particularly nice error because it can be used for interesting attacks. Suppose there is a print
instruction in a function located next to a key handling procedure. In that case if this procedure’s return
address is skipped, it is possible to get registers values. By changing a program flow one may skip
some critical part or activate other functionalities. This error has been successfully applied to break
Algorithm 6 in practice. Indeed, the attack model described in section 6 assumes that an attacker can skip
a function call. The following C code is a straightforward implementation of lines 11-15 of Algorithm 6:

if (i == 0)
{

/*temp - is an initial plaintext
mp and mq - parts of the RSA recombination for the plaintext*/

GPIO_ResetBits(GPIO_SMART, GPIO_Pin_11);

/*s = s + sp*/
AddBig(&s,&sp,&s);

/*s = s + sq = s + sp + sq*/
AddBig(&s,&sq,&s);

/*result = c mod p*/
ModularReduction(&c,&result,&p);

/*temp = m - result = m + mp + mq - cp*/
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SubBig(&m,&result,&temp);

/*result = c mod q*/
ModularReduction(&c,&result,&q);

/*m = temp - result = m + mp + mq - cp - cq*/
SubBig(&temp,&result,&m);

W32_to_W8(m.w,P_pOutput,P_pPrivCRTKey->modulus_size);
}else {

printf("Fault %d\n",i);
}

Using techniques discussed previously it was not difficult to locate and then skip AddBig(&m, &mp,&m)
function, because it is called by a simple instruction BL.W and instruction skipping was mastered in a
previous example. The program then returned a faulty result which was sufficient for recovering the
value of the RSA prime p.

Note that the countermeasure infects only half of the result-s bytes. In the example above comparing
the correct and faulty outputs shows that the first 32 bytes are identical, while the last 32 bytes are
different which makes it pretty easy to understand that a required error was injected during the infective
recombination.

6.7 Conclusions

We made the following conclusions from our experiment. The first is that even with a multi-layer metal
technology, front side laser attacks on complex SoCs are possible although we do believe that they are
approaching their limit. The second conclusion is that even for very big and complex chips a black
box approach to finding vulnerable locations works. By scanning the chip with the laser we found a
potentially vulnerable area of approximately 80×270 µm. The spot where instruction skipping was
possible is about 80×40 µm. The size of the chip is 4000×4000 µm, so a vulnerable spot constitutes only
0,135% of the SoC. We described only a front side experiment, but with a modification of the board, a
back side attack was also conducted.

After the vulnerability is found, one can run a number of experiments to understand the effects of the
injected errors on executed code. In our case it was proven that the laser shot’s main effect was skipping
an instruction: it seems that it was possible to corrupt values of the program registers.

The ability to skip an instruction provides an attacker with a very powerful tool: program flow can
be altered giving an opportunity to execute functions which do not have to be executed at this time
or skip functions that must be executed. This opens a possibility to attack countermeasures based on
conditional checks. It also allows an attacker to bypass some of the infective countermeasures, such as
those suggested in [KQ07a] modified (Ciet-Joye scheme), [KQ07b] (modified Giraud scheme), etc. In
other words, all theoretical attacks described in [DGRS09] can be successfully carried out in practice.

The complexity of specifying a formal attack model prevents developing generic countermeasures with
formal security proofs. Typically, countermeasures are dealt with on a case-by-case basis and apart from
the attack model they depend on the algorithm and its implementation.

The experiment’s most important outcome is that it proved in practice that multi-fault attacks on crypto-
graphic algorithms running on a powerful 32-bit ARM Cortex M3 processor are feasible. Considering
that many applications require device or user authentication, signature generation and public-key-based
credentials exchange, this may have an important impact on security engineering practices. The sig-
nificance of this result is that it forces the cryptographic community to re-consider what constitutes a
feasible attack model and also to critically analyze existing countermeasures with respect to this new
practical attack.



CHAPTER 7

DEFENSIVE LEAKAGE CAMOUFLAGE

Summary

Similar to the Shannon’s model described in the Section 1.1 this chapter considers the transfer of digital
data over leaky and noisy communication channels. The new defensive strategies proposed in this chapter
are based on the fact that noise prevents the attacker from accurately measuring leakage.

The defence strategy described in this chapter pairs each useful data element k with a camouflage value
v and simultaneously transmits both k and v over the channel. This releases an emission e(k, v). The
camouflage values v(k) are selected as a function of k in a way that makes the quantities e(k, v(k)) as
indistinguishable as possible from each other.

This chapter presents a model, which shows that optimal camouflage values can be computed from
side-channels under very weak physical assumptions. The proposed technique is hence applicable to a
wide range of readily available technologies.

We propose algorithms for computing optimal camouflage values when the number of samples per trace
is moderate (typically ≤ 6) and justify our models by a statistical analysis.

We also provide experimental results obtained using FPGAs.
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7.1 Introduction

A number of authors, e.g., [BCF03], rely on the isotropic switching-model in which all bits dissipate
identical switching energies. This thesis does not assume any a priori side-channel model and totally
relies on the analysis of actually measured1 emissions.

While most previous works analyzed leakage from complex cryptographic computations, we focus on
one of the simplest forms of leakage: the emanations of a bus through which bits are being sent. We
make only two physical assumptions:

• Emanations can be measured with equal (in)accuracy by both the attacker and the defender.

• Leakage is a global function of data plus noise. The proposed methods are thus unadapted to
settings in which individual channel bits are probed with precision.

The proposed methodology is hence applicable to a wide range of circuits having leaky buses.

The proposed countermeasure pairs each useful data element k with a camouflage value v and simulta-
neously transmits k and v through the channel. This releases a physical side-channel emanation e(k, v)
that can be measured by both the attacker and the defender.

We address the following question:

How can a defender pair each value of k with a corresponding value v(k) that makes

the e(k, v(k)) as indistinguishable as possible from each other?

The crux of this chapter is the definition of indistinguishability given the measured emissions.

Section 7.2 introduces algorithms for computing optimal camouflage values from actual power traces.
These algorithms are efficient when each trace contains a few samples (typically≤ 6). Section 7.3 presents
a statistical analysis justifying the intuition that the best v values are those concentrating the e(k, v) into
the smallest possible sphere containing representatives of all k values. Section 7.4 provides experimental
results.

In a way, this work achieves some sort of cryptographic key exchange based on the existence of ambient
noise and on a gap in measurement accuracy between the legitimate receiver and the attacker.

7.2 Models and Algorithms

Let e(d) represent the side-channel (e.g., power consumption) resulting from the transfer of an n-bit data
element d over an n-bit channel (e.g., a bus). e(d) can be measured with equal precision by both the
attacker and the defender.

The defender builds a set of 2n side-channel measurements E . Each e(d) ∈ E is generated by transmitting
an n-bit data element d. The defender assigns s channel bits to the useful information k, and devotes the
remaining n− s bits to the transmission of (n− s)-bit camouflage values v(k). We denote d = k|v and
call the k’s "keys" or "colors". Note that key bits and camouflage bits are not necessarily adjacent and
might be interleaved.

Let e(k, v) = e(d) be the emanation released by transmitting d = k|v.

The vector V = [v(0), . . . , v(2s − 1)] of all camouflage values must be chosen to make all emanations
e(k, v(k)) look "as similar as possible". Our goal is to infer V from E .

We assign a unique color k = color(e(k|v)) to each e(i) ∈ E . E is hence analogous to a multidimensional
cloud of 2n colored points (i.e., 2s sets of colored points; each of these 2s sets contains 2n−s identically
colored points).

A color-spanning sphere is a subset B ⊂ E containing at least one emission of each color.

1potentially anisotropic
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The defender will use the 2n elements of E to select 2s transmittable k|v(k) values forming a color-
spanning sphere A(V ) ⊂ E . The attacker will only get to see traces belonging to A(V ):

A(V ) =
⋃

k=1,...,2s−1
{e ∈ E : color(e) = k}

The defender’s goal is to minimize the size of the color-spanning sphere A(V ) exposed to the attacker,
i.e., infer from E a smallest color-spanning sphere Aoptimal such that

‖Aoptimal‖ = min
V
‖A(V )‖

Aoptimal has thus the least size for all choices of V .

The next section considers the simplest setting where emanations are scalars2. In that case the difference
|e − e′| between two scalars e, e′ ∈ E can be used as a similarity measure for constructing Aoptimal
efficiently.

7.2.1 One Dimension

Assume that the e(d) are scalars (e.g., execution times or a unique power measurement per trace). Acquire
the 2n reference traces:

E = {e(0), . . . , e(2n − 1)}

A given choice of V = [v(0), . . . , v(2s − 1)] restricts the attacker’s information to

A(V ) = {e(0, v(0)), . . . , e(2s−1, v(2s−1))}

The defender’s goal is to minimize:

‖A(V )‖ = maxA(V )−minA(V ) = max
k

(e(k, v(k)))−min
k

(e(k, v(k)))

Let P = [p0 ≤ p1 ≤ · · · ≤ p2n−1] be the e(i) ∈ E sorted (with repetitions) by increasing scalar values. A
color-spanning segment is an interval of P containing at least one pi of each color.

A straightforward algorithm for finding Aoptimal consists in working with two pointers start and end
representing the beginning and the end of the segment under evaluation. When execution begins, start
and end point at p0. While [start,end] is not a color-spanning segment end is moved to the right. When
end reaches p2n−1 start is moved by one position to the right (i.e., from pi to pi+1) and end is moved back
to start. Throughout this process, whenever a shorter color-spanning segment is found, it is recorded.
The complexity of this algorithm is quadratic in the cardinality of E , i.e., O(22n).

More clever approaches allow to solve the problem in Õ(2n). To do so build the 2s sorted sequences
(with repetitions) of emissions for each color:

Pk = [pk0 ≤ . . . ≤ pk2n−s−1] for k = 1, . . . , 2s − 1

Represent the color-spanning segments by a binary search tree T of size 2s.

At step 0, initialize the tree to T0 = {p0
0, . . . , p

2s−1
0 } and proceed by 2s-way merging.

At stage t, the color-spanning tree is

Tt =
{
p0
λ0
t
, . . . , p2s−1

λ2s−1
t

}
2e.g., execution times or a unique power measurement per trace.
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where the λkt denote the merge pointers.

Let m and m denote (respectively) the minimal and maximal scalars in Tt. We denote by φt the minimal
(i.e., best) segment length found at step t.

If t = 0 or m−m < φt−1, then update φt = m−m else φt = φt−1.

Let m = pcλct
and let m = pcλct+1 be the next emission of the same color. The next tree Tt+1 is obtained by

replacing m by m in Tt, i.e., we increase λct+1 = λct + 1 and stall all other merge pointers λkt+1 = λkt for
k 6= c.

The algorithm terminates (at some step τ < 2n) when it fails to find a successor m to m. The length of
the minimal color-spanning segment is then φτ .

Complexity:

Partitioning E to 2s color subsets and sorting these subsets to get the Pk costs O(n2n).

Binary search trees [Knu98] support the operations (insert, find-min, extract-min and find-max) required
by the structure T , each of these operations requires O(s) time. It follows that the 2s-way merge runs in
O(s2n) and hence the above algorithm has an overall complexity of Õ(2n).

7.2.2 Higher Dimensions

We now consider the general case where e is a T -dimensional vector, e.g., a power consumption sampled
at T different instants. E is now a T -dimensional cloud of colored points (Fig. 7.1) and the color spanning
interval is a T -dimensional sphere. We need to determine the smallest sphere containing at least one
point of each color, i.e., the smallest color-spanning sphere Aoptimal (Fig. 7.2, right).

The cloud of points is contained in some minimal enclosing T -dimensional rectangleR, whose sides are
parallel to the hyperspace’s T axes (Fig. 7.3, right).

Figure 7.1 – 3D power trace representation.

Divide and Conquer

This problem lends itself to divide and conquer resolution.

Let B be some3 initial color spanning sphere of radius r. Let ` denote the length of the rectangleR along
some dimension x. Split R along the x axis into two overlapping sub-rectangles of lengths `

2 + r as

3not necessarily optimal, cf. Fig. 7.3, left.
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Figure 7.2 – Determining the smallest sphere containing at least one point of each color.
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(a) Step 1, find any color spanning sphere B
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(b) Step 2, define the rectangleR

Figure 7.3 – First two steps of the 2D color-spanning algorithm.

l/2 l/2

(a) Rectangles of size `
2

r r

(b) Rectangles of size `
2 + r

Figure 7.4 – Step 3, splitR into two overlapping rectanglesRright and Rleft of length `
2 + r.

shown by Figure 7.4. LetRright andRleft be the two equally sized sub-rectangles obtained that way (Fig.
7.5).

By construction, Aoptimal is fully contained in eitherRright orRleft. So, we recursively apply the process
toRright andRleft until splitting diminishes the rectangles’ sizes only negligibly4. At that point we solve
each of the smaller instances (by any chosen method) and output the smallest solution of all, which is

4After the w-th splitting the rectangles’ sides are of size `w = (`− 2r)2−w + 2r. Hence splitting can last forever. We suggest to
stop splitting when `w < 3r, i.e., after blog2(`/r − 2)c iterations.
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Rleft : find optimum here

Rright : find optimum here

↓
RrightRleft

r+l/2 r+l/2

Figure 7.5 – Recursive problem size reduction.

indeed the smallest color-spanning sphere inR, i.e., the smallest color-spanning sphere Aoptimal of the
original problem.

Note that splitting can take place along several orthogonal axes simultaneously.

While practically very useful, this algorithm fails in a number of pathological cases (e.g., when B is too
large to split R). Luckily this is a well-studied problem: [DBVKOS00] describes a simple linear-time
algorithm in two dimensions and Welzl [Wel91] shows how to solve the problem in linear time for all
dimensions, considering that the number of dimensions is a fixed problem parameter. Complexity is
however exponential in the number of dimensions.

A key choice is the initial sphere B: we want B to be small enough to significantly reduce the divide and
conquer’s search space. Yet, we want B to remain easy to compute.

Heuristics:

In our implementation we used the following method to construct B: let p0 be a point (for example the
closest point to the center ofR) of color 0. After computing p1, . . . , pk, we select as pk+1 the point of color
k + 1 at minimal distance from the barycenter of the cloud p1 · · · pk. The resulting B is not necessarily
optimal, (cf. Figure 7.7) but turns out to be much better than selecting any random color-spanning sphere.
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Figure 7.6 – Program output example in 2 dimensions.

Figure 7.7 – The optimal sphere (left) is different from the sphere found by the barycenter heuristic (right)
if the heuristic considers first the red, then the blue and finally the green points.

7.2.3 Implementations

Algorithms were implemented in C++5 in a straightforward manner. A function

bool smallest_ball(points, space, output)

splits space and points as explained above (using a sphere found by find_ball_barycenter) and
calls recursively smallest_ball on the smaller spaces, until this process stops to significantly decrease
the problem size. We then use Miniball6, a C++ software for computing smallest enclosing spheres of
points in arbitrary dimensions (without requiring spheres to be color spanning) using brute force. The
description of Miniball can be found in [Gar99, Wel91].

Timings were measured on a Dell Inspiron 15207. Code was compiled using Visual C++ 2008 with all
optimization flags set for maximal speed.

Experimental running times seem to confirm that the algorithm is linear in the number of points and
exponential in the number of colors.

5the code is available at http://perso.ens-lyon.fr/quentin.fortier/color_ball.html
6http://www.inf.ethz.ch/personal/gaertner/miniball.html
7Intel Core 2 Duo T7300 processor, 2.0GHz, 4MB L2 cache, 2Go memory.
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Total number of points 2 colors 3 colors 4 colors 5 colors

102 8 ms 11 ms 43 ms 211 ms

103 96 ms 221 ms 833 ms 7 s

104 946 ms 3 s 11 s 81 s

105 10 s 31 s 145 s 953 s

106 109 s 327 s

Table 7.1 – Running time for points randomly chosen in the 3-dimensional unit cube, averaged over 10
runs.

Total number of points 2 colors 3 colors 4 colors 5 colors

102 11 ms 39 ms 309 ms 2 ms

103 164 ms 1 s 10 s 147 s

104 2 s 16 s 160 s

105 27 s 188 s 37 min

106 287 s 32 min > 1 hour > 1 hour

Table 7.2 – Running time for points randomly chosen in the 4-dimensional unit cube, averaged over 10
runs.

7.3 Why Euclidean Distances?

Let {m0,t, . . . ,mn−1,t} be a database of n reference power consumption traces measured over some
discrete time interval t ∈ [0;T − 1]. Sample mi,t corresponds to the power consumption caused by the
manipulation of data element i at instant t. Let µt be the average power consumption at time t and σt
the standard deviation at time t:

µt = 1
n

∑
i<n

mi,t σt =
√

1
n

∑
i<n

(mi,t − µt)2.

Let at be an unidentified power measurement made by an attacker. The attacker’s problem consists
in finding the mk,t that best reassembles at. This section justifies why for doing so, an attacker would
naturally compute for i < n the quantities:

score(i) =
∑
t<T

(at −mi,t)2

σ2
t

, (7.1)

and output the guess k corresponding to the mk,t whose score is the lowest i.e.:

score(k) = min
i<n

(score(i)).

This formula is justified in the next section for t-wise independent mi,t’s.

In general, samples may be correlated, for instance when the same secret bit is manipulated at two
different instants. We analyze this general case later and propose an explicit score minimization formula
(7.2) taking into account intra-sample correlations.

7.3.1 Multivariate Normal Distributions

Equation (7.1) stems from the assumption that, for any fixed i, successive measurements of mi,t follow
an independent normal distribution with mean µt and standard deviation σt, and hence abide by the
probability density function:



7.3 Why Euclidean Distances? 111

fmt(x) = 1
σt
√

2π
exp

(
− (x− µt)2

2σ2
t

)
When the mi,t’s are independent, the probability density of all measurements t < T can be expressed,
for ~x = [x0 · · ·xT−1] as a T -dimensional multivariate distribution:

f~m(~x) =
∏
t<T

fmt(xt) = 1
(2π)T/2

∏
t<T

σt
exp

(
−
∑
t<T

(xt − µt)2

2σ2
t

)
.

Note that in the previous equation µt and σt are the expected value and standard deviation of mi,t over
all data elements i. For a measurement mi,t corresponding to a specific data element i, in addition, we
also assume that mi,t follows a normal distribution with mean µ̃t = mi,t and standard deviation σ̃t; we
also assume that the standard deviation σ̃t around mi,t is the same for all data elements. In this case, the
measurement mt corresponding to data element i has the following distribution:

f~m(~x) = 1
(2π)T/2

∏
t<T

σ̃t
exp

(
−
∑
t<T

(xt −mi,t)2

2σ̃2
t

)

Additionally, we assume that the standard deviation σ̃t of mt around mi,t is proportional to the standard
deviation σt of mt when all data values are considered, i.e., we assume σ̃t = α · σt for all 0 ≤ t ≤ T − 1
for some α ∈ R. In this case, the probability density function of the mt’s for data i can be written as:

fi(~m) = 1
(2π)T/2αT

∏
t<T

σt
exp

(
−
∑
t<T

(mt −mi,t)2

2α2σ2
t

)
∝ exp

(
− score(i)

2α2

)
where score(i) is given by equation (7.1). The probability to obtain measurements mt from data i is thus
a decreasing function of score(i). Given measurement ~m, the most probable candidate is therefore the
one with the lowest score.

7.3.2 Multivariate Normal Distribution: Taking Correlation into Account

We denote by Σ the covariance matrix of the measurements, defined as follows:

Σ = var(~m) = var


m1

...

mT

 =


var(m1) cov(m1m2) · · · cov(m1mT )

cov(m1m2)
. . . · · ·

...
...

...
. . .

...

cov(m1mT ) · · · · · · var(mT )


where cov(X,Y ) = E(XY )− E(X)E(Y ) and var(X) = cov(X,X) = E(X2)− E(X)2.

We assume that the measurements follow a T -dimensional multivariate distribution with mean ~µ and
covariance matrix Σ. The probability density function can then be expressed as:

f~m(~x) = 1
(2π)T/2|Σ|1/2

exp
(
− 1

2 (~x− ~µ)trΣ−1(~x− ~µ)
)
.

where |Σ| is the determinant of Σ and M tr is the transposed of matrix M . The mean ~µ is a T -vector and
Σ is a T × T -matrix.

Note that in the previous equation ~µ and Σ are the expected value and covariance matrix of measurements
for all data elements i. As previously for measurements corresponding to a specific data element i, we
assume that these measurements follow a T -multivariate normal distribution with mean µ̃t = mi,t and
covariance matrix Σ̃.
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If we further assume that matrix Σ̃ is identical for all data elements, the measurement ~m for data i then
obeys the multivariate distribution:

f~m(~x) = 1
(2π)T/2|Σ̃|1/2

exp
(
− 1

2 (~x− ~mi,·)trΣ̃−1(~x− ~mi,·)
)
.

As previously, let us additionally assume that the covariance matrix satisfies Σ̃ = α · Σ for some α ∈ R.
In this case, the probability density function is expressed by:

f~m(~x) = 1
(2πα)T/2|Σ|1/2

exp
(
− 1

2α (~x− ~mi,·)trΣ−1(~x− ~mi,·)
)
.

This can finally be written as

f~m(x) = 1
(2πα)T/2|Σ|1/2

exp
(
− score(i)

2α

)
where

score(i) = (~m− ~mi,·)trΣ−1(~m− ~mi,·) (7.2)

It follows that equation (7.2) is a generalization of equation (7.1) where correlations are taken into account.
In other words, to take correlations into account acquire at and compute for every i the score as per
equation (7.2), sort the scores by increasing values and bet on the smallest.

Examples

To illustrate the procedure, we consider the bivariate case where the covariance matrix between variables
X and Y is:

Σ =
[

σ2
x ρσxσy

ρσxσy σ2
y

]
where var(X) = σ2

x, var(Y ) = σ2
y , cov(X,Y ) = ρσxσy and ρ is the correlation between X and Y . In this

case, we find:

Σ−1 = 1
1− ρ2


1
σ2
x

−ρ
σxσy

−ρ
σxσy

1
σ2
y


and the probability density function can be written as

f(x, y) = 1
2πσxσy

√
1− ρ2

exp
(
− 1

2(1− ρ2)

[
x2

σ2
x

+ y2

σ2
y

− 2ρxy
σxσy

])
.

In this case, equation (7.2) gets simplified as follows:

si = (a1 −mi,1)2

σ2
1

+ (a2 −mi,2)2

σ2
2

− 2ρ(a1 −mi,1)(a2 −mi,2)
σ1σ2

where σ1 = var(m1), σ2 = var(m2) and ρ is the correlation between m1 and m2.

7.4 Experiments

7.4.1 Measurements

This section describes our experimental results using the Altera EP2C20F484C7N FPGA present on
the Cyclone II Starter Development Kit (SDK). Fig.7.8 shows the circuit used to measure the power
consumption of a memory read + register store operation. The circuit consisted of a RAM, a multiplexer,
eight registers, slide switches (DIP) and buttons. Identical data was simultaneously written into eight
identical registers to increase power signature.
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Figure 7.8 – The experimental circuit used for power consumption measurements.

Power was measured using a 1GHz oscilloscope (TDS 684B) and a Tektronix P6247 differential probe
(1GHz bandwidth). The SDK’s two GPIO pins (power and ground) were connected via the differential
probe. Apart from DC signal rejection no filtering or power trace post processing was done.

The experimental protocol was defined as follows:

• The DIP’s eight slide switches were manually set to 0x00.

• Address 0x00 was latched on address bus A=[A0,...,A4] using the multiplexer’s control bit S.
This caused the value 0x00 to be written into RAM address 0x00.

• For d = 0 to 255:

– The DIP’s eight slide switches were manually set to d.

– Pressing the board’s KEY0 button triggered the following sequence of events 1000 times
(averaged to remove noise):

1. RAM write (W) was activated and bit S was used to latch address 0x08 on bus A. This
caused d to be written to RAM address 0x08 (1 cycle).

2. RAM read was activated (R) and bit S was used to latch address 0x00 on bus A. This
caused 0x00 to be read-out of RAM and clear all data previously present on the bus and
in the registers (3 cycles).

3. The RAM’s CLK signal was disabled.

4. Bit S was used to latch address 0x08 on bus A.

5. The oscilloscope was triggered.

6. The RAM’s CLK signal was enabled for one cycle only causing d to appear on bus
[R0,...,R7]. The RAM’s CLK signal was immediately re-disabled to avoid a double-
reads and freeze d on bus [R0,...,R7].

7. At the next clock cycle, d appeared at the Q output pins of the eight registers.

8. The clock was left running for one more cycle to acquire any signal tails due to capacitive
discharges.

– A 2500-sample averaged power measurement e′(d) was recorded.

– Three samples corresponding to instants t0, t1, t2 were extracted from e′(d) to form e(d). e(d)
was recorded8 as a file trace_d.d used for camouflage calculations.

The described state-flow could only be interrupted by power-off or by pressing KEY0. A finite state-
machine (FSM) diagram will appear in the final version of this paper. A characteristic power trace is
shown in Figure 7.9.

83 big-endian values stored in ASCII in decimal format. Each sample is represented by two bytes (oscilloscope’s precision).
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Figure 7.9 – Power trace of the circuit of Fig.7.8.

The obtained results confirm very wall both our analysis and intuition. However, for various technical
reasons, we are not entirely satisfied with this first measurement campaign. We thus plan to refine our
setting and provide new experimental results in the final paper.

7.4.2 Analysis

Figure 7.10 represents the 256 values (n = 8) obtained experimentally as 8 color families (i.e., 32 points
per family). The experimental data is available upon request.

Our goal is to consider this data as 2i colors × 28−i points for i = 1, . . . , 7, select the optimal bus bits
on which k should be encoded, compute the v(k) in all cases and check if the results indicate, as we
conjecture, that similar Hamming weight words yield the best encoding.

For two colors (i.e., a 1-bit k) the two most similar bus values are 0x7F and 0xF9 for which:

distance(e(0x7F), e(0xF9)) =
= distance({28601, 28795, 28794}, {29115, 28789, 28876})
= 26.94

For four colors (i.e., a 2-bit k) we get:

binary value of k optimal k and v(k) observed side channel e(k, v(k))
00 0xB4=10110100 e(0xB4) = {28704, 28232, 28278}
01 OxD9=11011001 e(0xD9) = {28652, 28107, 28315}
10 0x96=10010110 e(0x96) = {28716, 28159, 28293}
11 0x6B=01101011 e(0x6B) = {28670, 28280, 28380}

e(0xB4), e(0xD9), e(0x96), e(0x6B) are contained in a sphere of radius
√

17239
2
∼= 92.84 centered at

c = {28661, 28193.5, 28347.5}where:

distance(c, e(0xB4)) = 90.34 distance(c, e(0xD9)) = 92.84
distance(c, e(0x96)) = 84.77 distance(c, e(0x6B)) = 92.84

The positions are illustrated in Figure 7.11 where points were re-scaled to [0, 1] using the affine transform
rescale{x, y, z} = {u(x), u(y), u(z)}where h(u) = (u− 28107)/609:

rescale(e(0xB4)) = {0.98, 0.21, 0.28} rescale(e(0xD9)) = {0.89, 0.00, 0.34}
rescale(e(0x96)) = {1.00, 0.09, 0.31} rescale(e(0x6B)) = {0.92, 0.28, 0.45}
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Figure 7.10 – Experimental results for n = 8. 3D and projected representations of the 256 experimental
measurements (represented as 8 color families of 32 points).

7.5 Conclusions and Further Research

This works raises a number of interesting questions. A first natural generalization is the translation of
our analysis to an infinite number of dimensions (in terms of metrics on function spaces and distances
between functions).

A second line of research consists in introducing more complex information encoding schemes. Here the
defender detects the 2s most similar traces in E = {e(0), . . . , e(2n − 1)}, e.g., using clustering. Let L be
the subset (cluster) of these most similar traces:

L = {e(`(1)), . . . , e(`(2s − 1))} ⊂ E

The communicating parties assign9 to the transmitted information the encoding:

`(k) = encode(k) k = decode(`(k))

Along the same line of ideas, a further refinement consists in buying an easier computation of camou-
flage values at the cost of extra assumptions on the power consumption model. Assume for instance
an isotropic consumption model where emanations are proportional to the Hamming weight of the
transmitted data. Here all

(
n
w

)
emissions of weight w cause identical emanations. The largest binomial

has weight w = n/2, and it is bounded by

9e.g., using a lookup table.
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Figure 7.11 – Display of the rescaled solution.
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Figure 7.12 – Experimental results for n = 8. Position of the optimal solutions.

2n√
2n

< bn =
(
n
n
2

)
<

2n√
πn/2

.

Assigning cn = dlog2
√

2ne implies that 2n−cn ≤ 2n/
√

2n < bn, i.e., 2s < bn for s = n − cn. We
can thus choose a distinct configuration of weight n/2 to encode each secret key k. It follows that
cn = (3 + log2 n)/2 bits are sufficient to perfectly hide the emanations from s = n− cn keys over the n
bits of an isotropic bus.

If the noise level is high enough then the implementer may use the fact that
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log
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n
n
2

))
' log

((
n

n
2 ± γ

))
for moderate γ values

and increase bandwidth at the cost of a carefully controlled security risk.
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CHAPTER 8

BUYING AES DESIGN RESISTANCE WITH
SPEED AND ENERGY

Summary

Despite the fact that AES is mathematically safer than the DES, straightforward AES implementations
are not necessarily secure and several authors [Koc96, KJJ99, MOP07] have exhibited ways of exploring
information that leaks from AES implementations. Such leakage is typically power consumption,
electromagnetic emanations or the time required to process data. Additional constraints such as fault-
resistance, chip technology, performance, area, power consumption, and even patent compliance further
complicate the design of real-life AES coprocessors.

This chapter addresses resistance against two physical threats: power and fault attacks. The proposed
AES architecture leverages the algorithm’s structure to create low-cost protections against these at-
tacks. The proposed design allows very flexible runtime configurability without significantly affecting
performance.

This chapter is organized as follows: Section 8.1 proposes an architecture for implementing AES. Section
8.2 explains how to add power scrambling and fault detection to the proposed implementation. The result
is a chip design allowing 29 different software-controlled runtime configurations. Section 8.3 compares
simulation and synthesis results between an unprotected AES and our protected implementations.
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Figure 8.1 – AES encryption flowchart.
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Figure 8.2 – AES decryption flowchart.

8.1 The Proposed AES Design

AES algorithm structure is explained in Section 1.3.1. The proposed design places a register barrier after
each transformation (and their inverse), namely, ADDROUNDKEY, SUBBYTES, SHIFTROWS, and MIXCOLUMNS.
The register barrier is used to save intermediate results. Therefore the intermediate information that
eventually yields S[r] is saved four times during each AES round. It takes 4Nr + 1 clock cycles to encrypt
(or decrypt) a data block using this design.

Fig. 8.1 and Fig. 8.2 show that, during each clock cycle, only one block of the chain actually computes
the state, while the other three blocks are processing useless data. This is potentially risky, as the three
concerned blocks "chew" computationally useless data related to P (or C) and K [r] and thereby expose
the design to unnecessary side-channel attacks.1 This computation is shown in Fig. 8.3 where red arrows
represent the path of usefully active combinatorial logic.

8.2 Energy and Security

8.2.1 Power Analysis

SCA and FA are explained in Section 2 and Section 3 respectively. To benchmark our design the AES was
implemented on FPGA. Power was measured at 1GS/s sampling rate with 250MHz bandwidth using
PicoScope 3407A oscilloscope. To guarantee the identical conditions every new plaintext was given to
the FPGA at the same clock after the reset.

We performed a Correlation Power Attack (CPA) on the first AES S-box output since S-box operation
is generally considered as the most power gluttonous. Our power model was based on the number of
flipped register’s bits in the S-box module when the initial register’s barrier R0 is rewritten with the
S-box output as follows:

HD (S (P ⊕K0) , R0) = HW (S (P ⊕K0)⊕R0) (8.1)

where R0 is the previous register’s state; P is a given plaintext; K0 is the AES master key.

The valueR0 was assumed to be constant since all the encryptions were performed at the same clock after
the reset. When R0 could not be computed then all possible 256 values were tried. Pearson correlation

1In that respect see our open question in Section 8.5.
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Clock = t + 2 ADDROUNDKEY SUBBYTES SHIFTROWS MIXCOLUMNS

Clock = t + 3 ADDROUNDKEY SUBBYTES SHIFTROWS MIXCOLUMNS

Figure 8.3 – Flow of computation in time.

coefficient was used to link the model and the genuine consumed power.

The following section presents a reference evaluation of the unprotected AES implementation showing
its vulnerability compared to two (LFSR and tri-state buffers) side-channel countermeasures introduced
later.

8.2.2 Power Scrambling

It is a natural idea to shut down unnecessarily active blocks. To do so, each block receives a new 1-bit
input named ready activating the block when ready = 1. If ready = 0, the block’s pull-up resistors are
disconnected using a tri-state buffer connected to the power source. This saves power and also prevents
the circuit from leaking "unnecessary" side-channel information.

Logically the pipeline architecture that we have just described has to be less vulnerable against First
Order DPA attacks. Its four register barriers introduce additional noise, so we expect that the correlation
shall be at least smaller that for the AES design with one round per clock computation.

To asses the security of each proposed design, we will compare an incorrect key byte correlation to
a correct key byte correlation. Fig. 8.4 shows these two coefficients. As expected, the correct key is
correlated to the power traces, however even for 500,000 traces Pearson correlation coefficient is smaller
than 0.015. Anyway, this implementation is vulnerable.

To exploit the unused blocks to hide the device’s power signature even better we propose two mod-
ifications. The first consists in injecting (pseudo) random data into the unused blocks, making them
process that random data. Subsequently, three of the four blocks will consume power in an unpredictable
manner. Note that because we use the exact same gates to compute and to generate noise, the expected
spectral and amplitude characteristics of the generated noise should mask leakage quite well. Although
any random generator may be used as a noise source, we performed our experiments using a 128-bit
LFSR. An LFSR is purely coded in digital HDL, making tests easier to implement.

Fig. 8.5 shows that a multiplexer controlled by the ready signal selects either the useful intermediate state
information or the pseudo-random LFSR output. For the ADDROUNDKEY block, LFSR data replaces the
key. Therefore when ADDROUNDKEY’s ready = 0, pseudo-random data (unrelated to the key) are xored
with the state coming from the previous block (MIXCOLUMNS if encrypting, INVSHIFTROWS if decrypting).
For the other blocks, the pseudo-random data replaces the state when ready = 0.

Attacks performed on this implementation revealed that this countermeasure increases key lifetime.
Fig. 8.6 is the equivalent of Fig. 8.4 for the protected implementation using an LFSR. The correct
key correlation can not be distinguished from the incorrect key correlation even with 1,200,000 traces.
However, we assume that this implementation still might be vulnerable if more traces are acquired or if
Second Order DPA is applied.

Real-life implementations must use true random generators. Indeed, if a deterministic PRNG seed



122 Buying AES Design Resistance with Speed and Energy 8.2

0 100 200 300 400 500 600 700 800 900 1000

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time, ns

P
e
a
r
s
o
n
 
C
o
r
r
e
l
a
t
i
o
n

 

 

0 100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

V
o
l
t
a
g
e
,
 
m
V

Pearson correlation for the correct key byte
Pearson correlation for the wrong key byte
Power trace
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Figure 8.5 – Power scrambling with a PRNG.

is used the noise component in all encryptions becomes constant and cancels-out when computing
differential power curves.

A second design option interleaves tri-state buffers between blocks to hide power consumption. By
shutting down the three useless blocks, we create a scrambled power trace where one block computes
meaningful data while the other three "process" high impedance inputs, which means that these blocks
"compute" leakage current coming from their inputs.

As illustrated in Fig. 8.7, the input signal readyi determines which blocks are tri-stated and which block
is computing the AES state. In other words, the readyi signal "jumps" from one block to the next, so that
only one block is computing while the other three are scrambling the power consumption. Although
this solution has a smaller overhead in terms of area (as it does not require random number generation)
tri-state buffers tend to be slow. Furthermore, the target environment (FPGA or IC digital library) must
offer tri-state cells.

The experimental results we obtained on FPGA were surprising, we couldn’t attack the design with
800,000 power traces. The correlations shown in Fig. 8.8 do not allow to visually distinguish the correct
key from a wrong guess. As before we assume that this implementation can be still attackable if more
power traces are acquired or if Second Order DPA is applied.

A full study of this solution would require an ASIC implementation with real tri-state buffers, as an
FPGA emulates these buffers and may turn out to be resistant because of an undesired CLB mapping
side effects.
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Figure 8.6 – LFSR implementation: Pearson correlation value of a correct (red) and an incorrect (green)
key byte guess. 1,200,000 power traces.
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Figure 8.7 – Power scrambling with tri-state buffers.
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8.2.3 Transient Fault Detection

We will now use idle blocks to check for transient faults. Each block in the chain can "stutter" during two
consecutive clock cycles to recompute and check its own calculation. For instance, as shown in Fig. 8.9,
at clock t, a given block Bi receives a readyi signal, computes the state and saves it in the register barrier
Ri. At clock t+ 1, the result enters the next block Bi+1 mod 4 which is now working, while Bi reverts to
checking, i.e., Bi recomputes the same output as at clock t and compares it to the saved Bi value. This
process is repeated for the other blocks in the chain. If any transient fault happens to cause a wrong
result at the output of any block, the error will be detected within one clock cycle.

Clock = t

Clock = t+ 1

WORKING

Block Bi Ri

CHECKING

Block Bi

⊕
compare

Figure 8.9 – Transient fault detection scheme for AES.

8.2.4 Permanent Fault Detection

The AES structure of Section 1.3.1 also allows us to use one block of the chain to compute a pre-
determined plaintext or ciphertext. The encryption (or decryption) of a chosen input (e.g., the all-zero
input Z) is pre-computed once for all and hardwired (let W = AES(Z) denote this value). While the
system processes the actual input through one block (out of four) during any given clock cycle, another
block is dedicated to recompute W . One clock after the actual C emerges, AES(Z) can be compared to
the hardwired reference value W . If W 6= AES(Z), a transient or a permanent fault occurred.

In this scenario, the system starts by computing AES(Z) in the first clock cycle, followed by the actual
computation of C. This allows the implementation to check up all the blocks during the execution and
make sure that no permanent fault occurred. In the last clock cycle, while C is being processed in the last
block, the correctness of AES(Z) is compared with the hardwired value before outputting C.

In Fig. 8.10, the red arrows represent data flow through the transformation blocks. After the initial clock
cycle, the first block starts computing C. The WORKING blocks represent the calculation of C. The
CHECKING blocks represent the calculation of AES(Z).

While AES(Z) will be calculated in 4Nr + 1 clock cycles, C will be calculated in 4Nr + 2 cycles. If the
fault needs to be caught earlier, the solution described in [BBKP02] can be adapted. Yet another option
consists in comparing intermediate Z encryption results (i.e. intermediate state values) to hardwired
ones. Note that our design differs from [BBKP02] where a the decryption block is used for checking the
encryption’s correctness [BBK+03].
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Clock = t CHECKING IDLE IDLE IDLE

Clock = t + 1 WORKING CHECKING IDLE IDLE

Clock = t + 2 IDLE WORKING CHECKING IDLE

Clock = t + 3 IDLE IDLE WORKING CHECKING

Figure 8.10 – Permanent fault detection scheme for AES.

8.2.5 Runtime Configurability

The proposed AES architecture is a 4-stage pipeline where each stage can be used independently of the
others. As already noted, blocks can perform five different tasks:

• Compute a meaningful state;

• Be in idle state to save energy;

• Scramble power consumption;

• Check for transient faults by recomputing previous calculation;

• Check for permanent faults by computing a known input.

To explore all possible combinations, we proceed as follows: first, we generate all 54 = 625 combinations
(5 operations for 4 transformation blocks). We can consider a subset of these combinations if we work
with 4 operations only, and remember that each E entry represents two actual options (tri-state or
idle). This reduces the number of combinations to 44 = 256. We eliminate all configurations that are
circular permutations of others, i.e., already counted configurations shifted in time. We also eliminate
the meaningless configurations in which there isn’t at least one block computing. All configurations
having more than one permanent fault protection block at a time are removed as they don’t add any
extra protection. Finally, we eliminate the cases where a transient fault checking is not preceded by a
computing block or by a permanent fault verification.

Table 8.1 shows that the design can perform 29 different task combinations, where C stands for computing,
E stands for energy (power scrambling, idleness or any combination of these two if there are more than
two Es in the considered configuration), T stands for transient fault checking and P stands for permanent
fault checking. These options can be activated during runtime according to the system’s constraints such
as power consumption or speed. If there are no specific requirements, we recommend any of the four
best configurations protecting against all attacks at once. These are singled-out in Table 8.1 by a ?.

Table 8.2 shows the number of configurations per protection goal. Note that for a given protection goal,
different configurations can be alternated between executions without any performance loss.

8.3 Implementation Results

A 128-bit datapath AES encryption core was coded and tested in Verilog and compiled using Cadence
irun tool. Cadence RTL Compiler was used to map the design into a 45nm FreePDK open cell digital library.
Fig. 8.11 represents the inputs and outputs of the AES core. The module contains a general clock signal
called CLOCK_IN, an asynchronous low-edge reset called RESET_IN and a READY_IN signal that flags
the beginning of a new encryption. Plaintext is fed into the device via the 128-bit bus TEXT_IN, while
the 128-bit key is fed to the system through the input called KEY_IN. The module outputs two signals:
TEXT_OUT, which contains the resulting plaintext and READY_OUT, that represents a valid output.

Table 8.3 compares an unprotected AES core to the countermeasures described in this paper. The increase
in terms of area is ∼ 6% for the LFSR implementation and ∼ 4% for the tri-state design. The LFSR
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Table 8.1 – 29 possible AES-block configurations.

Block 1 Block 2 Block 3 Block 4

C C C C

C C C E

C C C T

C C C P

C C E E

C C E T

C C E P

C C T T

C C T P

C C P E

C C P T

C E C E

C E C T

C E C P

C E E E

C E E T

C E E P

C E T T

? C E T P

C E P E

? C E P T

C T C P

C T T T

C T T P

? C T P E

C T P T

C P E E

? C P E T

C P T T

Table 8.2 – Number of configurations.

C E P T Configurations

4 1

3 1 1

1 3 1

3 1 1

3 1 1

1 3 1

2 2 1

1 1 2 1

1 2 1 1

2 2 2

1 1 2 2

2 1 1 3

1 2 1 3

1 1 2 3

2 1 1 3

1 1 1 1 4



8.4 Conclusion 127

AES
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TEXT_OUT[127:0]

READY_OUT

Figure 8.11 – AES design’s inputs and outputs.

Table 8.3 – Unprotected AES, LFSR and tri-state buffer designs synthesized to the 45nm FreePDK Open
Cell Library.

Unprotected LFSR Tri-state

Area (µm2) 61,581 65,194 64,243

Number of cells 10,643 11,035 11,162

sequential 783 911 787

inverters 1,483 1,614 1,493

logic 8,375 8,506 8,368

buffers 2 4 2

tri-state buffers 0 0 512

Total power (mW) 2.10 2.16 1.68

leakage power 1.20 1.28 1.26

dynamic power 0.89 0.87 0.41

Timing (ps) 645 645 806

Frequency (GHz) 1.55 1.55 1.24

Throughput (Gbit/s) 4.84 4.84 3.87

implementation showed almost no increase in terms of power consumption. Since tri-state buffers shut
down three out of four blocks per clock, we expect a reduction in the power consumption. The tri-state
design saves roughly 20% of power compared to the unprotected AES. As tri-state buffers tend to be
slower, this design lost 20% in terms of clock frequency and throughput, while the LFSR version showed
no speed loss, as expected.

Table 8.4 shows the three designs benchmarks in FPGA. They were coded in Verilog and synthesized
to the Spartan3E-500 board using the Xilinx ISE 14.7 tool. LFSR and tri-state designs showed an area
overhead of ∼ 15% compared to the unprotected AES implementation. In terms of performance, LFSR
design showed no loss, while the tri-state core lost ∼ 7%.

8.4 Conclusion

We described an unprotected AES implementation sliced in four clock cycles per round. Making use
of this approach, we built on top of the unprotected core two power scrambling ideas to thwart side-
channel attacks, such as CPA. We also demonstrated how the design can also prevent fault injection by
recomputing its internal state values or by compromising one out of four blocks at each clock to compute
the encryption of a known plaintext. We then exhibited simulation results and showed the comparison
of the unprotected against the protected cores. The results confirm that the overhead in terms of area,
power and performance are small, making this countermeasure attractive.

Moreover, the proposed AES architecture provides different options to tune the design into the user’s
need. Among 29 different configurations, examples include: to make the proposed AES a 4-stage pipeline
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Table 8.4 – Spartan3E-500 utilization summary report.

Unprotected LFSR Tri-state

Number of Occupied Slices 1,994 2,290 2,296

Number of Flip Flops 1,142 1,270 1,146

Number of LUTs 3,521 4,106 4,031

Timing (ns) 10.789 10.714 11.580

Frequency (MHz) 92.68 93.33 86.35

Throughput (Mbit/s) 289.3 291.3 269.6

(i.e., compute four different plaintexts per execution), or to use three blocks to generate noise against
power attacks, or to use one inactive block in the chain to recompute for encryption correctness.

8.5 Further Research: Ghost Data Attacks?

The footnote in Section 8.1 raises an interesting question: is it possible to exploit leakage from uselessly
active circuit blocks to infer information about P, C or K? In this model the attacker is not allowed to
access the side-channel information resulting from the actual computation of the active block (that we
can assume to be ideally protected or not leaking) but only the side-channel information leaked by the
three uselessly active blocks. To the best of our knowledge such attacks, that we call ghost data attacks,
were never considered in the literature.
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CONCLUSION

This thesis explores vulnerabilities of cryptographic algorithms implemented with countermeasures.
The thesis explored a signal derivative applicable against hiding side-channel countermeasures, key-
dependent distributions imposing cryptosystems where plaintexts and ciphertexts are inaccessible, and
security breaches introduced by CRT-RSA countermeasures. As an extension, the thesis also designed
an algorithm calculating hardware-dependent constant to mask power consumption, and an AES
implementation taking advantage of the unused blocks to thwart side-channel and fault attacks.

Our main empirical finding is that protected cryptographic algorithms remain susceptible to novel
offensive techniques and to attacks with additional requirements.

One of the main thesis findings are subkey dependent Hamming weight distributions present in block
ciphers. Coupled together with side-channel and fault information those distributions are used to
mount blind attacks, i.e., attacks that don’t require the knowledge of plaintexts and ciphertexts. These
blind attacks can be potentially applied against protocol-level countermeasures, such as key-derivation
ladders.

Another significant result is an application of instantaneous frequency in side-channel attacks. This
signal derivative supplements power trace parameters, namely, power amplitude and spectrum that are
usually applied in power analysis attacks. Instantaneous frequency is a local characteristic assigned to all
power trace samples which is tolerant to amplitude shifts and time shuffling countermeasures. Therefore,
instantaneous frequency can be used as a side-channel vector or as a grouping factor to combine points
with the same characteristic. This thesis shows that instantaneous frequency analysis presents specific
benefits when applied against protected hardware implementations.

The thesis also presents practical attacks against the modern 32-bit ARM Cortex M3 general purpose
microcontroller. Particularly, the work shows that implementing secure software running on vulnerable
hardware is not an easy task. The chosen device could be tampered by laser from both the front and the
back sides. Once the fault injection point was localized and the resulting error characterized an attack
against protected CRT-RSA could be performed within seconds. We performed single and two fault
attacks, which were successful against a conditional check and an infective countermeasure.

As an extension this thesis also present two collaborative defensive results. The first result is used to
securely transfer digital data over leaky and noisy communication channels. The defensive strategy is
to combine the transferred data with a certain camouflage value selected specifically for this channel.
One of the important results is an algorithm finding this value. This algorithm can be used in other
applications, for example, finding the least leaking S-box permutation.

The second result presents a hardware AES implementation unrolled in a set of four operations: AD-
DROUNDKEY, SUBBYTES, SHIFTROWS, and MIXCOLUMNS. While one block performs intermediate computa-
tions the other three blocks can be used to generate noise, and/or to recompute previous values. These
blocks can also perform meaningful computations to increase algorithm’s throughput or they can be
switched off to reduce power consumption.
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APPENDIX A

STATISTICAL DISTANCES FOR VARIOUS
S-BOXES

This appendix presents statistical distances computed using S-boxes of various cryptographic algorithms
according to the formula:

∆(ki, kj) = ∆
(
Prki [HW(xin),HW(S(ki ⊕ xin))],Prkj [HW(xin),HW(S(kj ⊕ xin))]

)

(a) LED S-box. (b) TWINE S-box.

Figure A.1 – Statistical distance for 4-to-4 LED and TWINE S-boxes.
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(a) First DES S-box.

(b) Second DES S-box.

Figure A.2 – Statistical distance for 6-to-4 DES S-boxes.



APPENDIX A Statistical Distances for Various S-boxes 157

(a) AES S-box.

(b) Safer++ S-box.

Figure A.3 – Statistical distance for 8-to-8 AES and Safer++ S-boxes.
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(a) First CAST-128 S-box.

(b) Second CAST-128 S-box.

Figure A.4 – Statistical distance for 8-to-32 CAST S-boxes.
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This thesis is primarily based on the peer-reviewed publications described in this section. Among the
developed work are published papers, e-prints, journal and blog articles, a book article, a patent, three
workshops and various program.

Multi Fault Laser Attacks on Protected CRT-RSA [TK10]

With Elena Trichina

Abstract. Since the first publication of a successful practical two-fault attack on protected CRT-RSA
surprisingly little attention was given by the research community to an ensuing new challenge. The
reason for it seems to be two-fold. One is that generic higher order fault attacks are very difficult to model
and thus finding robust countermeasures is also difficult. Another reason may be that the published
experiment was carried out on an outdated 8 bit microcontroller and thus was not perceived as a serious
threat to create a sense of urgency in addressing this new menace. In this paper we describe two-fault
attacks on protected CRT-RSA implementations running on an advanced 32 bit ARM Cortex M3 core. To
our knowledge, this is the first practical result of two fault laser attacks on a protected cryptographic
application. Considering that laser attacks are much more accurate in targeting a particular variable, the
significance of our result cannot be overlooked.

Note. This work is presented in detail in Chapter 6.

Buying AES Design Resistance with Speed and Energy [PDCK14, PdCKN16]

With Rodrigo Portella do Canto, and David Naccache

Abstract. Fault and power attacks are two common ways of extracting secrets from tamper-resistant
chips. Although several protections have been proposed to thwart these attacks, resistant designs usually
claim significant area or speed overheads. Furthermore, circuit-level countermeasures are usually not
reconfigurable at runtime. This paper exploits the AES’ algorithmic features to propose low-cost and low-
latency protections. We provide Verilog and FPGA implementation details. Using our design, real-life
applications can be configured during runtime to meet the user’s needs and the system’s constraints.

Note. This article is presented in detail in Chapter 8. This work has served as basis of a patent [PDCK14]
and a book chapter, volume 9100 of the series Lecture Notes in Computer Science [PdCKN16]. This work
was also presented during 10th AES Anniversary.

Defensive Leakage Camouflage [BQK+13]

With Eric Brier, Fortier Quentin, K. W. Magld, David Naccache, Guilherme Ozari de Almeida, Adrien Pommellet,
A. H. Ragab, and Jean Vuillemin

Abstract. This paper considers the transfer of digital data over leaky and noisy communication channels.
We develop defensive strategies exploiting the fact that noise prevents the attacker from accurately
measuring leakage. The defense strategy described in this paper pairs each useful data element k with a
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camouflage value v and simultaneously transmits both k and v over the channel. This releases an emission
e(k, v). We wish to select the camouflage values v(k) as a function of k in a way that makes the quantities
e(k, v(k)) as indistinguishable as possible from each other. We model the problem and show that optimal
camouflage values can be computed from side-channels under very weak physical assumptions. The
proposed technique is hence applicable to a wide range of readily available technologies. We propose
algorithms for computing optimal camouflage values when the number of samples per trace is moderate
(typically ≤ 6) and justify our models by a statistical analysis. We also provide experimental results
obtained using FPGAs.

Note. This article is presented in detail in Chapter 7.

Practical Instantaneous Frequency Analysis Experiments [KNdAdC14]

With David Naccache, Guilherme Ozari de Almeida, and Rodrigo Portella do Canto

Abstract. This paper investigated the use of instantaneous frequency (IF) instead of power amplitude
and power spectrum in side-channel analysis. By opposition to the constant frequency used in Fourier
Transform, instantaneous frequency reflects local phase differences and allows detecting frequency
variations. These variations reflect the processed binary data and are hence cryptanalytically useful. IF
exploits the fact that after higher power drops more time is required to restore power back to its nominal
value. Whilst our experiments reveal IF does not bring specific benefits over usual power attacks when
applied to unprotected designs, IF allows to obtain much better results in the presence of amplitude
modification countermeasures.

Note. This article is presented in detail in Chapter 4.

Blind Fault Attack against SPN Ciphers [KPN14]

With Sylvain Pelissier, and David Naccache

Abstract. This paper presents a novel fault attack against Substitution Permutation Networks. The
main advantage of the method is an absence of necessity to know the exact cipher’s input and output
values. The attack relies only on the number of faulty cipher texts originated from the same unknown
plaintext. The underlying model is a multiple bit-set or bit-reset faults injected several times at the same
intermediate round state. This method can be applied against any round thus any round key can be
extracted. The attack was shown to be efficient by simulation against several SPN block ciphers.

Note. This article is presented in detail in Chapter 5.





 

 

 

Résumé 
 

Dans cette thèse nous développons et 

améliorons des attaques de systèmes 

cryptographiques. Un nouvel algorithme de 

décomposition de signal appelé 

transformation de Hilbert-Huang a été adapté 

pour améliorer l’efficacité des attaques par 

canaux auxiliaires. Cette technique permet de 

contrecarrer certaines contre-mesures telles 

que la permutation d’opérations ou l’ajout de 

bruit à la consommation de courant. 

La seconde contribution de ce travail est 

l’application de certaines distributions 

statistiques de poids de Hamming à l’attaque 

d’algorithmes de chiffrement par bloc tels que 

AES, DES ou LED. Ces distributions sont 

distinctes pour chaque valeur de sous-clef 

permettent donc de les utiliser comme 

modèles intrinsèques. Les poids de Hamming 

peuvent être découverts par des analyses de 

canaux auxiliaires sans que les clairs ni les 

chiffrés ne soient accessibles.  

Cette thèse montre que certaines contre-

mesures peuvent parfois faciliter des 

attaques. Les contre-mesures contagieuses 

proposées pour RSA protègent contre les 

attaques par faute mais ce faisant et 

moyennant des calculs additionnels facilitent 

la découverte de la clef.  

Finalement, des contre-mesures à faible 

complexité calculatoire sont proposées. Elles 

sont basées sur le masquage antagoniste, 

c’est-à-dire, l’exécution d’une opération 

d’équilibrage sur des données sensibles pour 

masquer la consommation de courant. 

 

Mots Clés 

 

Attaques par canaux auxiliaires, attaques par 

fautes, cryptographie, systèmes embarqués, 

contremesures, transformation de Hilbert-

Huang, loi de probabilité pour poids de 

Hamming, statistiques. 

 

 

Abstract 
 

The goal of the thesis is to develop and 

improve methods for defeating protected 

cryptosystems. A new signal decomposition 

algorithm, called Hilbert Huang Transform, 

was adapted to increase the efficiency of 

side-channel attacks. This technique attempts 

to overcome hiding countermeasures, such 

as operation shuffling or the adding of noise 

to the power consumption. 

The second contribution of this work is the 

application of specific Hamming weight 

distributions of block cipher algorithms, 

including AES, DES, and LED. These 

distributions are distinct for each subkey 

value, thus they serve as intrinsic templates. 

Hamming weight data can be revealed by 

side-channel and fault attacks without 

plaintext and ciphertext. Therefore these 

distributions can be applied against 

implementations where plaintext and 

ciphertext are inaccessible. 

This thesis shows that some 

countermeasures serve for attacks. Certain 

infective RSA countermeasures should 

protect against single fault injection. 

However, additional computations facilitate 

key discovery.  

Finally, several lightweight countermeasures 

are proposed. The proposed 

countermeasures are based on the antagonist 

masking, which is an operation occurring 

when targeting data processing, to 

intelligently mask the overall power 

consumption. 
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Side-channel attacks, fault attacks, 

cryptography, embedded systems, 

countermeasures, Hilbert-Huang transform, 

Hamming weight probability distribution, 

statistics. 
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