
THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres
PSL Research University

Préparée à l’École normale supérieure

Integrity, Authentication and Confidentiality
in Public-Key Cryptography

École doctorale n◦386
Sciences Mathématiques de Paris Centre

Spécialité Informatique

Soutenue par Houda FERRADI
le 22 septembre 2016

Dirigée par
David NACCACHE
École normale supérieure

ÉCOLE NORMALE

S U P É R I E U R E

RESEARCH UNIVERSITY PARIS

COMPOSITION DU JURY

M. FOUQUE Pierre-Alain
Université Rennes 1
Rapporteur

M. YUNG Moti
Columbia University et Snapchat
Rapporteur

M. FERREIRA ABDALLA Michel
CNRS, École normale supérieure
Membre du jury

M. CORON Jean-Sébastien
Université du Luxembourg
Membre du jury

M. GOUBIN Louis
Université de Versailles Saint-Quentin-en-
Yvelines
Membre du jury

M. PAILLIER Pascal
CryptoExperts
Membre du jury

M. TIBOUCHI Mehdi
NTT Secure Platform Laboratories
Invité

Intégrité, authentification et confidentialité en
cryptographie à clé publique

Thèse de Doctorat

en vue de l’obtention du grade de

Docteur de l’École normale supérieure
(spécialité informatique)

présentée et soutenue publiquement le 22 septembre 2016 par

HOUDA FERRADI

devant le jury composé de :

Directeur de thèse : David Naccache (École normale supérieure)
Rapporteurs : Pierre-Alain Fouque (Université Rennes 1)

Moti Yung (Columbia University et Snapchat)
Examinateurs : Michel Abdalla (CNRS, École normale supérieure)

Jean-Sébastien Coron (Université du Luxembourg)
Louis Goubin (Université de Versailles Saint-Quentin-en-Yvelines)
Pascal Paillier (CryptoExperts)

Invité : Mehdi Tibouchi (NTT Secure Platform Laboratories)

École doctorale 386: Sciences mathématiques de Paris Centre
Unité de recherche: UMR 8548 - Département d’Informatique de l’École normale supérieure

Laboratoire de recherche affilié au CNRS et a INRIA

Integrity, Authentication and Confidentiality in
Public-Key Cryptography

Doctorate Dissertation

submitted in fulfillment of the requirements for the degree of

Doctor of the École normale supérieure
(Specialty: Computer Science)

publicly defended and presented on September 22nd, 2016 by

HOUDA FERRADI

to the jury consisting of :

Supervisor : David Naccache (École normale supérieure)
Referees : Pierre-Alain Fouque (Université Rennes 1)

Moti Yung (Columbia University and Snapchat)
Examiners : Michel Abdalla (CNRS, École normale supérieure)

Jean-Sébastien Coron (Université du Luxembourg)
Louis Goubin (Université de Versailles Saint-Quentin-en-Yvelines)
Pascal Paillier (CryptoExperts)

Guest member : Mehdi Tibouchi (NTT Secure Platform Laboratories)

Doctoral School 386: Mathematical Sciences – Paris Centre
Research unit: UMR 8548 - The École normale supérieure’s Computer Science Department

A research laboratory affiliated to CNRS and INRIA

ACKNOWLEDGMENTS

I very warmly thank David Naccache for his advisory role, continuous good humor, friendliness and for
his scientific guidance throughout the years.

I am very grateful to David Pointcheval for admitting me in his research group and for funding my
thesis through the French ANR Project ANR-12-INSE-0014 SIMPATIC.

I express my affection to the numerous members of the ENS’ Cryptography and Security teams. I will
always cherish the souvenirs of thought-provoking talks in the laboratory, of your friendship and of
your witty humor. The feverish intellectual thrill of discovering together the cutting edge of scientific
research at Eurocrypt’15, Eurocrypt’16, Crypto’16, CHES’16 and ACNS’16 was a unique experience that
words can hardly express.

I am indebted to the team’s permanent members for their guidance, life-wisdom and for entrusting me
with the review of several papers. The ensuing exchanges with program committee members were an
unforgettable scientific experience.

I am grateful to EIT ICT Labs for funding my participation at the 2014 Security & Privacy in Digital
Life summer school (Trento) and to ENS for sponsoring my participation at the IACR 2016 School on
Design for a Secure IoT, (Tenerife) and at the IACR 2015 School on Design and Security of Cryptographic
Algorithms and Devices (Sardinia).

A tribute is due to Rémi Géraud for his friendship and efforts invested in our common papers and to
Fabrice Ben Hamouda for his gentleness and dedication.

I thank my co-authors Michel Abdalla, Ehsan Aerabi, A. Elhadi Amirouche, Fabrice Ben Hamouda,
Thomas Bourgeat, Julien Bringer, Robin Champenois, Jean-Michel Cioranesco, Jérémie Clément, Simon
Cogliani, Rémi Géraud, Marc Heinrich, Julien Jainski, Diana Maimuţ, Kostas (Konstantinos) Markanton-
akis, Mehari Msgna, Paul Melotti, David Naccache, Raja Naeem Akram, David Pointcheval, Assia Tria,
Antoine Voizard, Jean Vuillemin, Amaury de Wargny and Hang Zhou.

I am very grateful to the academic institutions who entrusted me with lecturing duties during my Ph.D.:
Université Panthéon-Assas Paris II, Université Paris Diderot-Paris VII, Université Paris-XIII-Nord and,
in particular, the École normale supérieure for letting me supervise full-fledged research projects at
the Informatique scientifique par la pratique master course. It my hope that my efforts motivated my
students and made my courses an intellectual adventure as much as a curricular obligation.

I express my recognition to Michel Abdalla, Jean-Sébastien Coron, Pierre-Alain Fouque, Louis Goubin,
Pascal Paillier, Mehdi Tibouchi and Moti Yung for agreeing to serve in my thesis committee. I particularly
thank my thesis referees Pierre-Alain Fouque and Moti Yung for their availability and their detailed
comments on my work. I am very honored to have such a prestigious committee.

The research results contained in this thesis were supported by three high-tech firms. Seeing my scientific
results applied in products used by millions of customers is a thrilling feeling, for which I warmly thank
Ingenico, Huawei and Tanker. I thank Google for inviting me to the Münich Ph.D. Security Summit. The
intense intellectual exchanges with Google’s technical teams were an unforgettable experience.

Paris, Septembre 13th, 2016.
Houda Ferradi

1

CONTENTS

1 Introduction 7
1.1 Confidentiality Throughout History . 7
1.2 Integrity, Authentication & Fairness . 8

2 Mathematical and Cryptographic Preliminaries 11
2.1 Computational Hardness Assumptions . 11
2.2 Computational Security . 15
2.3 One-Way Functions . 16
2.4 Provable Security . 17

2.4.1 Theoretical Framework . 17
2.4.2 The Random Oracle Paradigm . 19

2.5 Digital Signatures . 19
2.5.1 General Framework . 19
2.5.2 Some Examples . 20
2.5.3 Security Notions for Digital Signatures . 22

2.6 Public-Key Cryptography . 24
2.6.1 General Framework . 25
2.6.2 Security Notions for Public-Key Cryptography . 25

2.7 Proof Systems . 27
2.7.1 Interactive Proofs . 27
2.7.2 Zero-Knowledge Proofs . 27
2.7.3 Applications . 28
2.7.4 Zero-Knowledge Proofs of Knowledge . 28
2.7.5 Non-Interactive Zero-Knowledge Proofs . 28

3 Results & Contributions 29
3.1 Thesis Results . 29

3.1.1 Fairness & Attestation in Cryptographic Protocols 29
3.1.2 Zero-Knowledge Proof Systems & Authentication Protocols 30
3.1.3 Exploring Interactions Between Natural Language, Vision & Encryption 32
3.1.4 Generalization & Applications of Hierarchical Identity-Based Encryption (HIBE) . 32

3.2 Additional Results . 33
3.2.1 Trusted Computing for Embedded Devices: Defenses & Attacks 33
3.2.2 Creating Covert Channels & Preventing Their Exploitation 34
3.2.3 Efficient Hardware & Software Implementations . 35
3.2.4 Finding Security Flaws in Server Software . 36

3.3 Personal Bibliography . 37
3.3.1 Journal Papers . 37
3.3.2 Conference Papers . 37
3.3.3 Manuscripts & Pre-Prints . 38

4 Designing Integrity Primitives 41
4.1 Non-Interactive Attestations for Arbitrary RSA Prime Generation Algorithms 43

4.1.1 Introduction . 43

3

4.1.2 Outline of the Approach . 44
4.1.3 Model and Analysis . 45
4.1.4 Multi-Modulus Attestation Scheme (u ≥ 2, ` = 2) 48
4.1.5 Security and Parameter Choice . 49
4.1.6 Compressing the Attestation . 51
4.1.7 Parameter Settings . 51
4.1.8 Conclusion and Further Research . 52
4.1.9 Implementing the Second Hash FunctionH′ . 53

4.2 Legally Fair Contract Signing Without Keystones . 55
4.2.1 Introduction . 55
4.2.2 Preliminaries . 56
4.2.3 Legally Fair Co-Signatures . 60

5 Designing Authentication Protocols 69
5.1 Slow Motion Zero Knowledge – Identifying With Colliding Commitments 71

5.1.1 Introduction . 71
5.1.2 Building Blocks . 71
5.1.3 Commitment Pre-Processing . 72
5.1.4 Time-Lock Puzzles . 72
5.1.5 Slow Motion Zero-Knowledge Protocols . 73
5.1.6 An Example Slow Motion Zero Knowledge . 74
5.1.7 Security Proof . 77
5.1.8 Conclusion and Further Research . 81

5.2 Thrifty Zero-Knowledge: When Linear Programming Meets Cryptography 82
5.2.1 Introduction . 82
5.2.2 Preliminaries . 82
5.2.3 Optimizing E(P ↔ V) . 84
5.2.4 Thrifty Zero-Knowledge Protocols . 85
5.2.5 Thrifty SD, PKP and PPP . 86

5.3 Public-Key Based Lightweight Swarm Authentication . 89
5.3.1 Preliminaries . 89
5.3.2 Distributed Fiat-Shamir Authentication . 91
5.3.3 Security Proofs . 92
5.3.4 Variants and Implementation Trade-offs . 94

5.4 When Organized Crime Applies Academic Results . 97
5.4.1 Introduction . 97
5.4.2 Physical Analysis . 98
5.4.3 Protocol Analysis . 102
5.4.4 Side-Channel Power Analysis . 105
5.4.5 EMV “Select” Command . 105
5.4.6 EMV “VerifyPIN” Command . 107
5.4.7 Destructive Analysis . 107
5.4.8 Aftermath & Lessons Learned . 110
5.4.9 Other Applications of Miniature Spy Chips . 111

6 Designing Confidentiality Building-Blocks 115
6.1 Human Public-Key Encryption . 117

6.1.1 Introduction . 117
6.1.2 Preliminaries and Definitions . 117
6.1.3 Human Public-Key Encryption . 118
6.1.4 Short Password-Based Encryption . 119
6.1.5 DCP and ECP Candidate Instances . 120
6.1.6 Further Applications . 124

6.2 Honey Encryption for Language: Robbing Shannon to Pay Turing? 125
6.2.1 Introduction . 125
6.2.2 Preliminaries . 126

6.2.3 Natural Language Encoding . 128
6.2.4 Limitations of Honey Encryption . 131
6.2.5 Corpus Quotation DTE . 133
6.2.6 Further Research . 134
6.2.7 Grammatical Tags for English . 137

6.3 Compact CCA2-Secure Hierarchical ID-Based Broadcast Encryption with Public Cipher-
text Test . 138
6.3.1 Introduction . 138
6.3.2 Preliminaries . 140
6.3.3 Syntax . 141
6.3.4 IND-CIVS-CPA Secure HIBBE with Constant Size Ciphertext 143
6.3.5 Compact IND-CIVS-CCA2 HIBBE with Short Ciphertexts 150
6.3.6 Conclusion . 156

6.4 Improved Delayed Decryption for Software Patching . 157
6.4.1 Introduction . 157
6.4.2 Single Editor, Constant Memory, Linear Time . 158
6.4.3 Single Editor, Polylogarithmic Memory, Polylogarithmic Time 158
6.4.4 Multiple Editors, Linear Memory, Constant Time 159
6.4.5 Multiple Editors, Polylogarithmic Memory, Polylogarithmic Time 159
6.4.6 How Long Should We Wait? . 160

7 Conclusion and Further Developments 163
7.1 Thesis Results & Contributions . 163
7.2 Personal Perspectives . 166

A Computing Thrifty Parameters 169

6 0.0

CHAPTER 1

INTRODUCTION

In 2016, the New Encyclopedia Britannica defines cryptology as: "The practice of the enciphering and
deciphering of messages in secret code in order to render them unintelligible to all but the intended
receiver". Cryptology encompasses the study (logia, λογ́ια) of both cryptography and cryptanalysis. The
term cryptography comes from the Greek words: kryptós (κρπτός), which means "hidden" or "secret" and
graphein (γράφειν) which means "writing".

Historically, cryptography was focused on the transforming of private correspondence into unreadable
sequences of figures to protect the content of messages transferred from one geographic location to
another.

Cryptography exists almost since the invention of writing. Nearly all ancient civilizations created some
type of cryptic writing or cryptography. Until recently cryptography was considered as an art or as
a game meant to construct, analyze and break codes. For centuries the discipline remained reserved
to diplomats and military commanders. Modern cryptographic history began in the early 1900s with
the advent of electrical communication technologies and the emergence of the Internet during the last
twenty-five years.

One the main goals of modern cryptography is the designing of new cryptographic primitives and
protocols. To prove the security of such algorithms, cryptographers proceed by steps: they first formally
define security notions (this is done by defining a theoretical model capturing how an adversary could
interact with the target system and the way in which we define "breaking" the system). We then design
new schemes and prove their security within the framework of the previously designed model.

As we write these lines, the applications of cryptography abound. Cryptography is used for data
encryption, message integrity checking, identity authentication, digital signatures, pseudo-random
number generation, zero knowledge proofs, commitment schemes, e-voting, secret sharing, and secure
multiparty computation (secure function evaluation), to name just a few.

The field is very active and thousands of scientific papers in cryptology are published every year.

1.1 Confidentiality Throughout History

To understand the notion of confidentiality we must travel back in time to 1900 B.C. when Egyptian
scribes used hieroglyphs in an unconventional way, presumably to hide the the significance of text from
laymen who did not know the meaning of the modified symbols 1. The Greeks’ celebrated scytale 2 was
an ingenious yet simple instrument allowing to wrap a leather band around a stick, and then write the
message on the band. When the band was unwrapped, the writing would appear meaningless. The

1. The practice is ancient although the best known examples are Ptolemaic hieroglyphs (second century B.C.).
2. σκυτάληmeaning "stick".

7

8 Introduction 1.2
receiver of the message would have a scytale of an identical diameter and use it to decipher the message.
As for the Romans, the most famous method providing message confidentiality was known as the Caesar
Shift Cipher as attested by Suetonius in De Vita Caesarum, LVI :

Exstant et ad Ciceronem, item ad familiares domesticis de rebus, in quibus, si qua occultius perferenda
erant, per notas scripsit, id est sic structo litterarum ordine, ut nullum verbum effici posset; quae si qui
investigare et persequi velit, quartam elementorum litteram, id est D pro A et perinde reliquas commutet.

The Caesar Shift Cipher has long been used as a Monoalphabetic Cipher. It utilized the famous idea of
shifting letters by an agreed upon number of positions (three positions was a common historical choice,
this parameter is also called the key), and thus writing the message using the letter-shift. The receiver
would then shift the letters backwards by the same number of positions and decipher the message. In
other words, this method achieves a transformation by aligning two alphabets where the cipher alphabet
is the plain alphabet rotated to the left (or to the right) by a given number of positions. For example to
encrypt with three positions, ‘A’ is substituted by ‘D’,‘B’ is substituted by ‘E’, etc... It is interesting to see
why this encryption method is simple to break. All the attacker has to do is to go down the alphabet,
juxtapositioning the start of the alphabet to each succeeding letter. At each iteration, the message is
decrypted to see if it makes sense. When the result appears as a readable message, the code has been
broken. Another method for breaking monoalphabetic ciphers consists in using frequency analysis
introduced by the Arabs 3 circa 1000 C.E. This method is based on the principle that certain letters (for
instance in English the letter ‘E’) are used more often than others. Armed with this knowledge, a person
could go over a message and look for the repeated use, or the frequency of use, of a particular letter and
try to identify frequently used letters.

The traditional doctrine of encryption has long remained based on keeping the encryption algorithm
secret from the adversary. This postulate was called into question by Auguste Kerckhoffs in the 19th

century and became obsolete [Ker83]. Kerckhoffs’ fundamental idea that has revolutionized our insight
of cryptography, was that a cryptosystem must remain secure even if an adversary knows everything
about the system, except the key. Therefore security should only be based on keeping the key secret.

The author thinks that Kerckhoffs’ concept also contributed to transform cryptography into a mathe-
matical discipline. Mathematicians try to determine unknowns in knows systems. Hence if both the
algorithm (system) and the key (unknown) are beyond the analysts reach there is nothing to work on
mathematically.

In information theory, the security notion of perfect privacy refers to the situation where it is impossible
for an adversary to extract any information about the plaintext from the ciphertext. However the big
bulk of modern cryptography theory defines the notion of privacy in the sense of infeasibility rather than
impossibility as adversaries are computationally bounded in practice.

In this computational-complexity approach, as long as the leaked information cannot be efficiently
exploited (in polynomial time) then it is tolerated for a ciphertext to leak information about the plaintext
[Abdalla2001]. The most famous approach for defining privacy is that of indistinguishability of ciphers,
introduced by Goldwasser and Micali in [GM84].

1.2 Integrity, Authentication & Fairness

These three security functions are provided by both symmetric and asymmetric cryptography. Just like
their real world counterparts, digital signatures (and message authentication codes – MACs) enable
the receiver of digital information to verify the authenticity of its origin (authentication) and check that
digital information is intact (integrity). In addition to providing authentication and integrity, digital
signatures also provide a fundamental feature to cryptography called non-repudiation. Non-repudiation
prevents the sender from denying that he did send the information.

Historically, data integrity and authentication were both provided by the physical support of the message
(paper watermarks and wax seals). However, in the modern era reliance on physics became obviously

3. cf. Al-Kindi’s "Manuscript on Deciphering Cryptographic Messages".

1.2 Integrity, Authentication & Fairness 9
unsuited.

Thus digital signatures became a fundamental building block of most cryptographic applications. As we
write these lines, digital signatures are essential in applications and commercial environments such as
software distribution, financial transactions, contract management software and digital currencies.

The distinction between integrity and authentication is frequently blurred because integrity can also
provide authentication. In essence, an integrity primitive would take as a parameter a message m and
prove that the sender actually mixed his secret with m to attest m’s origin. An authentication primitive
does not involve any message (no "payload") and is only meant to check that the authenticated party
actually knows a given secret. It follows that to achieve authentication the secret owner can just be
challenged to attest the integrity of a random challenge m, chosen by the verifier. In practice, this is
indeed the way in which numerous commercial products implement authentication using integrity
primitives.

In many real-life applications, various problems persist even when confidentiality, integrity and authen-
tication are enforced.

For instance, in a setting where mutually distrustful parties wish to compute some joint function of
their private inputs (secure multiparty computation), fairness must be enforced. In particular, digital
contract signing belongs to the wider concept of fair exchange, i.e., enabling two (or multiple) potentially
distrustful parties to exchange digital signatures over a public channel through a process that ascertains
that (1) each party obtains the other’s signature, or (2) neither party does.

In a fair contract signing protocol Alice and Bob swap their commitments to a contract in a fair way. All
known fair contract signing protocols published so far rely on trusted third parties [BGMR90; Rab83],
arbitrators [ASW97; ASW02] or non-asymptotic computational power considerations [Blu83; EGL85;
BGMR90].

Any multi-party computation can be securely computed [Yao86; GMW87b; Gol04; BGW88; CCD88] as
long as there is a honest majority [Lin08]. In the case where there is no such majority, and in particular in
the two-party case, it is (in general 4) impossible to achieve both fairness and guaranteed output delivery
[Lin08; Cle86].

4. See [GHKL08] for a very specific case where completely fair two-party computation can be achieved.

10 Introduction 1.2

CHAPTER 2

MATHEMATICAL AND CRYPTOGRAPHIC
PRELIMINARIES

We recall in this section some prerequisites necessary to understand the next chapters. We will start by
introducing the notion of Computational Hardness Assumption which is a fundamental concept in modern
cryptography, then we introduce several primitives used throughout this thesis.

2.1 Computational Hardness Assumptions

In public-key cryptography it is usually impossible to prove that a cryptographic primitive is secure in an
absolute sense against an adversary with unlimited computational power. That led Diffie and Hellman
to justify the concept of public key cryptography in the 1970s [DH76]. Henceforth cryptography has
started to be oriented towards a weaker yet more realistic security notion called computational security.

The notion of computational security is formalized using the computational approach borrowed from
complexity theory, assuming that there exist hard problems (hardness assumptions) which are impossible
to solve when an adversary can only run in reasonable amount of time and succeed with non-negligible
probability. The goal of this section is to recall the definitions of the main hardness assumptions
encountered in cryptography, as well as the notions of "reasonable" and "non-negligible".

Definition 2.1 (polynomial Time Algorithm) An algorithmA solving a given problemQ is called polynomial
(or runs in polynomial time) if there exists a polynomial p(.), such that the time taken by A to solve every instance
of Q is upper bounded by p(size(input)), the polynomial p(.) evaluated at the size of the input.

Definition 2.2 (Probabilistic Polynomial Time (PPT)) An algorithm A is called probabilistic polynomial if
A uses random sources (for example, tosses coins) to decide its next actions during execution.

Note that a random source is an idealized device that outputs a sequence of bits that are uniformly and independently
distributed.

Definition 2.3 (Negligible Function) A function f is called a negligible function if for every positive poly-
nomial p(.) there exists an integer N , such that, for all n ≥ N , f(n) ≤ 1

p(n) . In others words, if a function is
asymptotically smaller than the inverse of any fixed polynomial then it is considered as a negligible function.

There are two main approaches in computational security: the concrete approach and the asymptotic
approach. The first is a practice-oriented provable security paradigm developed by Bellare and Rogaway
[BRW03], this methodology considers t-time attackers with ε-advantages. Asymptotic security considers
PPT algorithms and "negligible" advantages. To quantify how close we come to the ideal, we explicitly
bound the maximum success probability of adversary A running in certain time while attacking a
primitive S:

11

12 Mathematical and Cryptographic Preliminaries 2.1
Definition 2.4 A scheme is (t, ε)-secure if every adversary running for time at most t succeeds in breaking the
scheme with probability at most ε.

We can also bound t by the number of atomic computations or by considering performance metrics
such as CPU cycles, the number of gates in a circuit, the amount of communication etc. Computational
complexity theory aims at determining the practical limits on what computers can and cannot do. The
final goal of this endeavor is the analysis of algorithms, i.e. finding-out how fast computers can perform,
knowing the amount of resources at hand (such as execution time and storage).

Furthermore, one last element considered in computational security is the fact that the security of
cryptographic constructions is based on the hardness of specific problems. A given problem is considered
hard if the success probability of any PPT algorithm solving it, is bounded by a negligible function.
However, the hardness of problems is evaluated asymptotically since we cannot decide the size of
parameters to choose. In practice, the choice is given by classifying hard problems according to the
best algorithms allowing to solve them. This, in turn, translates into the computational power that an
adversary must have in his possession to break the cryptographic primitive.

In this section, we recall the definitions of different cryptosystems based on the computational difficulty
of inverting various trapdoor functions. The main conjecture related to these functions is the existence
of trapdoor one-way functions: i.e. that an attacker cannot invert these functions in the computational
complexity-theoretical sense, using only public data. We will discuss in section 2.3 the theoretical veracity
of this assumption.

Definition 2.5 A trapdoor one-way function is a function f : X → f(X) such that for all x ∈ X , it is easy
to compute y = f(x) (forward computation) whereas it is hard to compute its inverse i.e. x = f−1(y) (reverse
computation or backward computation) without knowing a secret trapdoor information s.

Consequently, choosing one assumption instead of another is a risky task for a cryptographer wishing
to design a new cryptographic scheme since we must hope that a given underlying assumption has
been properly and sufficiently evaluated by the scientific community. Such an evaluation must quantify
the amount of time one could take to break the intended system’s secrecy by making the backwards
computations (while the forward computation is expected to remain easy). Note that the naive reverse
computation algorithm takes O(2n) steps, such that n is the number of bits.

Definition 2.6 A cryptosystem is secure if the fastest known algorithmA reversing the computation of its trapdoor
function runs in exponential time. A cryptosystem is moderately secure if A runs in sub-exponential time, and a
cryptosystem is considered insecure if A runs in polynomial time with respect to the size of the input.

Thus, when we need to analyze a new cryptographic protocol relying upon a new assumption we
need to compare that new assumption to the main hardness assumptions presented below by using the
polynomial reduction method presented in section 2.4.1 and formalizing them, considering running time
with respect to the size of the input of functions or their "key size".

The Discrete Logarithm Problem - DLP

Definition 2.7 (The Discrete Logarithm Problem - DLP) Let g be a generator of group G (of order q). Given
g, p, h ∈R G, find a such that h = ga.

Since the hardness of the DLP is the foundation of several cryptographic systems (e.g. Diffie–Hellman
key agreement [DH76], ElGamal encryption and signature [El 84] or the Schnorr signature[Sch90]), it is
important to take into account the best records achieved so far in solving the DLP.

The DLP’s difficulty depends on the choice of the group G. The DLP takes sub-exponential time in Fp
and is even harder (exponential) in elliptic curves E(Fp).

The last record in solving the discrete logarithm problem (16 June 2016), using the number field sieve, is
the computation of a discrete logarithm modulo a 232-digit prime which roughly corresponds to the
factoring of a 768-bits safe prime.

Definition 2.8 (The Computational Diffie-Hellman Problem - CDHP) Given a finite cyclic group G of or-
der q, a generator g of G, and two elements ga and gb, find the element gab.

2.1 Computational Hardness Assumptions 13
This problem introduced by Diffie and Hellman [DH76] is the cornerstone the celebrated Diffie-Hellman
key exchange protocol. CDHP is the security foundation of many cryptosystems (for example ElGamal
encryption).

CDH is trivially reduced to DLP: Given ga and gb we need to find gab, first we proceed by computing
Dlog(g, gb) using an oracle, then we can compute (ga)b = gab. Thus it is straightforward to show that
CDH is no harder than DLP.

Definition 2.9 (The Decisional Diffie-Hellman Problem - DDHP) Given a finite cyclic group G, a genera-
tor g of G, three elements ga, gb and gc, decide whether the elements gc and gab are equal.

The DDHP is a very important computational hardness assumption used in the ElGamal and Cramer–Shoup
cryptosystems [CS98], to name just two. It is believed that CDH is a weaker assumption than DDHP
since there are groups in which solving DDHP is easier than solving CDHP problems.

DLP versions for ECC The elliptic curve variant of definition 2.7 is given below.

Definition 2.10 (The Elliptic Curve Discrete Logarithm Problem - ECDLP) Let E be an elliptic curve over
the finite field Fp and let P and Q be points in E(Fp). The elliptic curve discrete logarithm problem consists in
finding n ∈ N such that Q = [n]P .

Pairing-Based Cryptography. Let g be a generator for a groupG,of prime order q, and let e be a bilinear
map on G, i.e. a function linear in each of its two arguments combining elements of two vector spaces to
yield an element of a third vector space.

Definition 2.11 Let G1, G2 be two additive cyclic groups of prime order p, and GT a multiplicative cyclic group
of order p. A pairing is an efficiently computable map e : G1 ×G2 → GT satisfying

— bilinearity: ∀a, b ∈ F ∗p and ∀P ∈ G1, Q ∈ G2 we have e ([a]P, [b]Q) = e (P,Q)
ab

— non-degeneracy: e (P,Q) 6= 1

Definition 2.12 (Type 1, 2, 3 Pairings [GPS08]) We further categorize e as:
— Type 1, when G1 = G2;
— Type 2, when G1 6= G2 but there exists an efficiently computable homomorphism φ : G2 → G1, while there

does not exist efficient such maps exists in the reverse direction;
— Type 3, when G1 6= G2 and no efficiently computable homomorphism between G1 and G2 exists, in either

direction.

Example 2.1 Type 3 pairings can be constructed, for instance, on Barreto-Naehrig curves where G1 is the group
of Fq-rational points (of order p) and G2 is the subgroup of trace zero points in E(Fq12)[p].

Definition 2.13 (The Bilinear Diffie-Hellman Problem - BDHP) Let G,GT be two cyclic groups of a large
prime order p. Let e ∈ GT be a bilinear pairing. Given g, gx, gy, gz ∈ G4, compute e(g, g)xyz ∈ GT .

Definition 2.14 (The Bilinear Decisional Diffie-Hellman Problem - BDDHP) LetG,GT be two cyclic groups
of a large prime order p. Let e ∈ GT be a bilinear pairing. Given g, gx, gy, gz ∈ G and e(g, g)w ∈ GT , decide if
w = xyz mod p.

Obviously, BDHP ⇒ BDDHP: Indeed if we can compute the bilinear pairing e(g, g)xyz , then we solve
BDDHP by comparing the result we got to the provided value e(g, g)w.

Factorization-Related Problems - FACT and ERP In this section, we will recall the problem of factor-
ing composite integers and several related problems. We will consider their security in the sense of
complexity-theoretic reductions described in section 2.4.1. To determine which key sizes we have to
choose for cryptosystems whose security relates to the hardness of the factoring problem, we need to
investigate various algorithms solving factorization-related problems, for that, we have to study their
asymptotic behavior, as well as their practical running times, based on experiments reported in the state
of the art.

14 Mathematical and Cryptographic Preliminaries 2.2
Definition 2.15 (Factoring Problem - FACT) Given a positive integer N , find its prime factors, i.e., find the
pairwise distinct primes pi and positive integer powers ei such that N = pe11 ...p

en
n .

It is generally believed that the most difficult setting for FACT is when N = pq is the product of only two
primes p and q of the same large size since the difficulty of FACT is nonuniform (i.e factoring integers N
whose second largest prime factor is bounded by a polynomial in logN can be performed in polynomial
time). It is straightforward to compute N = pq in O(k2) time and (presumably) hard to invert this
operation when p and q are pairwise distinct primes chosen randomly.

Another important notion to consider in the generation of p and q is the notion of smoothness.

Definition 2.16 An integer is B-smooth if all its prime factors are smaller than B.

The security requirement for FACT is that p− 1 and q − 1 should not be smooth.

Definition 2.17 (The e-th Root Problem - ERP) Given a group G of unknown order, a positive integer e < |G|
and an element a ∈ G, find an element b ∈ G such that be = a.

Definition 2.18 (The RSA Problem - RSA) The RSA problem is an ERP in ZN . Given (N, e, c) where y ∈
ZN and N = pq, find x such that c = xe mod N

RSA relies on the difficulty for solving equations of the form xe = c mod N , where e, c, and N are known
and x is an arbitrary number. In other words, the security of RSA relies on the assumption that it is
difficult to compute e-th roots modulo N , i.e. on ERP’S hardness in ZN .

The RSA Problem is clearly no harder than FACT since an adversary who can factor N can also compute
the private key (p, q, d) from the public key (N, e). However, so far there are no proofs that the converse
is true meaning that the RSA problem is only apparently as difficult as FACT: Whether an algorithm for
solving the RSA Problem can be efficiently converted into an integer factoring algorithm is an important
open problem. However, Boneh and Venkatesan [BDH99] have given evidence that such a reduction is
unlikely to exist when the public exponent is very small, such as e = 3 or 17.

It is important to know which parameter sizes to choose when the RSA problem serves as the foundation
of a cryptosystem. The current record for factoring general integers was annouced on December 12
in 2009, by a team including researchers from CWI, EPFL, INRIA and NTT. The consortium factored
the RSA-768 (232-digit number) using the number field sieve (NFS) [Cas03]. This effort required the
equivalent of almost 2000 computing years on a single core 2.2 GHz AMD Opteron. Now the NIST’s
recommendation is that future systems should use RSA keys with a minimum size of 3072 bits.

In 1994, Peter Shor [Sho97] introduced a quantum algorithm solving FACT in polynomial time. A
discussion about the practical significance of the various quantum computing experiments conducted so
far exceeds the scope of this introduction.

Definition 2.19 (Residuosity Problems - QRP) Let a,N,m ∈ N with gcd(a,N) = 1. a is called an m-th
residue mod N if there exists an integer x such that a ≡ xm mod N .

The residuosity problem may refer to quadratic or to higher residues.

Definition 2.20 Let N be the product of two primes p and q. An element a ∈ ZN is a quadratic residue modulo
n (or a square) if there exists w ∈ ZN such that w2 ≡ a mod N . If there exist no such w ∈ ZN , a is called a
quadratic non-residue.

Definition 2.21 (The Quadratic Residuosity Problem - QRP) Given a,N ∈ N, 0 ≤ a < N , decide if a is a
quadratic residue.

Definition 2.22 (The Higher Residuosity Problem - HRP) Given a,N,m ∈ N, 0 ≤ a < N , gcd(a,N) = 1
decide if a is an m-th residue.

Note. QRP’s intractability is the basis of the security of Goldwasser–Micali’s cryptosystem [GM82], the
first provably secure probabilistic public key encryption scheme 1. Paillier’s cryptosystem [Pai99] is the
best known example of a scheme whose underlying hardness assumption is the HRP.

1. In the case of a probabilistic encryption scheme a message is encrypted into one of many possible ciphertexts.

2.2 Computational Security 15

2.2 Computational Security

Shannon introduced in [Sha48; Sha49] notions that form the mathematical foundations of modern
cryptography. Shannon defined the concepts of perfect secrecy and defined the entropy of natural languages.
Moreover, he provided the first security proofs using probability theory and established exact connections
between provable security, key size, plaintext and ciphertext spaces.

The security of a cryptosystem relies on certain assumptions. Cryptographers distinguish between:
— Information-theoretically secure 2 cryptosystems that no amount of computation can break.
— Computationally secure cryptosystems, based on the computational intractability of breaking

them.

In other words, no attack exists against unconditionally secure cryptosystems whereas attacks against
computationally secure cryptosystems exist in theory but are intractable in practice.

Definition 2.23 The entropy (or, equiv., uncertainty) H(X) of a discrete random variable X with possible values
xi is defined as the expectation of the negative logarithm of the corresponding probability P 3:

H(X) = −
∑
i

P (xi) logP (xi) .

Definition 2.24 A secret key cipher is perfect if and only if H(M) = H(M |C), i.e., when the ciphertext C reveals
no information about the message M .

Corollary 2.1 A perfect cipher is unconditionally (or information-theoretically) secure against ciphertext only
attacks 4 (COAs).

Complexity Theory

Complexity theory is the core of theoretical computer science. The main goal of complexity theory is
to quantify the difficulty of solving specific decision problems and classify computational problems
according to their inherent hardness. A set of problems of related complexity is referred to as a complexity
class, which means a set of problems of related resource-based complexity i.e. problems solved by an
abstract machine M using O(f(n)) of some resource ρ, where n is the input size of the input and ρ is
typically time or memory (also called "space").

Whatever the algorithm used, a problem is considered as inherently difficult if its solution requires
significant resources (e.g. number of atomic instructions, number of gates in a circuit, number of memory
registers etc) these growth functions allow to determine practical bounds on what machines can and
cannot do in practice.

Turing Machines The Turing Machine (TM) is the most commonly accepted model for the study of
decision problems in complexity theory. It is a theoretical device introduced by Alan Turing in 1936
[Tur36] and the standard computational model on which the decision problems’ theory is based. A TM
consists of a finite program attached to a reading or writing head moving on an infinite tape. The tape
is divided into squares, each capable of storing one symbol from a finite alphabet Alph which includes
a blank symbol blank. Each machine has a specified input alphabet Alph, which is a subset of Alph,
without blank. At a given point during a computation the machine is in a state q which is in a specified
finite set Q of possible states. At first, a finite input string over Alph is written on adjacent squares of
the tape, all other squares are blank (contain blank), the head scans the left-most symbol of the input
string, and the machine is in the initial state q0. At each step, the machine is in a state q and the head
is scanning a tape square containing a tape symbol s. The action performed depends on the pair (q, s)
and is specified by the machine’s transition function τ . The action consists of printing a symbol on the
scanned square, moving the head left or right one square, and assuming a new state.

2. Also called unconditionally secure.
3. assuming that P (xi) 6= 0
4. We assume that an attacker has access only to ciphertexts.

16 Mathematical and Cryptographic Preliminaries 2.3
Decision Problems and Language.

A decision problem is a problem in a formal system whose answer has to be a "yes" or "no".

Decision problems frequently raise from mathematical questions of decidability, which attempts to
find-out whether there exists an effective algorithm to determine the existence of some object or its
membership to a set. However, the most important problems in mathematics are known to be undecidable.
A decision problem can also be regarded as a formal language, where the members of the language are
instances whose output is "yes" (we say that a computer accepts a language L if it accepts for all questions
q with q ∈ L), "no" (if the machine rejects) or if the input causes the machine to run forever (in which
case the instance is also considered as a non-member).

We further give the definitions of language and the complexity classes: P ,NP and BPP . In the following,
we will only consider time complexities.

Definition 2.25 (Language) L is a function: {0, 1}n → {0, 1}. We defineL as a language, if for allw ∈ {0, 1}n:{
w ∈ L ⇐⇒ L(w) = 1
w /∈ L ⇐⇒ L(w) = 0

Definition 2.26 (Complexity Class P) A decision problem Q belongs to the class P if there exists a polynomial-
time algorithm able to solveQ, i.e. if given an input of length n, there exists an algorithm that produces the answer
to Q in a number of steps polynomial in n.

Definition 2.27 (Complexity Class NP) A decision problem Q belongs to the class NP if a "yes" instance 5 of
the problem Q can be verified in polynomial time.

Definition 2.28 (Complexity Class BPP) A decision problem Q belongs to class BPP if Q can be solved with
2-sided error on a probabilistic Turing machine in polynomial time.

P versus NP Problem. The P versus NP problem is central in complexity theory. This fundamental
question is listed by the Clay Mathematics Institute as a major pending question because of the wide
implications of a solution. This problem can be simply stated as follows: “is P = NP?”. An answer to
the P = NP question would determine whether problems that can be verified in polynomial time, like
the factoring problem, can also be solved in polynomial time. However, If P 6= NP is proved, then that
would mean that there are problems in NP (such as NP-complete problems) that are harder to compute
than to verify.

2.3 One-Way Functions

Informally, it is believed that a one-way function (OWF) is a function f that is easy to compute in
polynomial time (by definition), but hard to invert (meaning that there cannot exist a probabilistic (or
deterministic) machine that can invert f in polynomial time). Thus, the existence of a OWF implies that
P 6= NP . However, as we have discussed in the previous section (2.2), in the current state of complexity
theory (i.e., P = NP?) it still unknown whether P 6= NP implies the existence of OWFs. For that reason
even if some OWF candidates (described in 2.1) are known to be NP-complete, this does not necessarily
imply their one-wayness. A trapdoor one-way function (TOWF) is a kind of OWF for which the inverse
direction is easy to compute given a certain private information (the trapdoor), but difficult without it.
TOWFs are the basis of signature schemes and public-key cryptosystems but also imply the existence of
many other useful primitives (including pseudorandom generators, pseudorandom function families,
bit commitment schemes, message authentication codes).

We can formalize this notion as following:

Definition 2.29 (One-Way Function) A function f : {0, 1}n → {0, 1}n is one-way function if and only if: ∃
PPT M such that ∀x M(x) = f(x) and ∀ non-uniform PPT A we have that: Pr[A(f(x)) ∈ f−1(f(x))] =
neg(|x|) = neg(n). Here neg(.) denotes the negligible function notion of definition 2.3.

5. An instance for which the purported answer is yes.

2.4 Provable Security 17
Definition 2.30 (The Security of a Scheme) Let t, ε be positive constants with ε > 1. We say that a scheme is
(t, ε)-secure if every adversary A running for at most t time units succeeds in breaking the scheme with probability
at most ε.

Definition 2.31 (The Asymptotic Security of a Scheme) A scheme p is secure if every PPT adversary suc-
ceeds in breaking p with only negligible probability.

We now turn our attention to proving the security of cryptosystems. We first give an intuition on how
these proofs have to be constructed (reductionist proofs) and then discuss the models in which we can
prove the security of a scheme.

2.4 Provable Security

2.4.1 Theoretical Framework

What is Provable Security?

Decidability, mentioned before, has a direct impact on provable security. In computability theory, the
halting problem is the problem of determining, from a description of an arbitrary computer program
and an input, whether the program will finish running or continue to run forever. Turing proved in 1936
that a general algorithm to solve the halting problem for all possible program-input pairs cannot exist.
i.e. Turing proved that the halting problem is undecidable over TMs. A direct consequence of this proof
is that a general algorithm S deciding the security for all possible program-input pairs cannot exist.

Indeed, given a candidate program H for the halting problem it suffices to transform H in a program
S = H|V where V is any artificially created security vulnerability. Submit S and its desired input to
S. If S outputs "secure" this reveals that V is never activated (and hence H runs forever). If S outputs
"insecure" this reveals that V is reached (and hence H halts). In other words a program security oracle S
can be transformed into a halting oracleH. Which is known not to exist (Turing). This establishes the
theoretical impossibility to decide security in the general case. 6

In the same vain, we it is also possible to prove that if OWFs exist deciding security is impossible: let V
be a vulnerability as introduced before. Let f be a OWF, s a secret and y = f(s). We require the bit-length
q of f ’s input to be significantly shorter than f ’s output 7. Craft the following program 8:

S(x) = if f(x) = y then run V

Deciding the security of S(x) amounts to deciding if some "magic preimage value" s happens to hit the
hardwired value y that triggers the vulnerability V . Which is, precisely, the (decisional version of the)
problem of inverting an OWF.

Paradoxically, OWFs are crucial for cryptographic security while being a theoretical argument in disfavor
of general program security (which is anyhow a battle lost in advance, given Turing’s halting argument
above).

In the past, the traditional approach for evaluating the security of a cryptosystem was to search for
attacks and consider a scheme secure as long as there were no known attacks contradicting its security.
However, this approach is insufficient because we can never be sure that an attack does not exist. Hence,
the security of a cryptosystem can only be considered heuristic (at best), given the possibility that a yet
unknown attack exists cannot be excluded [Abd11].

6. For the sake of accuracy (and honesty) the above argument is about programs that are either useless (run forever) or insecure.
Nothing is being said here about useful real-life programs (those that are both secure and halting). The argument is nonetheless
correct.

7. e.g. size(s) = 500 bits and size(y) = 1000 bits
8. We assume that S aborts if x is longer than q.

18 Mathematical and Cryptographic Preliminaries 2.4
As mentioned in section 2.1 there are two main security definition classes: The first is unconditional
or information-theoretic security also called perfect secrecy: These proofs guarantee security against "all"
attackers (all-powerful or unbounded adversaries). This category of proofs typically relies on combina-
torial or information theoretic arguments [Sha48]. However, these proofs has practical limitations, for
instance in the one-time pad keys must be at least as long as the message and be used only once, which
is impractical.

In modern cryptography it is usually impossible to prove that a scheme is protected against unlimited
adversaries. This requires to relax the definition of security, so that the best we can hope is construct
schemes that are secure against computationally bounded adversaries, i.e. adversaries running in
probabilistic polynomial time. Such proofs typically use complexity-theoretic techniques such as those
discussed in section 2.2.

This led Goldwasser and Micali [GMR85] to introduce the foundations of provable security thirty years
ago: a conceptual breakthrough for which they received the Turing award in 2013. They introduced the
second approach for proving cryptosystem security, known as provable security, this school of thought
relates the security of a cryptographic scheme to precise mathematically assumptions. As discussed in
section 2.1, these assumptions can either be the existence of OWFs or specific TOWFs (e.g. the factoring
problem).

We can formally define this notion as follows:

Definition 2.32 (Provable Security) The problem X of contradicting the security of some cryptographic prim-
itive or protocol can be reduced to a problem Y believed to be hard if there is a constructive polynomial-time
transformation R that takes any instance of X and maps it to an instance of Y . Thus any algorithm solving Y can
be transformed into an algorithm solving X . Hence if X ∈ C, and if X is reducible to Y , then Y ∈ C, where C
denotes some complexity class.

There are two types of computational security proof techniques, the first is formal methods, which computer-
verifies the security of a scheme. That makes it possible to verify the system’s properties better than by
empirical testing and thus increase the level of security assurance.

The second main security proof technique is the concept introduced by Goldwasser and Micali in 1982
[GM82], called reductionist proofs.

To prove that a cryptographic protocol P is secure with respect to a computational problem or primitive
S, one needs:

— A security definition that captures the adversary’s capabilities and goals
— A statement of the computational problems
— A reduction showing how to transform an adversary that breaks the security goals of the P into a

solver of S.

Reductionist Security Proofs

The provable security methodology called reduction transforms the breaking of the target protocol P into
the solving of some hard mathematical problem S. This methodology has been widely successful in many
cryptographic proofs. The process is an interplay between three algorithms: P , S and a third algorithm
R, called reduction, transforming the solving of P into the solving of S. Thereby any hypothetical attacker
A breaking (solving) P can be turned into an algorithm A′ solving S.

Although provable security can tell us when a scheme is secure, it does not necessarily say how secure a
scheme really is [MSA+11]. To measure the way in which security varies, a variable k (security parameter)
is needed to quantify the size of inputs. Both the resource requirements to break the cryptographic
protocol and the probability with which the adversary manages to break security should be expressed in
terms of k. For that, two main approaches exist:

— The concrete security approach usually called practice-oriented provable security introduced by
Bellare and Rogaway in [BR93]. This class of attackers called probabilistic time-t algorithms aims to
give a precise estimation of the attacker’s computational workfactor and success probability.

2.5 Digital Signatures 19
— The asymptotic security defines a class of attackers called probabilistic polynomial time algorithms

(polynomial in a security parameter k). In that case cryptosystem designers prove that the
attacker’s success probability (advantage) is negligible in k as defined in definition 2.3.

2.4.2 The Random Oracle Paradigm

As mentioned before, theoretical work (for example to obtain an efficient scheme secure under a well
known computational assumptions) often seems to achieve provable security only at the cost of efficiency.
This is why we frequently must work in some idealized model of computation.

One such model is the well known Random Oracle Model (ROM) which is a powerful tool formalized by
Mihir Bellare and Phillip Rogaway (1993) [BR93] as a mathematical abstraction (a theoretical black box).
The ROM was firstly used in rigorous cryptographic proofs of certain basic cryptographic primitives,
such as Full Domain Hash signatures [BR96] and OAEP encryption [BR95]. In the model, the interaction
with such an oracle is available to both honest parties and adversaries.

Loosely speaking, cryptographers usually resort to the ROM when a cryptographic hash function H
fulfills the role of a black box that responds to a query for the hash value of a bit-string M by giving a
random value. For each query the oracle makes an independent random choice, except that it keeps a
record of its past responses H(M) and repeats the same response if M is queried again.

Note that no function computable by a finite algorithm that can implement a true random oracle (which
by definition requires an infinite description given the input’s unrestricted size). Despite this, the best we
can expect is that our concrete hash function mimics the behavior of a random oracle model in practice.

Reductionist proofs without random oracle assumptions are said to be in the standard model.

2.5 Digital Signatures

In this section we will recall the problem of data authentication and integrity in the asymmetric (public-
key) setting. Here a sender needs to be assured that a message comes from a legitimate sender (authenti-
cation) and not from an attacker. This also includes the assurance that the message was not modified
during transmission (integrity). MACs solved this problem but for the symmetric-key setting. By opposi-
tion to MACs, digital signatures have the advantage of being publicly verifiable and non-repudiable.
Public verifiability implies the transferability of signatures and, thus, signatures prove useful in many
applications and in public-key infrastructures. Non-repudiation and verifiability make digital signatures
particularly suitable for contract signing purposes. Contract signing is that we will be analyzed in further
depth in Section 4.2.

In their famous paper Diffie and Hellman [DH76], didn’t only introduce the concept of public key
cryptography but also the fundamental notion of digital signature scheme. Digital signatures are extremely
important in cryptography. This primitive allows to ascertain the origin of information and is, as such,
vital to web security, digital transactions and identity application, to name just a few of the numerous
applications of digital signatures. There exist several types of digital signatures. Before recalling the
main algorithms we will introduce theoretical framework and the security notions necessary for the
proper definition of digital signatures.

2.5.1 General Framework

Definition 2.33 (Digital Signature Scheme) A digital signature scheme Σ is a 3-tuple of algorithms: (KEY-
GEN, SIGN, VERIFY). KEYGEN is probabilistic algorithm. SIGN is usually probabilistic, but may, in some cases,
be deterministic. VERIFY is usually deterministic.

— KEYGEN algorithm: Let k be the security parameter and let 1k be the input of the key generation
algorithm KEYGEN. KEYGEN outputs a pair (pk, sk) of public and secret keys.

20 Mathematical and Cryptographic Preliminaries 2.5
— SIGN algorithm: Given a message m and (pk, sk), SIGN outputs a signature σ.
— VERIFY algorithm: Given σ, m, pk, VERIFY tests if σ is a valid signature of m with respect to pk

The correctness of a digital signature scheme is defined as follows.

Definition 2.34 (Correctness of a Signature Scheme) LetM be a message space. A signature scheme is said
correct if, for any message m ∈M the following experiment:

(sk , pk)← KEYGEN(λ), σ ← SIGN(sk ,m), b← VERIFY(pk ,m, σ)

is such that b = True except with probability negligible in λ.

2.5.2 Some Examples

A number of well known digital signature algorithms will further be recalled schematically hereafter:
RSA in Figure 2.1, ElGamal in Figure 2.2, Schnorr in Figure 2.3 and Girault-Poupard-Stern in Figure 2.4.

The reason why we chose to present the ElGamal signatures is not only historical. Both ElGamal and
Girault-Poupard-Stern can serve to implement the construction described in Section 4.2.

Also, Schnorr signatures are of particular interest for the results of Section 4.2, where Schnorr co-signature
for two parties is described and proved.

An important observation about digital signature schemes, due to Diffie and Hellman, is that any
public-key encryption scheme for which C =M, can be used as a digital signature scheme.

RSA (Rivest-Shamir-Adleman)

RSA is probably the most popular signature scheme to date. RSA signature and encryption share the
same key generation algorithm. The security of both relies on the FACT assumption (cf. Section 2.1). A
variety of RSA-based signature schemes appeared over time. Despite its elegant mathematical structure,
instantiating RSA is subtle as shown in [Mis98; CNS99; CND+06].

Parameters and Key Generation
Choose large primes p, q and compute n = p · q
Choose e such that gcd(e, ϕ(n)) = 1,
where ϕ(·) is Euler’s totient function 9

Private d such that e · d = 1 mod ϕ(n)

Public n, e

Signing Algorithm (message m)
σ ← md mod n

Output σ as the signature of m
Verification Algorithm 10

if m = σe mod n then
return True

else
return False

Figure 2.1 – RSA signature algorithm.

10. Let a be a positive integer. Euler’s totient function denoted above ϕ(a) represents the number of positive integers b such that
1 ≤ b ≤ a and gcd(a, b) = 1.

10. For simplicity, we do not consider redundancy check in m for this illustrative signature scheme.

2.5 Digital Signatures 21
ElGamal

ElGamal’s digital signature and encryption algorithms were introduced in [El 84]. [El 84] didn’t include
the hashing step added in Figure 2.2. Pointcheval-Stern’s version of ElGamal signatures is provably
secure against adaptive chosen-message attacks [PS96; PS00] in the ROM.

Nonetheless, Bleichenbacher [Ble96] has shown how malicious parameters can be generated. Bleichen-
bacher’s attack is also applicable to Pointcheval-Stern’s version of ElGamal.

Parameters and Key Generation
Large prime p such that p− 1 contains a large prime factor
g ∈ Z∗p.

Private x ∈R Z∗p
Public p, g, y ← gx mod p

Signing Algorithm (message m)
Pick k ∈R Z∗p such that gcd(k, p− 1) = 1

r ← gk mod p

e← H(m)

s← e− xrk−1 mod p− 1

If s = 0 repeat signature generation.
Output {r, s} as the signature of m

Verification Algorithm
e← H(m)

If 0 < r < p or 0 < s < p− 1 then return False

if ge = yr · rs mod p then
return True

else
return False

Figure 2.2 – ElGamal’s signature algorithm.

Schnorr

Schnorr signatures [Sch90] are an offspring ElGamal signatures[El 84]. Schnorr signatures are provably
secure in the Random Oracle Model under the DLP assumption [PS96].

Schnorr signatures will be discussed in further detail in Section 4.2.

Girault-Poupard-Stern (GPS)

Originally, the Girault-Poupard-Stern (GPS) scheme [GPS06] was developed as an identification scheme
whose underlying hardness assumptions were DLP and FACT. Applying the Fiat-Shamir transformation
[FS87], GPS can be turned into a digital signature scheme in a straightforward manner.

GPS was the only identification scheme submitted to the NESSIE competition [NES]. NESSIE ended
with 17 selected algorithms (of the initial 42), amongst which was GPS. The main advantage of GPS over
other DLP based schemes is that the prover has only one exponentiation and one addition to perform.
The exponentiation can be precomputed before receiving the challenge. If this is done the prover does
not need to perform any modular reductions after receiving the challenge from the verifier.

22 Mathematical and Cryptographic Preliminaries 2.5
Parameters and Key Generation
Large primes p, q such that q ≥ 2κ, where
κ is the security parameter and
p− 1 mod q = 0

g ∈ G (a cyclic group of prime order q)
Private x ∈R Z∗q
Public y ← gx

Signing Algorithm (message m)
Pick k ∈R Z∗q
r ← gk

e← H(m, r)

s← k − ex mod q

Output {r, s} as the signature of m
Verification Algorithm

e← H(m, r)

if gsye = r then
return True

else
return False

Figure 2.3 – Schnorr’s signature algorithm.

GPS is a version of Schnorr’s signature algorithm designed to reduce on-line computation and thus allow
on-the-fly signatures. The parameters of the GPS scheme have to be chosen by taking into consideration
the attack presented by van Oorschot and Wiener in [OW96].

2.5.3 Security Notions for Digital Signatures

Bellare and Rogaway introduced the concept of "practice-oriented provable security" in a thread of
papers of which the first one was [BR94]. This concept naturally results from the convergence of theory
(notably [GM84]) and practice.

As a direct consequence, the ROM (see in Section 2.4.2) was introduced in [BR93]. The ROM allowed to
prove the security of many cryptographic schemes by abstracting away the random-like properties of
hash functions.

Using the ROM, Pointcheval and Stern [PS00] present security arguments for a large class of digital
signatures. From their work emerged an approach that proposes computational reductions to well
established problems for proving the security of digital signature schemes.

Security Notions. An efficient adversary A is modeled as a PPT algorithm.

We say that an adversary A "forges a signature on a new message" or "outputs a forgery" whenever A
outputs a message/signature pair (m,σ) such that VERIFY(pk ,m, σ) = True and Awas not previously
given any signature on m. We say that A "outputs a strong forgery" whenever A outputs a message/sig-
nature pair (m,σ) such that VERIFY(pk ,m, σ) = True and A was not previously given the signature σ
on the message m. Note that whenever A outputs a forgery then A also outputs a strong forgery.

Let Σ denote a signature scheme as defined in Section 2.5.1.

2.5 Digital Signatures 23
Parameters and Key Generation

A,B, S ∈ N s.t. |A| ≥ |S|+ |B|+ 80, |B| = 32, |S| > 140

κ is the security parameter and
p, q primes and n = pq

g ∈R Zn s.t. gcd(g, n) = 1.
Private s ∈ [1, S]

Public I = gs mod n

Signing Algorithm (message m)
Pick r ∈R [0, A− 1]

x← gr mod n

c← H(m,x)

y ← r + c · s
Output {c, y} as the signature of m

Verification Algorithm
if 0 < c < B − 1 or 0 < y < A+ (B − 1) · (S − 1)− 1

return False

Compute c′ ← H(m, gy/Ic mod n)
if c′ = c then

return True

else
return False

Figure 2.4 – Girault-Poupard-Stern’s signature algorithm.

Definition 2.35 (EU-RMA Security) A signature scheme Σ is existentially unforgeable under a random-
message attack (EU-RMA) if for all polynomials p and all PPT adversaries A, the success probability of A in the
following experiment is negligible, as a function of k:

1. A sequence of p = p(k) messages m1, ...,mp are chosen uniformly at random from the message space
2. KEYGEN(1k) is run to obtain a key-pair (pk , sk)
3. Signature σ1 ← SIGN(sk ,m1), ..., σp ← SIGN(sk ,mp) are computed
4. A is given pk and {(mi, σi)}pi=1 and outputs (m,σ)

5. A succeeds if VERIFY(pk ,m, σ) = True and m /∈ (m1, ...,mp)

Σ is strongly unforgeable under a random-message attack (SU-RMA) if Σ complies with Definition 2.35
where step 5 is replaced by

5. A succeeds if VERIFY(pk ,m, σ) = True and (m,σ) /∈ {(m1, σ1), ..., (mp, σp)}
Definition 2.36 (EU-KMA Security) A signature scheme Σ is existentially unforgeable under a known-
message attack (EU-KMA) if for all polynomials p and all PPT adversaries A, the success probability of A in the
following experiment is negligible as a function of k:

1. A(1k) outputs a sequence of p = p(k) messages m1, ...,mp

2. KEYGEN(1k) is run to obtain a key-pair (pk , sk)
3. Signature σ1 ← SIGN(sk ,m1), ..., σp ← SIGN(sk ,mp) are computed
4. A is given pk and {σi}pi=1 and outputs (m,σ)

5. A succeeds if VERIFY(pk ,m, σ) = True and m /∈ (m1, ...,mp)

We assume that A is a stateful algorithm, and in particular is allowed to maintain state between steps 1 and 4.

Σ is strongly unforgeable under a known-message attack (SU-KMA) if Σ complies with Definition 2.36
where step 5 is replaced by

5. A succeeds if VERIFY(pk ,m, σ) = True and (m,σ) /∈ {(m1, σ1), ..., (mp, σp)}

24 Mathematical and Cryptographic Preliminaries 2.6
Definition 2.37 (EU-CMA Security) A signature scheme Σ is existentially unforgeable under a chosen-
message attack (EU-CMA) if for all PPT adversaries A, the success probability of A in the following experiment
is negligible as a function of k:

1. KEYGEN(1k) is run to obtain a key-pair (pk , sk)
2. A is given pk and allowed to interact with a signing oracle SIGN(sk , ·), requesting signatures on as many

messages as it likes. Let this attack be denoted as ASIGN(·)
pk

3. Eventually, A outputs (m,σ)

4. A succeeds if VERIFY(pk ,m, σ) = True and m /∈M
The desired security notion for signature scheme is strong unforgeability under chosen message attack
(SU-CMA). This notion is defined by the next security game:

Definition 2.38 (SU-CMA Security Game and Advantage) The SU-CMA security game GSU-CMA
Σ is defined

as a protocol between the challenger C and an adversary A:
1. C runs (sk , pk)← KEYGEN(λ) and sends pk to A
2. A adaptively chooses messages m1 . . .mk and sends them to C
3. C responds to each message with the signature σi = SIGN(pk , sk ,m)

4. The adversary sends a message and a forgery (m∗, σ∗) to C
5. C outputs{

1 if VERIFY(pk ,m∗, σ∗) = True and if (m∗, σ∗) 6= (mi, σi) for all i = 1 . . . k
0 otherwise

The advantage of an SU-CMA adversary A against the signature scheme Σ is defined as:

AdvSU-CMA
Σ (A) = Pr

[
ExpSU-CMA

Σ (A) = 1
]

Definition 2.39 (SU-CMA Security) A signature scheme Σ is said to be SU-CMA secure if for any adversary
A that runs in probabilistic polynomial time (PPT) in the security parameter λ, the adversary’s advantage
AdvSU-CMA

Σ (A) is negligible in λ.

Observations. CMA security can be attained from weaker primitives. Such constructions, exceeding
the purpose of this thesis, are presented in detail in [YK05].

2.6 Public-Key Cryptography

Since the introduction of public-key cryptography in the late 1970’s [DH76], many candidate construc-
tions were proposed based on the assumption that some mathematical problem is hard to solve.

Prime example of hard problems considered in the literature include: Factorizing a large number (FACT)
[Rab79]; Finding the e-th root modulo (ERP) a composite n of arbitrary numbers, when n is the product
of two large primes [RSA78]; Solving a large enough instance of the knapsack problem [NS97], [Mer78];
Finding the discrete logarithm (DLP) in a group of large prime order [DH76; Kob87; Mil86].

However not all these candidates survived the test of time: Merkle and Hellman’s knapsack-based
cryptosystem [Mer78], for instance, was broken by Shamir [SD82] using a now-classical lattice reduction
algorithm [Len84].

Looking back on the history of public-key cryptography [Kob87] it seems that almost every new cryp-
tosystem comes with its cortege of new assumptions. As observed by Naor [NY90], Goldwasser and
Kalai [GK15], we face an increase in the number of new assumptions, which are often complex to define,
difficult to interpret, and at times hard to untangle from the constructions which utilize them. While
being instrumental to progress and a better understanding of the field, new assumptions often shed
doubt on the real security of the schemes building on them.

2.6 Public-Key Cryptography 25
2.6.1 General Framework

Consider a plaintext spaceM = {0, 1}m, a key space K = {0, 1}k and a ciphertext space C = {0, 1}c.
Recall that a public-key cryptosystem is usually defined as follows:

— Setup(k) takes as input a security parameter k and outputs public parameters pp;
— KeyGen(pp) ∈ K2 takes as input pp, and outputs a pair (sk, pk) of secret and public keys – we

make the assumption that sk contains pk;
— Encrypt(pk,m) ∈ C takes as input pk and a message m, and outputs a ciphertext c;
— Decrypt(sk, c) ∈ {M,⊥} takes as input sk and c, and outputs m or ⊥.

2.6.2 Security Notions for Public-Key Cryptography

In the following definitions, IND will denote indistinguishability and NM will denote non-malleability.
IND was initially defined by Goldwasser and Micali [GM84], and NM by Dolev, Dwork and Naor
[DDN00]. The NM notion will not be detailed or formally defined in this manuscript. We refer the reader
to [BDJR97] for a precise description of this concept.

For defining IND we follow the description given in [BDPR98].

Experiments. Let A be a probabilistic algorithm and denote by A(x1, x2, . . . ; r) is the result of running
A on inputs x1, x2, . . . and coins r.

We let y ← A(x1, x2, . . .) denote the experiment of picking r at random and let y = A(x1, x2, . . . ; r).

We say that y is a potential output of A(x1, x2, . . .) if ∃r such that A(x1, x2, . . . ; r) = y.

IND. A public key encryption scheme PKE satisfies the property IND if the distributions Am1 and Am2

are computationally indistinguishable 11 for all m1,m2 ∈M such that |m1| = |m2|where

Ami =
{
pk,PKE . ENCRYPT(pk ,mi) : (pk, sk)

$←− PKE .KEYGEN(λ)
}
, for i ∈ {1, 2} .

The commonly desired security properties of public-key encryption are indistinguishability under chosen
plaintext attack (IND-CPA) or semantic security, indistinguishability under chosen ciphertext attack (IND-
CCA1) and indistinguishability under adaptive ciphertext attack (IND-CCA2) defined by the security games of
Definitions 2.40, 2.42 and 2.44. Weaker security notions whose presentations we omit here are one-wayness
under chosen plaintext attack and under chosen ciphertext attack, (OW-CPA and OW-CCA). We refer the reader
to [Poi05] for a detail description of OW-CPA and OW-CCA.

Definition 2.40 (IND-CPA Security Game and Advantage) The IND-CPA security game GIND-CPA
PKE is defined

as a protocol between the challenger C and an adversary A:

1. C runs (sk , pk)← PKE .KEYGEN(λ) and sends pk to A
2. A chooses two messages m0 and m1 and sends them to C
3. C chooses a uniform random bit b and encrypts one of the two message accordingly:

c← PKE . ENCRYPT(pk ,mb)

4. A sends a guess b′ to C
5. C outputs 1 if the guess was correct, that is if b = b′, 0 otherwise

The advantage of an IND-CPA adversary A against this game is defined as:

AdvIND-CPA
PKE (A) = Pr [GIND-CPA

PKE (A) = 1]− 1

2
11. Two probabilities are computationally indistinguishable if no efficient algorithm can make the difference between them.

26 Mathematical and Cryptographic Preliminaries 2.7
Definition 2.41 (IND-CPA Security) A public-key encryption scheme PKE is said to be IND-CPA secure if for
any adversary A that runs in probabilistic polynomial time (PPT) in the security parameter λ, A’s advantage
AdvIND-CPA

PKE (A) is negligible in λ.

Definition 2.42 (IND-CCA1 Security Game and Advantage) The IND-CCA1 security game GIND-CCA1
PKE is de-

fined as a protocol between the challenger C and an adversary A:

1. C runs (sk , pk)← PKE .KEYGEN(λ) and sends pk to A
2. A may perform polynomially many encryptions, calls to the decryption oracle based on arbitrary ciphertexts,

or other operations

3. Eventually, A submits two distinct chosen plaintexts m0 and m1 to C.

4. C chooses a random bit b and encrypts one of the two message accordingly:

c← PKE .ENCRYPT(pk ,mb)

5. A may not 12 make further calls to the decryption oracle

6. A sends a guess b′ to C
7. C outputs 1 if the guess was correct, that is if b = b′, 0 otherwise

The advantage of an IND-CCA1 adversary A against this game is defined as:

AdvIND-CCA1
PKE (A) = Pr

[
GIND-CCA1
PKE (A) = 1

]
− 1

2

Definition 2.43 (IND-CCA1 Security) A public-key encryption scheme PKE is said to be IND-CCA1 secure if
for any adversary A that runs in probabilistic polynomial time (PPT) in the security parameter λ, A’s advantage
AdvIND-CCA1

PKE (A) is negligible in λ.

Definition 2.44 (IND-CCA2 Security Game and Advantage) The IND-CCA2 security game GIND-CCA2
PKE is de-

fined as a protocol between the challenger C and an adversary A:

1. C runs (sk , pk)← PKE .KEYGEN(λ) and sends pk to A
2. A may perform polynomially many encryptions, calls to the decryption oracle based on arbitrary ciphertexts,

or other operations

3. Eventually, A submits two distinct chosen plaintexts m0 and m1 to C
4. C chooses a uniform random bit b and encrypts one of the two message accordingly:

c← PKE .ENCRYPT(pk ,mb)

5. Amay make further calls to the encryption or decryption oracles, but may not submit the challenge ciphertext
c to C

6. A sends a guess b′ to C
7. C outputs 1 if the guess was correct, that is if b = b′, 0 otherwise

The advantage of an IND-CCA2 adversary A against this game is defined as:

AdvIND-CCA2
PKE (A) = Pr

[
GIND-CCA2
PKE (A) = 1

]
− 1

2

Definition 2.45 (IND-CCA2 Security) A public-key encryption scheme PKE is said to be IND-CCA2 secure if
for any adversary A that runs in probabilistic polynomial time (PPT) in the security parameter λ, its advantage
AdvIND-CCA2

PKE (A) is negligible in λ.

The implication relations between the above security notions are given in Figure 2.5 and [BDPR98].

12. Step 5 stresses the difference between IND-CCA1 and IND-CCA2. Thus, we underline that for IND-CCA1,Awill not be allowed
to interact with the decryption oracle after step 4.

2.7 Proof Systems 27
NM-CPA NM-CCA1 NM-CCA2

IND-CPA IND-CCA1 IND-CCA2

Figure 2.5 – Relations between public-key security notions.

2.7 Proof Systems

In mathematics and in cryptography, entities need to prove assertions (or statements) to each other.
Various types of probabilistic proof systems emerged during the development of computer science over
the last decade. The question raised revolved around information leakage i.e. how much extra information
is the verifier going to learn from a proof, beyond the statement’s truthfulness. We say that an encryption
scheme is secure if the ciphertext does not allow the eavesdropper to compute any new (efficiently
computable) function of the plaintext beyond what she could have computed without the ciphertext.

Very informally, a zero-knowledge proof allows one party, called prover (P), to convince another party,
called verifier (V), that P knows some fact (a secret, a proof of a theorem, etc.) without revealing to V any
information about that fact beyond its veracity. For example, The proof that n = 670592745 = 12345·54321
is not a zero-knowledge proof that n is a composite integer.

This concern was first studied in the 1985 by Goldwasser, Micali and Rackoff [GMR85] who proposed a
new notion called zero knowledge proof that became fundamental in modern cryptography.

In the following paragraphs we present the underlying ideas of zero-knowledge proof protocols, their
history and their importance in modern cryptography.

2.7.1 Interactive Proofs

The notion of interactive proofs 13 was separately introduced by Babai [Bab86] and Goldwasser, Micali
and Rackoff [GMR85]. An Interactive Proof System (IPS) for a language L, is a protocol between P and
V where:

— P (all powerful) and V (PPT and assumed always honest) are given an input x.
— Through a protocol, P tries to convince to V that x ∈ L.
— At the end of the protocol, V outputs either "accept" if the proof is satisfactory or "reject" if not.

All interactive proof systems must comply with two requirements:
— Completeness: If the statement is true (i.e. x ∈ L) then a honest P is always able to convince V of

this fact.
— Soundness: Otherwise, (i.e. if the statement is false) no P should not be able to convince V to

output "accept" with probability higher than 1
2 .

2.7.2 Zero-Knowledge Proofs

In general, providing a proof results in giving-out new information or new knowledge 14.

As counter-intuitive as it may seem, Goldwasser, Micali and Rackoff [GMR85] showed that it is possible
to prove statements without leaking information beyond the veracity of those statements (i.e. that x ∈ L).
The conceptual tool allowing to do so is the zero-knowledge proof (ZKP).

13. Also called Arthur-Merlin proof systems, where Arthur represents the verifier V and Merlin represents the prover P .
14. In the example given before, not only did the proof establish that 670592745 is composite, it also revealed its factors.

28 Mathematical and Cryptographic Preliminaries 2.7
Using a ZKP, P will convince V that a statement S (theorem, secret, etc) is true. This will be done in a
way that does not allow V to learn anything from the interaction with P . [CGMW97] later showed that
ZKPs can be constructed for any language in NP under the assumption that OWFs exist.

2.7.3 Applications

ZKPs proved to be very useful both in complexity theory and in cryptography.

In complexity theory, Boppana, Håstad, and Zachos [Rav87], show that ZKPs provide a means to
convince ourselves that certain languages are not NP-complete.

In cryptography, ZKPs were first motivated by the need to authenticate entities – which is a cornerstone
of information security. ZKPs were then used to enforce honest behavior while maintaining privacy 15

during secure multiparty computation: a setting where several parties wish to securely compute some
joint function of their private inputs [CGMW97].

2.7.4 Zero-Knowledge Proofs of Knowledge

In 1988 Feige, Fiat and Shamir [FFS88] went one step further ahead and noted that the intuition that V
learns nothing from P isn’t true. Indeed, the [GMR85] ZKP notion is somewhat misleading given that
P reveals one more bit of knowledge to V (namely that x ∈ L). Therefore, [FFS88] introduced a novel
form of proof systems called "knowledge about knowledge" or "Zero-knowledge proofs of knowledge"
(ZKPPs). In ZKPPs the role of P is not to prove to V that x ∈ L, but to prove that he knows the member
status of x with respect to L. Loosely speaking, a ZKPP guarantees that whenever V is convinced that P
knows an information X , this X can be efficiently extracted from P’s strategy. One natural application
of ZKPPs is entity identification.

2.7.5 Non-Interactive Zero-Knowledge Proofs

A last noteworthy notion in this area is that of non-interactive ZKPs (NIZKPs) introduced by Blum,
Feldman, and Micali in [BFM88]. A NIZKPs is functionally very close to a digital signature. Here P
sends to V only one message which is, in a way, a sort of "frozen" ZKP verifiable offline without P ’s help.
This allows to reduce interaction, which is desirable in many applications. [BFM88] present NIZKPs
within the Common Reference String model, (CRS). This model captures the assumption that a trusted
setup in which all involved parties get access to the same string CRS taken from some distribution D.
exists. Schemes proven secure in the CRS model are secure given that the setup was performed correctly.

15. i.e. ensure that parties in a cryptographic protocol behave as they should.

CHAPTER 3

RESULTS & CONTRIBUTIONS

3.1 Thesis Results

The main results of this thesis are presented in this section. Nearly all those results were published as
journal papers, conference papers or Internet pre-prints.

3.1.1 Fairness & Attestation in Cryptographic Protocols

Non-Interactive Attestations for Arbitrary RSA Prime Generation Algorithms

with Fabrice Ben Hamouda, Rémi Géraud and David Naccache

Abstract. RSA public keys are central to many cryptographic applications; hence their validity is of
primary concern to the scrupulous cryptographer. The most relevant properties of an RSA public key
(n, e) depend on the factors of n: are they properly generated primes? are they large enough? is e co-prime
with φ(n)? etc. And of course, it is out of question to reveal n’s factors.

Generic non-interactive zero-knowledge (NIZK) proofs can be used to prove such properties. However,
NIZK proofs are unpractical.

For moduli with some very specific properties, specialized proofs exist but such ad hoc proofs are hard to
generalize or extend.

This paper proposes a new type of general-purpose compact non-interactive proofs, called attestations,
allowing the key generator to convince any third party that n was properly generated.

The proposed construction applies to any prime generation algorithm, and is provably secure in the
Random Oracle Model.

As a typical implementation instance, for a 138-bit security, verifying or generating an attestation requires
k = 1024 prime generations. For this instance, each processed message will later need to be signed or
encrypted 14 times by the final users of the attested moduli.

Note. Currently submitted. Section 4.1 of this thesis.

Legally Fair Contract Signing without Keystones

with Diana Maimuţ, Rémi Géraud, David Naccache and David Pointcheval

29

30 Results & Contributions 3.1
Abstract. In two-party computation, achieving both fairness and guaranteed output delivery is well
known to be impossible. Despite this limitation, many approaches provide solutions of practical interest
by weakening somewhat the fairness requirement. Such approaches fall roughly in three categories:
“gradual release” schemes assume that the aggrieved party can eventually reconstruct the missing
information; “optimistic schemes” assume a trusted third party arbitrator that can restore fairness in case
of litigation; and “concurrent” or “legally fair” schemes in which a breach of fairness is compensated by
the aggrieved party having a digitally signed cheque from the other party (called the keystone).

In this paper we describe and analyze a new contract signing paradigm that doesn’t require keystones to
achieve legal fairness, and give a concrete construction based on Schnorr signatures which is compatible
with standard Schnorr signatures and provably secure.

Note. Published in the proceedings of Applied Cryptography and Network Security (ACNS) 2016 [FGM+16a;
FGM+16b]. Section 4.2 of this thesis.

3.1.2 Zero-Knowledge Proof Systems & Authentication Protocols

Slow Motion Zero Knowledge – Identifying With Colliding Commitments

with Rémi Géraud and David Naccache

Abstract. Discrete-logarithm authentication protocols are known to present two interesting features:
The first is that the prover’s commitment, x = gr, claims most of the prover’s computational effort. The
second is that x does not depend on the challenge and can hence be computed in advance. Provers
exploit this feature by pre-loading (or pre-computing) ready to use commitment pairs ri, xi. The ri can
be derived from a common seed but storing each xi still requires 160 to 256 bits when implementing
DSA or Schnorr.

This paper proposes a new concept called slow motion zero-knowledge (SM-ZK). SM-ZK allows the prover
to slash commitment size (by a factor of 4 to 6) by combining classical zero-knowledge and a timing
side-channel. We pay the conceptual price of requiring the ability to measure time but, in exchange,
obtain communication-efficient protocols.

Note. Published in the proceedings of the 12th International Conference on Information Security and
Cryptology (INSCRYPT) 2016 [FGN16b; FGN16a]. Section 5.1 of this thesis.

Thrifty Zero-Knowledge: When Linear Programming Meets Cryptography

with Simon Cogliani, Rémi Géraud and David Naccache

Abstract. We introduce “thrifty” zero-knowledge protocols, or TZK. These protocols are constructed by
introducing a bias in the challenge send by the prover. This bias is chosen so as to maximize the security
versus effort trade-off. We illustrate the benefits of this approach on several well-known zero-knowledge
protocols.

Note. To appear in the proceedings of the 12th International Conference on Information Security Practice
and Experience (ISPEC) 2016 [CFGN16b; CFGN16c]. Presented as well at the NATO Workshop on Secure
Implementation of PQC 2016. Section 5.2 of this thesis.

3.1 Thesis Results 31
Public-Key Based Lightweight Swarm Authentication

with Simon Cogliani, Bao Feng, Rémi Géraud, Diana Maimuţ, David Naccache, Rodrigo Portella do Canto and
Guilin Wang

Abstract. We describe a lightweight algorithm performing whole-network authentication in a dis-
tributed way. This protocol is more efficient than one-to-one node authentication: it results in less
communication, less computation, and overall lower energy consumption.

The security of the proposed algorithm can be reduced to the RSA hardness assumption, and it achieves
zero-knowledge authentication of a network in a time logarithmic in the number of nodes.

Note. Currently submitted [CFH+16]. Section 5.3 of this thesis.

When Organized Crime Applies Academic Results

with Rémi Géraud and David Naccache and Assia Tria

Abstract. This paper describes the forensic analysis of what the authors believe to be the most so-
phisticated smart card fraud encountered to date. In 2010, Murdoch et al. [MDAB10] described a
man-in-the-middle attack against EMV cards. [MDAB10] demonstrated the attack using a general
purpose FPGA board, noting that “miniaturization is mostly a mechanical challenge, and well within the
expertise of criminal gangs”. This indeed happened in 2011, when about 40 sophisticated card forgeries
surfaced in the field.

These forgeries are remarkable in that they embed two chips wired top-to-tail. The first chip is clipped
from a genuine stolen card. The second chip plays the role of the man-in-the-middle and communicates
directly with the point of sale (PoS) terminal. The entire assembly is embedded in the plastic body of yet
another stolen card.

The forensic analysis relied on X-ray chip imaging, side-channel analysis, protocol analysis, and micro-
scopic optical inspections.

Note. Published in the Journal of Cryptographic Engineering (JCEN) 2015 [FGNT15; HRDA16]. Presented
at the ENS’ Cryptography seminar, KU Leuven’s seminar and INRIA Prosecco’s research seminar. Section
5.4 of this thesis. This result received extensive media coverage:

Website Shortened URL
wired.com http://tinyurl.com/hlf49na
uk.businessinsider.com http://tinyurl.com/gn2rmru
csoonline.com http://tinyurl.com/zjfzdt3
ibtimes.co.uk http://tinyurl.com/j9tb4oj
arstechnica.com http://tinyurl.com/pfuy2am
finextra.com http://tinyurl.com/zqqclft
pymnts.com http://tinyurl.com/h33elxp
cuinsight.com http://tinyurl.com/hrusgq3
securityaffairs.co http://tinyurl.com/hjgbcmz
tripwire.com http://tinyurl.com/pnuxhy9

wired.com
http://tinyurl.com/hlf49na
uk.businessinsider.com
http://tinyurl.com/gn2rmru
csoonline.com
http://tinyurl.com/zjfzdt3
ibtimes.co.uk
http://tinyurl.com/j9tb4oj
arstechnica.com
http://tinyurl.com/pfuy2am
finextra.com
http://tinyurl.com/zqqclft
pymnts.com
http://tinyurl.com/h33elxp
cuinsight.com
http://tinyurl.com/hrusgq3
securityaffairs.co
http://tinyurl.com/hjgbcmz
tripwire.com
http://tinyurl.com/pnuxhy9

32 Results & Contributions 3.1
3.1.3 Exploring Interactions Between Natural Language, Vision & Encryption

Human Public-Key Encryption

with Rémi Géraud and David Naccache

Abstract. This paper proposes a public-key cryptosystem and a short password encryption mode,
where traditional hardness assumptions are replaced by specific refinements of the CAPTCHA concept
called Decisional and Existential CAPTCHAs.

The public-key encryption method, achieving 128-bit security, typically requires from the sender to solve
one CAPTCHA. The receiver does not need to resort to any human aid. A second symmetric encryption
method allows to encrypt messages using very short passwords shared between the sender and the
receiver.

Here, a simple 5-character alphanumeric password provides sufficient security for all practical purposes.
We conjecture that the automatic construction of Decisional and Existential CAPTCHAs is possible and
provide candidate ideas for their implementation.

Note. To appear in the proceedings of Mycrypt 2016 [HRN16]: Paradigm-shifting Crypto. Section 6.1
of this thesis.

Honey Encryption for Language: Robbing Shannon to Pay Turing?

with Marc Beunardeau, Rémi Géraud and David Naccache

Abstract. Honey Encryption (HE), introduced by Juels and Ristenpart (Eurocrypt 2014, [JR14]), is an
encryption paradigm designed to produce ciphertexts yielding plausible-looking but bogus plaintexts
upon decryption with wrong keys. Thus brute-force attackers need to use additional information to
determine whether they indeed found the correct key.

At the end of their paper, Juels and Ristenpart leave as an open question the adaptation of honey
encryption to natural language messages. A recent paper by Chatterjee et al. [CBJR15] takes a mild
attempt at the challenge and constructs a natural language honey encryption scheme relying on simple
models for passwords.

In this paper we explain why this approach cannot be extended to reasonable-size human-written
documents e.g. e-mails. We propose an alternative solution and evaluate its security.

Note: To appear in the proceedings of Mycrypt 2016 [MRN16]: Paradigm-shifting Crypto. Section 6.2
of this thesis.

3.1.4 Generalization & Applications of Hierarchical Identity-Based Encryption (HIBE)

Compact CCA2-Secure Hierarchical ID-Based Broadcast Encryption with Public Ci-
phertext Test

with Weiran Liu, Jianwei Liu, Qianhong Wu, Bo Qin and David Naccache

3.2 Additional Results 33
Abstract. This paper generalizes the concept of Hierarchical Identity-Based Encryption (HIBE) by
proposing a new primitive called Hierarchical Identity-Based Broadcast Encryption (HIBBE). Similar to
HIBE, HIBBE organizes users in a tree-like structure and users can delegate their decryption capability
to their subordinates, which mirrors real-world hierarchical social organizations. Unlike HIBE merely
allowing a single decryption path, HIBBE enables encryption to any subset of the users and only the
intended users (and their supervisors) can decrypt. We define Ciphertext Indistinguishability against
Adaptively Chosen-Identity-Vector-Set and Chosen-Ciphertext Attack (IND-CIVS-CCA2) which capture
the most powerful attacks on HIBBE in the real world. We achieve this goal in the standard model in
two steps. We first construct an efficient HIBBE Scheme (HIBBES) against Adaptively Chosen-Identity-
Vector-Set and Chosen-Plaintext Attack (IND-CIVS-CPA) in which the attacker is not allowed to query
the decryption oracle. Then we convert it into an IND-CIVS-CCA2 scheme at only a marginal cost, i.e.,
merely adding one on-the-fly dummy user at the first depth of hierarchy in the basic scheme without
requiring any other cryptographic primitives. Furthermore, our CCA2-secure scheme natively allows
public ciphertext validity test, which is a useful property when a CCA2-secure HIBBES is used to design
advanced protocols.

Note: To appear in Information Sciences 2016 (accepted). Published as an IACR ePrint [LLW+16b].
Section 6.3 of this thesis.

Improving Thomlinson-Walker’s Software Patching Scheme Using Standard Cryp-
tographic and Statistical Tools

with Michel Abdalla, Hervé Chabanne, Julien Jainski and David Naccache

Abstract. This talk will illustrate how standard cryptographic techniques can be applied to real-life
security products and services. This article presents in detail one of the examples given in the talk. It is
intended to help the audience follow that part of our presentation. We chose as a characteristic example a
little noticed yet ingenious Microsoft patent by Thomlinson and Walker. The Thomlinson-Walker system
distributes encrypted patches to avoid reverse engineering by opponents (who would then be able to
launch attacks on unpatched users). When the proportion of users who downloaded the encrypted patch
becomes big enough, the decryption key is disclosed and all users install the patch.

Note. Published in the proceedings of the 10th International Conference on Information Security Practice
and Experience (ISPEC) 2014 [MHH+14]. Section 6.4 of this thesis.

3.2 Additional Results

Several other papers, more related to the areas of information security and efficient implementations
[GHNK16], [CFN13], [CFGN16a], [AAF+15; AAF+16], [FGM+15b; HRD+16], [FGM+15a], [BBC+14a;
BBC+14b], [BFG+14; BFG+16] are not part of this thesis.

3.2.1 Trusted Computing for Embedded Devices: Defenses & Attacks

Secure Application Execution in Mobile Devices

with Mehari G. Msgna, Raja Naeem Akram, Konstantinos Markantonakis

34 Results & Contributions 3.2
Abstract. Smart phones have rapidly become hand-held mobile devices capable of sustaining multiple
applications. Some of these applications allow access to services including health care, financial, online
social networks and are becoming common in the smart phone environment. From a security and
privacy point of view, this seismic shift is creating new challenges, as the smart phone environment is
becoming a suitable platform for security- and privacy-sensitive applications. The need for a strong
security architecture for this environment is becoming paramount, especially from the point of view of
Secure Application Execution (SAE). In this chapter, we explore SAE for applications on smart phone
platforms, to ensure application execution is as expected by the application provider. Most of the
proposed SAE proposals are based on having a secure and trusted embedded chip on the smart phone.
Examples include the GlobalPlatform Trusted Execution Environment, M-Shield and Mobile Trusted
Module. These additional hardware components, referred to as secure and trusted devices, provide a
secure environment in which the applications can execute security-critical code and/or store data. These
secure and trusted devices can become the target of malicious entities; therefore, they require a strong
framework that will validate and guarantee the secure application execution. This chapter discusses
how we can provide an assurance that applications executing on such devices are secure by validating
the secure and trusted hardware.

Note. Published in [GHNK16].

ARMv8 Shellcodes from ‘A’ to ‘Z’

with Hadrien Barral, Rémi Géraud, Georges-Axel Jaloyan and David Naccache

Abstract. We describe a methodology to automatically turn arbitrary ARMv8 programs into alphanu-
meric executable polymorphic shellcodes. Shellcodes generated in this way can evade detection and
bypass filters, broadening the attack surface of ARM-powered devices such as smartphones.

Note. Published in [BFG+14]. To appear in the proceedings of the 12th International Conference on
Information Security Practice and Experience (ISPEC) 2016 [BFG+16]

3.2.2 Creating Covert Channels & Preventing Their Exploitation

Communicating Covertly through CPU Monitoring

with Jean-Michel Cioranesco and David Naccache

Abstract. Covert channels, introduced by Lampson [W73] are communication channels not intended
for information transfer. [W73] was the first to point out that varying the input/output computing ratio
of a CPU could allow covert information exchange.

Recently Okamura and Oyama presented a CPU load covert channel between Xen virtual machines
[KY10] where clients are connecting to different virtual machines running on the same physical CPU-core.

This covert channel exploits the fact client Alice is paused when client Bob is scheduled, allowing Bob to
know if Alice is computing something.

In this column we investigate CPU load covert channels between clients running on a multi-core machine.
We will show that how covert channels using CPU load are also possible between clients connected to a
multi-core remote server.

Note. Published in the proceedings of IEEE Computer Society 2013 [CFN13].

3.2 Additional Results 35
Process Table Covert Channels: Exploitation and Countermeasures

with Jean-Michel Cioranesco and Rémi Géraud and David Naccache

Abstract. How to securely run untrusted software? A typical answer is to try to isolate the actual
effects this software might have. Such counter-measures can take the form of memory segmentation,
sandboxing or visualization. Besides controlling potential damage this software might do, such methods
try to prevent programs from peering into other running programs’ operation and memory.

As programs, no matter how many layers of indirection in place, are really being run, they consume
resources. Should this resource usage be precisely monitored, malicious programs might be able to
communicate in spite of software protections.

We demonstrate the existence of such a covert channel bypassing isolation techniques and IPC poli-
cies. This covert channel that works over all major consumer OSes (Windows, Linux, MacOS) and
relies on exploitation of the process table. We measure the bandwidth of this channel and suggest
countermeasures.

Note. Published as an IACR ePrint [CFGN16a].

The Conjoined Microprocessor

with Ehsan Aerabi, A. Elhadi Amirouche, Rémi Géraud, David Naccache and Jean Vuillemin

Abstract. Over the last twenty years, the research community has devised sophisticated methods for
retrieving secret information from side-channel emanations, and for resisting such attacks. This paper
introduces a new CPU architecture called the Conjoined Microprocessor. The Conjoined Microprocessor
randomly interleave the execution of two programs at very low extra hardware cost. We developed
for the Conjoined Microprocessor a pre-processor tool that turns a target algorithm into two (or more)
separate queues like Q0 and Q1 that can run in alternation. Q0 and Q1 fulfill the same operation as the
original target algorithm.

Power-analysis resistance is achieved by randomly alternating the execution of Q0 and Q1, with different
runs resulting in different interleaving. Experiments reveal that this architecture is indeed effective
against CPA.

Note. Published as an IACR ePrint and in the proceedings of IEEE International Symposium on Hardware
Oriented Security and Trust (HOST) 2016 [AAF+15; AAF+16].

3.2.3 Efficient Hardware & Software Implementations

Regulating the Pace of von Neumann Correctors

with Jean-Michel Cioranesco, Rémi Géraud and David Naccache

Abstract. In a celebrated paper published in 1951 [Neu51], von Neumann presented a simple procedure
allowing to correct the bias of random sources. This procedure introduces latency between the random
outputs. On the other hand, algorithms such as stream ciphers, block ciphers or even modular multipliers
usually run in a number of clock cycles which is independent of the operands’ values: Feeding such
HDL blocks with the inherently irregular output of such de-biased sources frequently proves tricky.

36 Results & Contributions 3.2
We propose an algorithm to compensate these irregularities, by storing or releasing numbers at given
intervals of time. This algorithm is modeled as a special queue that achieves zero blocking probability
and a near-deterministic service distribution (i.e. of minimal variance).

While particularly suited to cryptographic applications, for which it was designed, this algorithm also
applies to a variety of contexts and constitutes an example of queue for which the buffer allocation
problem is feasible.

Note. Published as an IACR ePrint [FGM+15a].

Backtracking-Assisted Multiplication

with Rémi Géraud, Diana Maimuţ, David Naccache and Hang Zhou

Abstract. This paper describes a new multiplication algorithm, particularly suited to lightweight
microprocessors when one of the operands is known in advance. The method uses backtracking to find a
multiplication-friendly encoding of one of the operands.

A 68HC05 microprocessor implementation shows that the new algorithm indeed yields a twofold speed
improvement over classical multiplication for 128-byte numbers.

Note. Published as an IACR ePrint and in the pre-proceedings of ArcticCrypt 2016 [FGM+15b; HRD+16].

New Algorithmic Approaches to Point Constellation Recognition

with Thomas Bourgeat, Julien Bringer, Herve Chabanne, Robin Champenois, Jeremie Clement, Marc Heinrich,
Paul Melotti, David Naccache and Antoine Voizard

Abstract. Point constellation recognition is a common problem with many pattern matching applica-
tions. Whilst useful in many contexts, this work is mainly motivated by fingerprint matching. Finger-
prints are traditionally modeled as constellations of oriented points called minutiae. The fingerprint
verifier’s task consists in comparing two point constellations. The compared constellations may differ by
rotation and translation or by much more involved transforms such as distortion or occlusion. This paper
presents three new constellation matching algorithms. The first two methods generalize an algorithm
by Bringer and Despiegel. Our third proposal creates a very interesting analogy between mechanical
system simulation and the constellation recognition problem.

Note. Published as an arXiv pre-print and in the proceedings of the ICT Systems Security and Privacy
Protection: 29th IFIP TC 11 International Conference, (SEC) 2014 [BBC+14a; BBC+14b].

3.2.4 Finding Security Flaws in Server Software

Security Researcher Acknowledgments Recipient from Microsoft Online Services.

Note. Officially listed on Microsoft’s corporate website for finding and reporting a critical flaw in
Microsoft OneDrive (March 2016 Security Researchers). As per a legal agreement with Microsoft, the
details of this security flaw are confidential.

https://technet.microsoft.com/en-us/security/cc308575

https://technet.microsoft.com/en-us/security/cc308575

3.3 Personal Bibliography 37

3.3 Personal Bibliography

3.3.1 Journal Papers

[CFN13] Jean-Michel Cioranesco, Houda Ferradi, and David Naccache. « Communicating Covertly
through CPU Monitoring ». In: IEEE Security and Privacy 11.6 (2013), pp. 71–73.

[HRDA16] Ferradi Houda, Géraud Rémi, Naccache David, and Tria Assia. « When organized crime
applies academic results: a forensic analysis of an in-card listening device ». In: Journal of
Cryptographic Engineering 6.1 (2016), pp. 49–59. ISSN: 2190-8516. DOI: 10.1007/s13389-
015-0112-3. URL: http://dx.doi.org/10.1007/s13389-015-0112-3.

3.3.2 Conference Papers

[BBC+14a] Thomas Bourgeat, Julien Bringer, Hervé Chabanne, Robin Champenois, Jérémie Clément,
Houda Ferradi, Marc Heinrich, Paul Melotti, David Naccache, and Antoine Voizard. « New
Algorithmic Approaches to Point Constellation Recognition ». In: ICT Systems Security and
Privacy Protection: 29th IFIP TC 11 International Conference, SEC 2014, Marrakech, Morocco,
June 2-4, 2014. Proceedings. Ed. by Nora Cuppens-Boulahia, Frédéric Cuppens, Sushil Jajodia,
Anas Abou El Kalam, and Thierry Sans. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 80–90. ISBN: 978-3-642-55415-5. DOI: 10.1007/978-3-642-55415-5_7. URL:
http://dx.doi.org/10.1007/978-3-642-55415-5_7.

[MHH+14] Abdalla Michel, Chabanne Hervé, Ferradi Houda, Jainski Julien, and Naccache David. « Im-
proving Thomlinson-Walker’s Software Patching Scheme Using Standard Cryptographic
and Statistical Tools ». In: Information Security Practice and Experience: 10th International Con-
ference, ISPEC 2014, Fuzhou, China, May 5-8, 2014. Proceedings. Ed. by Huang Xinyi and Zhou
Jianying. Cham: Springer International Publishing, 2014, pp. 8–14. ISBN: 978-3-319-06320-1.
DOI: 10.1007/978-3-319-06320-1_2. URL: http://dx.doi.org/10.1007/978-
3-319-06320-1_2.

[AAF+16] Ehsan Aerabi, A. Elhadi Amirouche, Houda Ferradi, Rémi Géraud, David Naccache, and
Jean Vuillemin. « The Conjoined Microprocessor ». In: 2016 IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2016, McLean, VA, USA, May 3-5, 2016. Ed. by
Ryan A. Peter Y., Naccache David, and Quisquater Jean-Jacques. IEEE, 2016, pp. 67–70.
ISBN: 978-3-662-49301-4. DOI: 10.1109/HST.2016.7495558. URL: http://dx.doi.
org/10.1109/HST.2016.7495558.

[BFG+16] Hadrien Barral, Houda Ferradi, Rémi Géraud, Georges-Axel Jaloyan, and David Naccache.
« ARMv8 Shellcodes from ‘A’ to ‘Z’ ». In: The 12th International Conference on Information
Security Practice and Experience (ISPEC 2016) Zhangjiajie, China, November 16-18, 2016. Pro-
ceedings. Ed. by Chen Liqun and H. Robert Deng. Cham: Springer International Publishing,
2016.

[CFGN16b] Simon Cogliani, Houda Ferradi, Rémi Géraud, and David Naccache. « Thrifty Zero-
Knowledge - When Linear Programming Meets Cryptography ». In: The 12th International
Conference on Information Security Practice and Experience (ISPEC 2016) Zhangjiajie, China,
November 16-18, 2016. Proceedings. Ed. by Chen Liqun and H. Robert Deng. Cham: Springer
International Publishing, 2016.

[FGM+16a] Houda Ferradi, Rémi Géraud, Diana Maimuţ, David Naccache, and David Pointcheval.
« Legally Fair Contract Signing Without Keystones ». In: Applied Cryptography and Network
Security: 14th International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceed-
ings. Ed. by Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider. Cham: Springer
International Publishing, 2016, pp. 175–190. ISBN: 978-3-319-39555-5. DOI: 10.1007/978-
3-319-39555-5_10. URL: http://dx.doi.org/10.1007/978-3-319-39555-
5_10.

http://dx.doi.org/10.1007/s13389-015-0112-3
http://dx.doi.org/10.1007/s13389-015-0112-3
http://dx.doi.org/10.1007/s13389-015-0112-3
http://dx.doi.org/10.1007/978-3-642-55415-5_7
http://dx.doi.org/10.1007/978-3-642-55415-5_7
http://dx.doi.org/10.1007/978-3-319-06320-1_2
http://dx.doi.org/10.1007/978-3-319-06320-1_2
http://dx.doi.org/10.1007/978-3-319-06320-1_2
http://dx.doi.org/10.1109/HST.2016.7495558
http://dx.doi.org/10.1109/HST.2016.7495558
http://dx.doi.org/10.1109/HST.2016.7495558
http://dx.doi.org/10.1007/978-3-319-39555-5_10
http://dx.doi.org/10.1007/978-3-319-39555-5_10
http://dx.doi.org/10.1007/978-3-319-39555-5_10
http://dx.doi.org/10.1007/978-3-319-39555-5_10

38 Results & Contributions 3.3
[FGN16b] Houda Ferradi, Rémi Géraud, and David Naccache. « Slow Motion Zero Knowledge

Identifying with Colliding Commitments ». In: Information Security and Cryptology: 11th
International Conference, Inscrypt 2015, Beijing, China, November 1-3, 2015, Revised Selected
Papers. Ed. by Dongdai Lin, XiaoFeng Wang, and Moti Yung. Cham: Springer International
Publishing, 2016, pp. 381–396. ISBN: 978-3-319-38898-4. DOI: 10.1007/978-3-319-
38898-4_22. URL: http://dx.doi.org/10.1007/978-3-319-38898-4_22.

[GHNK16] Msgna Mehari G., Ferradi Houda, Akram Raja Naeem, and Markantonakis Konstantinos.
« Secure Application Execution in Mobile Devices ». In: The New Codebreakers: Essays Dedi-
cated to David Kahn on the Occasion of His 85th Birthday. Ed. by Ryan A. Peter Y., Naccache
David, and Quisquater Jean-Jacques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp. 417–438. ISBN: 978-3-662-49301-4. DOI: 10.1007/978-3-662-49301-4_26. URL:
http://dx.doi.org/10.1007/978-3-662-49301-4_26.

[HRD+16] Ferradi Houda, Géraud Rémi, Maimuţ Diana, Naccache David, and Zhou Hang.
« Backtracking-Assisted Multiplication ». In: Arctic Crypt 2016, July 17-22, Longyearbyen,
Svalbard, Norway. Pre-Proceedings. 2016.

[HRN16] Ferradi Houda, Géraud Rémi, and David Naccache. « Human Public-Key Encryption ».
In: Mycrypt 2016: Paradigm-shifting Crypto Kuala Lumpur, Malaysia, December 1-2, 2016.
Proceedings. Ed. by Phan Raphael C.-W. and Yung Moti. Springer International Publishing,
2016.

[MRN16] Ferradi Houda Marc Beunardeau, Géraud Rémi, and David Naccache. « Honey Encryption
for Language: Robbing Shannon to Pay Turing? » In: Mycrypt 2016: Paradigm-shifting Crypto
Kuala Lumpur, Malaysia, December 1-2, 2016. Proceedings. Ed. by Phan Raphael C.-W. and
Yung Moti. Springer International Publishing, 2016.

3.3.3 Manuscripts & Pre-Prints

[BFG+14] Hadrien Barral, Houda Ferradi, Rémi Géraud, Georges-Axel Jaloyan, and David Naccache.
ARMv8 Shellcodes from ‘A’ to ‘Z’. CoRR, abs/1608.03415. http://arxiv.org/abs/1608.
03415. 2014.

[BBC+14b] Thomas Bourgeat, Julien Bringer, Hervé Chabanne, Robin Champenois, Jérémie Clément,
Houda Ferradi, Marc Heinrich, Paul Melotti, David Naccache, and Antoine Voizard. New
Algorithmic Approaches to Point Constellation Recognition. CoRR, abs/1405.1402. http://
arxiv.org/abs/1405.1402. 2014.

[AAF+15] Ehsan Aerabi, A. Elhadi Amirouche, Houda Ferradi, Rémi Géraud, David Naccache, and
Jean Vuillemin. The Conjoined Microprocessor. Cryptology ePrint Archive, Report 2015/974.
http://eprint.iacr.org/2015/974. 2015.

[FGM+15a] Houda Ferradi, Rémi Géraud, Diana Maimuţ, David Naccache, and Amaury de Wargny.
Regulating the Pace of von Neumann Correctors. Cryptology ePrint Archive, Report 2015/849.
http://eprint.iacr.org/2015/849. 2015.

[FGM+15b] Houda Ferradi, Rémi Géraud, Diana Maimuţ, David Naccache, and Hang Zhou.
Backtracking-Assisted Multiplication. Cryptology ePrint Archive, Report 2015/787. http:
//eprint.iacr.org/2015/787. 2015.

[FGNT15] Houda Ferradi, Rémi Géraud, David Naccache, and Assia Tria. When Organized Crime
Applies Academic Results - A Forensic Analysis of an In-Card Listening Device. Cryptology
ePrint Archive, Report 2015/963. http://eprint.iacr.org/2015/963. 2015.

[CFGN16a] Jean-Michel Cioranesco, Houda Ferradi, Rémi Géraud, and David Naccache. Process Ta-
ble Covert Channels: Exploitation and Countermeasures. Cryptology ePrint Archive, Report
2016/227. http://eprint.iacr.org/2016/227. 2016.

[CFH+16] Simon Cogliani, Bao Feng, Ferradi Houda, Rémi Géraud, Diana Maimuţ, David Naccache,
Rodrigo Portella do Canto, and Guilin Wang. Public-Key Based Lightweight Swarm Authenti-
cation. Cryptology ePrint Archive, Report 2016/750. http://eprint.iacr.org/2016/
750. 2016.

[CFGN16c] Simon Cogliani, Houda Ferradi, Rémi Géraud, and David Naccache. Thrifty Zero-Knowledge
- When Linear Programming Meets Cryptography. Cryptology ePrint Archive, Report 2016/443.
http://eprint.iacr.org/2016/443. 2016.

http://dx.doi.org/10.1007/978-3-319-38898-4_22
http://dx.doi.org/10.1007/978-3-319-38898-4_22
http://dx.doi.org/10.1007/978-3-319-38898-4_22
http://dx.doi.org/10.1007/978-3-662-49301-4_26
http://dx.doi.org/10.1007/978-3-662-49301-4_26
http://arxiv.org/abs/1608.03415
http://arxiv.org/abs/1608.03415
http://arxiv.org/abs/1405.1402
http://arxiv.org/abs/1405.1402
http://eprint.iacr.org/2015/974
http://eprint.iacr.org/2015/849
http://eprint.iacr.org/2015/787
http://eprint.iacr.org/2015/787
http://eprint.iacr.org/2015/963
http://eprint.iacr.org/2016/227
http://eprint.iacr.org/2016/750
http://eprint.iacr.org/2016/750
http://eprint.iacr.org/2016/443

3.3 Personal Bibliography 39
[FGM+16b] Houda Ferradi, Rémi Géraud, Diana Maimuţ, David Naccache, and David Pointcheval.

Legally Fair Contract Signing Without Keystones. Cryptology ePrint Archive, Report 2016/363.
http://eprint.iacr.org/2016/363. 2016.

[FGN16a] Houda Ferradi, Rémi Géraud, and David Naccache. Slow Motion Zero Knowledge Identi-
fying With Colliding Commitments. Cryptology ePrint Archive, Report 2016/399. http:
//eprint.iacr.org/2016/399. 2016.

[LLW+16b] Weiran Liu, Jianwei Liu, Qianhong Wu, Bo Qin, David Naccache, and Houda Ferradi.
Compact CCA2-secure Hierarchical Identity-Based Broadcast Encryption for Fuzzy-entity Data
Sharing. Cryptology ePrint Archive, Report 2016/634. http://eprint.iacr.org/
2016/634. 2016.

http://eprint.iacr.org/2016/363
http://eprint.iacr.org/2016/399
http://eprint.iacr.org/2016/399
http://eprint.iacr.org/2016/634
http://eprint.iacr.org/2016/634

40 Results & Contributions 3.3

CHAPTER 4

DESIGNING INTEGRITY PRIMITIVES

Summary

This chapter presents our research results in the area of integrity.

The core result of this chapter 1, detailed in Section 4.1, is a new attestation primitive allowing to prove the
proper generation of RSA public keys. RSA public keys are central to many cryptographic applications;
hence their validity is of primary concern to the scrupulous cryptographer. The most relevant properties
of an RSA public key (n, e) depend on the factors of n: are they properly generated primes? are they large
enough? is e co-prime with φ(n)? etc. And of course, it is out of question to reveal n’s factors.

Generic non-interactive zero-knowledge (NIZK) proofs can be used to prove such properties. However,
NIZK proofs are not practical at all. Typically, such protocols turn out to be very specialized, and may
not always be applicable (e.g., for some small values of e). For some very specific properties, specialized
proofs exist but such ad hoc proofs are naturally hard to generalize.

Section 4.1 proposes a new type of general-purpose compact non-interactive proofs, called attestations,
allowing the key generator to convince any third party that n was properly generated. The proposed
construction applies to any prime generation algorithm, and is provably secure in the Random Oracle
Model.

As a typical implementation instance, for a 138-bit security, verifying or generating an attestation requires
k = 1024 prime generations. For this instance, each processed message will later need to be signed or
encrypted 14 times by the final users of the attested moduli.

The second result in this chapter 2, detailed in Section 4.2, is a new form of contract co-signature, called
legal fairness, that does not rely on third parties or arbitrators. The proposed protocol is efficient, compact,
fully distributed, fully dynamic, and provably secure in the Random Oracle Model. The protocol is
illustrated for two parties using Schnorr’s signature scheme.

In two-party computation, achieving both fairness and guaranteed output delivery is well known to be
impossible. Despite this limitation, many approaches provide solutions of practical interest by weakening
somewhat the fairness requirement. Such approaches fall roughly in three categories: “gradual release”
schemes assume that the aggrieved party can eventually reconstruct the missing information; “optimistic
schemes” assume a trusted third party arbitrator that can restore fairness in case of litigation; and
“concurrent” or “legally fair” schemes in which a breach of fairness is compensated by the aggrieved
party having a digitally signed cheque from the other party (called the keystone). Section 4.2 describes
and analyses a new contract signing paradigm that doesn’t require keystones to achieve legal fairness,
and give a concrete construction based on Schnorr signatures which is compatible with standard Schnorr
signatures and provably secure.

1. Co-authored with Fabrice Ben Hamouda, Rémi Géraud and David Naccache.
2. Co-authored with Rémi Géraud, Diana Maimuţ, David Naccache and David Pointcheval.

41

42 Designing Integrity Primitives 4.0
In a way these two results complement each other: attestation certifies the integrity of computation
whereas legal fairness certifies the integrity of interaction.

4.1 Non-Interactive Attestations for Arbitrary RSA Prime Generation Algorithms 43

4.1 Non-Interactive Attestations for Arbitrary RSA Prime Genera-
tion Algorithms

4.1.1 Introduction

When provided with an RSA public key n, establishing that n is hard to factor might seem challenging:
indeed, most of n’s interesting properties depend on its secret factors, and even given good arithmetic
properties (large prime factors, etc.) a subtle backdoor may still be hidden in n or e [And93; YY96; YY97;
YY05a; YY05b].

Several approaches, mentioned below, focused on proving as many interesting properties as possible
without compromising n. However, such proofs are limited in two ways: first, they might not always be
applicable — for instance [KKM12; BY96; BY93] cannot prove that (n, e) define a permutation when e is
too small. In addition, these ad hoc proofs are extremely specialized. If one wishes to prove some new
property of n’s factors, that would require modeling this new property and looking for a proper form of
proof.

This section proposes a new kind of general-purpose compact non-interactive proof ωn, called attestation.
An attestation allows the key generator to convince any third party that n was properly generated.
The corresponding construction, called an attestation scheme, applies to any prime generation algorithm
G(1P , r) where r denotes G’s random tape, and P the size of the generated primes. The method can, for
instance, attest that n is composed of primes as eccentric as those for which b9393 sin4(p3)c = 3939.

More importantly, our attestation scheme provides the first efficient way to prove that (n, e) defines a
permutation for a small e, by making G only output primes p such that e is coprime with p− 1.

Our construction is provably secure in the Random Oracle Model. While polynomial, attestation and
verification claim an important (yet feasible) computational effort. This might not be an issue given that
attestation typically occurs only once during n’s lifetime.

We present two variants: In the first, a valid attestation ωn ensures that n contains at least two P -bit
prime factors generated by G (if n is honestly generated, n must contain ` prime factors, for some integer
` ≥ 2 depending on the security parameter). In the second variant, a valid attestation ωn covers a set of
moduli n = (n1, . . . , nu) and ensures that at least one of these ni is a product of two P -bit prime factors
generated by G.

We show that in most, if not all, cases, one or the other properties are sufficient.

Both variants are unified into a general attestation scheme 3 to encompass the entire gamut of tradeoffs
offered by the concept.

4.1.1.1 Prior Work.

A long thread of papers deals with proving number-theoretic properties of composite moduli. The most
general (yet least efficient) of these use non-interactive zero-knowledge (NIZK) proof techniques [CD98;
GMW87a; BCC88]. Recent work by Groth [GOS06] establishes that there is a perfect NIZK argument
for n being a properly generated RSA modulus. We distinguish between these generic proofs that can,
in essence, prove anything provable [BGG+90] and ad hoc methods allowing to prove proper modulus
generation in faster ways albeit for very specific Gs.

The first ad hoc modulus attestation scheme was introduced by Van de Graff and Peralta [GP88] and
consists in proving that n is a Blum integer without revealing its factors. Boyar, Friedl and Lund [BFL90]
present a proof that n is square-free. Leveraging [GP88; BFL90], Gennaro, Micciancio and Rabin [GMR98]
present a protocol proving that n is the product of two “quasi-safe” primes 4. Camenisch and Michels
[CM99] give an NIZK proof that n is a product of two safe primes. Juels and Guajardo [JJ02] introduce a

3. I.e., use several multi-factor moduli.
4. A prime p is “quasi-safe” if p = 2ua + 1 for a prime u and some integer a.

44 Designing Integrity Primitives 4.1
proof for RSA key generation with verifiable randomness. Besides its complexity, [JJ02]’s main drawback
is that public parameters must be published by a trustworthy authority (TTP). Several authors [Mic93;
BF97; CFT98; Mao98] describe protocols proving that n is the product of two primes p and q, without
proving anything on p, q but their primality. Proving that n = pq is insufficient to ascertain security (for
instance, p may be too short). Hence, several authors (e.g., [LS98; Bou00; FO97; FO98; Mao98; CFT98])
introduced methods allowing to prove that p and q are roughly of identical sizes.

This works takes an entirely different direction: Given any generation procedure G, we prove that G has
been followed correctly during the generation of n. The new approach requires no TTPs, does not rely
on n having any specific properties and attests that the correct prime generation algorithm has been used
— with no restriction whatsoever on how this algorithm works.

As such, the concern of generating proper moduli (e.g. such that (N, e) define a permutation, but what
constitutes a “proper” modulus may depend on the application) is entirely captured by the concern of
choosing G appropriately. Our work merely attests that G was indeed used.

Cryptographic applications of attested RSA moduli abound. We refer the reader to [GMR98] or [Mao98]
for an overview of typical applications of attested moduli. In particular, such concerns are salient in
schemes where an authority is in charge of generating n (e.g. Fiat-Shamir or Guillou-Quisquater) and
distributing private keys to users, or in the design of factoring-based verifiable secret-sharing schemes.

4.1.2 Outline of the Approach

The proposed attestation method is based on the following idea: fix k ≥ 2, generate k random numbers
r1, . . . , rk and define hi = H(i, ri) whereH denotes a hash function. Let pi = G(hi) and:

N =

k∏
i=1

pi

Define (X1, X2) = H′2(N), whereH′2 is a hash function which outputs two indices 1 ≤ X1 < X2 ≤ k. We
later show how to construct such anH′2. This defines n = pX1 × pX2 and

ωn = {r1, r2, . . . , rX1−1, ?, rX1+1, . . . , rX2−1, ?, rX2+1, . . . , rk}

Here, a star symbol (?) denotes a placeholder used to skip one index. The data ωn is called the attestation
of n. The algorithm A used to obtain ωn is called an attestator.

The attestation process is illustrated in Figure 4.1: the choice of the ri determines N , which is split into
two parts: n and N/n. Splitting is determined by d, which is the digest of N , and is hence unpredictable
for the opponent.

r1 h1 p1...
...

...
rX1 hX1 pX1...

...
... N d = {X1, X2}

rX2 hX2 pX2...
...

...
rk hk pk

H(1, r1) G(h1)

H(X1, rX1
) G(hX1

)

H(X2, rX2
) G(hX2

)

H(k, rk) G(hk)

H′
2(N)×

Figure 4.1 – The approach used to generate and validate an attestation.

Verifying the validity of such an attestation ωn is performed as follows: all (non-star) values ri in ωn
are fed to G to generate primes, that are multiplied together and by n. This gives back N . If by hashing

4.1 Non-Interactive Attestations for Arbitrary RSA Prime Generation Algorithms 45
N and reading, as earlier, the digest of N (denoted d) as two values X1 and X2, we get the two exact
starred positions X1 and X2 in ωn, then ωn is valid; else ωn is invalid. The algorithm V we just described
is called a validator. It is very similar to the attestator Amentioned above.

For a subtle reason, the ri’s are pre-processed into a set of values hi before being fed into G. The values
hi are generated by hashing the input ris with their positions i. This serves two purposes: first, the hash
welds together ri and its position i in the list, which prevents the opponent from shuffling the pis to his
advantage; second, hashing prevents the opponent from manipulating the ri’s to influence G’s output.

Evidently, as presented here, the method requires a very large k to achieve a high enough security
level. The attacker, who chooses X1, X2, is expected to perform k(k − 1)/2 operations to succeed. We
circumvent this limitation using two techniques:

— The first technique uses ` indices X1, . . . , X` and not only ` = 2. In RSA, security depends on the
fact that n contains at least two properly formed prime factors. Hence we can afford to shorten
k by allowing more factors in n. The drawback of using `-factor moduli is an significant user
slow-down as most factoring-based cryptosystems run in O(log3 n). Also, by doing so, we prove
that n contains a properly formed modulus rather than that n is a properly formed modulus.

— A second strategy consists in using 2u indices to form u moduli n1, . . . , nu. Here, each user will
be given u moduli and will process 5 each message u times. Thereby, total signature size and
slow-down are only linear in `. Encryption is more tricky: while for properly signing a message
it suffices that at least one ni is secure, when encrypting a message all ni must be secure. Hence,
to encrypt, the sender will pick u session keys κi, encrypt each κi using ni, and form the global
session-key κ = κ1 ⊕ . . .⊕ κu. The target message will then be encrypted (using a block-cipher)
using κ. In other words, it suffices to have at least one factoring-resistant ni to achieve message
confidentiality. Interestingly, to be secure a signature conceptually behaves as a logical “or”, while
encryption behaves as a logical “and”.

The size of ωn is also a concern in this simple outline. Indeed, as presented here ωn is O(kR) bits large,
where R represents the bit size of the ri 6. Given the previous remark on k being rather large, this would
result in very large attestations. Luckily, it turns out that attestation size can be reduced to O(R log k)
using hash trees, as we explain in Section 4.1.6.

4.1.2.1 Note.

Multiplication in N is one implementation option. All we need is a completely multiplicative operation. For
instance, as we have: (

a

N

)
=

(
a

p1

)(
a

p2

)
· · ·
(
a

pk

)
,

the hash of the product of the Jacobi symbols of the pi with respect to the first primes aj = 2, 3, 5, . . . 7

can equally serve as an index generator.

Before we proceed note that when generating a complete RSA key pair (n, e), it is important to ascertain
that gcd(e, φ(n)) = 1. This constraint is easy to integrate into G 8. All in all, what we prove is that with
high probability, the key was generated by the desired algorithm G, whichever this G happens to be.

4.1.3 Model and Analysis

4.1.3.1 Preliminaries and Notations

We now formally introduce the tools using which the method sketched in Section 4.1.2 is rigorously
described and analyzed.

5. Sign, verify, encrypt, or decrypt.
6. Because G may destroy entropy, R must be large enough to make the function G(H(i, r)) is collision resistant.
7. This product is actually an aj -wise exclusive-or.
8. A simple way to do so consists in re-running G with ri‖j (instead of ri) for j = 1, 2, . . . until gcd(pi − 1, e) = 1.

46 Designing Integrity Primitives 4.1
Throughout this section, λ will denote a security parameter. The expression polynomial time will always
refer to λ. The construction uses two cryptographic hash functions: a classical hash functionH : {0, 1}∗ →
{0, 1}R and a second hash functionH′d : {0, 1}∗ → Sd where Sd is the set of subsets of {1, . . . , k} of size
d (for some positive integer d and k). H′ can be constructed from a classical hash function using an
unranking function [SW86] (see Appendix 4.1.9). Both hash functions will be modeled as random oracles
in the security analysis.

Let k ≥ 2. Moreover our attestation and validation algorithms always implicitly take λ as input. We
denote by |a| the bit size of a.

Let G(1P , r) be a polynomial-time algorithm which, on input of a unary size P and of a random seed
r ∈ {0, 1}R produces a prime or a probably prime p of size P . The argument 1P is often omitted, for the
sake of simplicity. The size P of the primes is supposed to be a function of λ. We write r1

$← {0, 1}R to
indicate that the seed r1 is chosen uniformly at random from {0, 1}R.

An attestation scheme for G is a pair of two algorithms (A,V), where
— A is an attestation algorithm which takes as input k random entries (r1, . . . , rk ∈ {0, 1}R, in the

sequel) and which outputs a tuple of moduli n = (n1, . . . , nu) along with a bit string ωn, called an
attestation; u and k are integer parameters depending on λ; when u = 1, n1 is denoted n;

— V is a validation algorithm which takes as input a tuple of moduli n = (n1, . . . , nu) together with
an attestation ωn. V checks ωn, and outputs True or False.

An attestation scheme must comply with the following properties:

— Randomness. If r1, . . . , rk are independent uniform random values,A(1λ, r1, . . . , rk) should output
a tuple of moduli n = (n1, . . . , nu) where each ni is the product of ` random primes generated by
G. The positive integer ` ≥ 2 is a parameter depending on λ. More formally the two following
distributions should be statistically indistinguishable:

{
n = (n1, . . . , nu)

∣∣∣∣ (r1, . . . , rk)
$← {0, 1}R

(n1, . . . , nu, ωn)← A(r1, . . . , rk)

}
{
n = (n1, . . . , nu)

∣∣∣∣ (r1, . . . , r`u)
$← {0, 1}R

n1 ← G(r1) · · · G(r`), . . . , nu ← G(r(u−1)`+1) · · · G(ru`)

}
— Correctness. The validator V always accepts an attestation honestly generated by the attestator A.

More precisely, for all r1, . . . , rk:

V
(
A(1λ, r1, . . . , rk)

)
= True.

— Soundness. No polynomial-time adversary F can output (with non-negligible probability) a
tuple n = (n1, . . . , nu) and a valid attestation ωn such that no ni contains at least two prime
factors generated by G with two distinct random seeds. More formally, for any polynomial-time
adversary F , the soundness advantage Advsnd(F) defined as

Pr

(n = (n1, . . . , nu), ωn)
$← F(1λ)

∣∣∣∣∣∣
V(n1, . . . , nu, ωn) = True and
∀i = 1, . . . , u, @s1, s2 ∈ {0, 1}R,

s1 6= s2 and G(s1) · G(s2) divides ni

is negligible in λ.

We remark that when it is hard to find two seeds s1 and s2 such that G(s1) = G(s2), then soundness
basically means that one of the ni’s contains a product of two distinct primes generated by G. In addition,
when ` = 2, if V rejects moduli of size different from 2P (the size of a honestly generated modulus), one
of the ni’s is necessarily exactly the product of two prime factors generated by G.

Table 4.1 summarizes the various parameters used in our construction (all are supposed to be function of
λ). We now describe the following two variants:

— The multi-prime variant, where A only outputs one modulus (i.e. u = 1);
— The multi-modulus variant, where A outputs u ≥ 2 two-factor moduli (i.e. ` = 2).

4.1 Non-Interactive Attestations for Arbitrary RSA Prime Generation Algorithms 47

Table 4.1 – Summary of the various parameters

λ security parameter (all the other parameters are function of λ)

P size of prime numbers pi generated by G
R size of the seed used by G to generate a prime number

k number of primes generated by the attestator A, which is the dominating cost of A
u number of moduli output by A (u = 1 in the multi-prime variant, and u ≥ 2 in the

multi-modulus variant)

` number of factors of each modulus ni: |ni| = `P

Algorithm 1 Attestator A for the Multi-Prime Attestation Scheme (u = 1) with ` = 2

Input: r1, . . . , rk
Output: n, ωn
N ← 1
for all i = 1 to k do
hi ← H(i, ri)
pi ← G (hi)
N ← N × pi

end for
X1, X2 ← H′2(N)
ωn ← {r1, . . . , rX1−1, ?, rX1+1, . . . , rX2−1, ?, rX2+1, . . . , rk}
n← pX1

× pX2

return n, ωn

4.1.3.2 Multi-Prime Attestation Scheme (u = 1)

We now describe the algorithms A and V that generate and verify, respectively, an attestation along with
an RSA public key, when u = 1 (only one modulus is generated). Algorithms in this Section are given for
` = 2 (corresponding to the common case where n = pq) for the sake of clarity and as a warm-up.

Algorithms for arbitrary ` are particular cases of the general algorithms described in Section 4.1.4.1.

In Algorithms 1 and 2, a star symbol (?) denotes a placeholder used to skip one index.

4.1.3.2.1 Generating an Attestation. The attestator A is described in Algorithm 1. A callsH and G.

In this setting, the attestation has size k. This size is reduced to log k using hash trees as described in
Section 4.1.6.

4.1.3.2.2 Verifying an Attestation. The validator V is described in Algorithm 2. V calls the sameH, G,
and unrank as A.

4.1.3.2.3 Correctness: The his are generated deterministically, therefore so are the pis, and their
product times n yields the correct value of N . unrank is also deterministic, therefore X1 and X2 are the
same in Algorithms 1 and 2.

4.1.3.2.4 Randomness: In the Random Oracle Model (forH), the scheme’s randomness is proven later
in Section 4.1.5.1, as a particular case of the general scheme’s 9 soundness.

9. C.f. Section 4.1.4.1

48 Designing Integrity Primitives 4.1
Algorithm 2 Validator V for the Multi-Prime Attestation Scheme (u = 1) with ` = 2

Input: n, ωn
Output: True or False
N ← n
for all ri 6= ? in ωn do
hi ← H(i, ri)
pi ← G (hi)
N ← N × pi

end for
X1, X2 ← H′2(N)
if rX1

= ? and rX2
= ? and #{ri ∈ ωn s.t. ri = ?} = 2 and |n| = `P then

return True
else

return False
end if

Algorithm 3 Attestator A for the Multi-Modulus Attestation Scheme (u ≥ 2, ` = 2)
Input: r1, . . . , rk
Output: n = (n1, . . . , nu), ωn

N ← 1
for all i = 1 to k do
hi ← H(i, ri)
pi ← G (hi)
N ← N × pi

end for
X1, . . . , X2u ← H′2u(N)
ωn ← {r1, . . . , rX1−1, ?, rX1+1, . . . , rXu`−1, ?, rXu`+1, . . . , rk}
for all j = 1 to u do
nj ← pX2j

× pX2j+1

end for
return n = (n1, . . . , nu), ωn

Algorithm 4 Validator V for the Multi-Modulus Attestation Scheme (u ≥ 2, ` = 2)
Input: n = (n1, . . . , nu), ωn

Output: True or False
N ← n1 × · · · × nu
for all ri 6= ? in ωn do
hi ← H(i, ri)
pi ← G (hi)
N ← N × pi

end for
X1, . . . , X2u ← H′2u(N)
if rj = ? for all j = 1 to u and #{ri s.t. ri = ?} = 2u and |n1| = · · · = |nu| = 2P then

return True
else

return False
end if

4.1.4 Multi-Modulus Attestation Scheme (u ≥ 2, ` = 2)

The second variant consists in generating in a batch u = `/2 bi-factor moduli. The corresponding
attestator and validator are given in Algorithms 3 and 4.

4.1 Non-Interactive Attestations for Arbitrary RSA Prime Generation Algorithms 49
Algorithm 5 Attestator A for the General Attestation Scheme (u ≥ 1, ` ≥ 2)
Input: r1, . . . , rk
Output: n = (n1, . . . , nu), ωn

N ← 1
for all i = 1 to k do
hi ← H(i, ri)
pi ← G (hi)
N ← N × pi

end for
X1, . . . , Xu` ← H′u`(N)
ωn ← {r1, . . . , rX1−1, ?, rX1+1, . . . , rXu`−1, ?, rXu`+1, . . . , rk}
for all j = 1 to u do
nj ← pX(`−1)j+1

× · · · × pX`j
end for
return n = (n1, . . . , nu), ωn

Algorithm 6 Validator V for the General Attestation Scheme (u ≥ 1, ` ≥ 2)
Input: n, ωn

Output: True or False
N ← n1 × · · · × nu
for all ri 6= ? in ωn do
hi ← H(i, ri)
pi ← G (hi)
N ← N × pi

end for
X1, . . . , X2u` ← H′u`(N)
if rXj = ? for j = 1 to ` and #{ri s.t. ri = ?} = u` and |n1| = · · · = |nu| = `P then

return True
else

return False
end if

4.1.4.1 General Attestation Scheme

Algorithms 5 and 6 describe our general attestation scheme, for any u ≥ 1 and ` ≥ 2. The previous
multi-prime and multi-modulus schemes are illustrative particular cases of this scheme.

The correctness and randomness arguments are similar to those of Section 4.1.3.2. In addition, the attestation
has size k. This size is brought down to `u log k using hash-trees as described in Section 4.1.6.

4.1.5 Security and Parameter Choice

4.1.5.1 Security

In this section, we prove that for correctly chosen parameters u, `, k, the general attestation scheme
defined in Section 4.1.4.1 (Algorithms 5 and 6) is sound. We recall that the two other properties required
by an attestation scheme (namely correctness and randomness) were proven in previous sections.

More formally, we have the following theorem:

Theorem 4.1 In the Random Oracle Model, the soundness advantage of an adversary making qH queries toH
and qH′ queries toH′ is at most:

(qH′ + 1) ·
(

`u

k − (`− 1)u+ 1

)(`−1)u

+
qH · (qH − 1)

2
· pG−col ,

50 Designing Integrity Primitives 4.1
where pG−col is the probability that two G(r) = G(s), when r, s $← {0, 1}R.

We point out that pG−col must be small, otherwise the generated primes are unsafe in any case.

Proof: First, we denote by Si the set of all prime numbers ρ = G(H(i, r)), for which (i, r) has been
queried toH (for i = 1, . . . , k). We remark that the probability that two such primes ρ are equal is at most
qH·(qH−1)

2 · pG−col. This is the second term in the security bound.

In the sequel, we suppose that there are no collisions between the primes. Thus the sets Si are pairwise
disjoint.

Now assume that the adversary F has been able to forge a valid attestation ωn for n = (n1, . . . , nu) and
let N = β

∏u
i=1 ni, where β stands for the product of all the primes generated from the elements of ωn.

As the attestation is valid, |n1| = · · · = |nu| = `P . Let N =
∏L
i=1 ρi be the prime decomposition of N . Up

to reordering the sets Si, there exists an integer t such that:
— none of S1, . . . , St contains a factor ρi;
— each of St+1, . . . , Sk contains a factor ρi. We arbitrarily choose a prime pi ∈ Si for i = t+ 1, . . . , k.

We distinguish two cases:
— if t < (`− 1) · u, then this means that N is divisible by m = pt+1 × · · · × pk. But we also know that

N is divisible by n1 × · · · × nu. As |n1 × · · · × nu| = `uP , |m| = (k − t)P > kP − (`− 1)uP + P ,
and |N | = kP , we have

|gcd(n1 · · ·nu,m)| ≥ |n1 · · ·nu|+ |m| − |N | ≥ (u+ 1)P.

This implies that n1 × · · · × nu is divisible by at least u+ 1 distinct primes among pt+1, . . . , pk. By
the pigeon-hole principle, at least one of the ni’s is divisible by two distinct primes generated
as G(ri) for two distinct seeds ri (seeds have to be distinct, otherwise the two primes would be
equal).

— if t ≥ (`−1) ·u, the adversary will only be able to generate a valid attestation if none of the indices
X1, . . . , Xu` (obtained by H′u`(N)) falls in {1, . . . , t}. As {1, . . . , k} \ {X1, . . . , Xu`} is a random
subset of {1, . . . , k} with k − `u elements, the previous bad event (F is able to generate a valid
attestation) corresponds to this set being a subset of {t+ 1, . . . , k} and happens with probability:(

k−t
k−`u

)(
k

k−`u
) =

(k − t) · (k − t− 1) · · · (k − `u+ 1)

k · (k − 1) · · · (k − `u+ 1)
· (`u)!

(`u− t)!

≤ 1

(k − t+ 1)t
· (`u)t ≤

(
`u

k − (`− 1)u+ 1

)(`−1)·u
.

Since F makes qH′ queries toH′, we get the theorem’s bound (where the +1 corresponds to the
query necessary to verify F ’s attestation if he did not do it himself).

2

4.1.5.2 Typical Parameters and Complexity Analysis

Algorithms 5 and 6 have the following properties:
— Attestation size |ωn| = 2u`R log k, using the hash-tree compression technique in Section 4.1.6
— λ-bit security approximately when:(

`u

k − (`− 1)u+ 1

)(`−1)u

≤ 2−λ

(according to the soundness bound given by Theorem 4.1, omitting the second part, which is
negligible in practice);

— Attestation and validation times mostly consist in generating (or re-generating) the k primes.
Validation time is very slightly faster than attestation time.

4.1 Non-Interactive Attestations for Arbitrary RSA Prime Generation Algorithms 51
4.1.6 Compressing the Attestation

As mentioned above, providing an attestation ωn “as is” might be cumbersome, as it grows linearly with
k. However, it is possible to drastically reduce ωn’s size using the following technique.

The tree of Figure 4.2 is constructed as follows: Let h be some public hash function. Each non-leaf node
C of the tree has two children, whose value is computed by rx0 ← h(rx, 0) and rx1 ← h(rx, 1) for the left
child and the right child respectively, where rx is the value of C. Given a root seed r, one can therefore
reconstruct the whole tree. The leaf values can now be used as ri’s for the attestation procedure.

To compress ωn we proceed as follows:
— Get the indices X1 and X2 from the attestation procedure;
— Identify the paths from X1 up to the root, and mark them;
— Identify the paths from X2 up to the root, and mark them;
— Send the following information:

ωn = {for all leaves L, highest-ranking unmarked parent of L}
This requires revealing at most 2 log2 k intermediate higher-rank hashes 10 instead of the k − 2 values
required to encode ωn when naively sending the seeds directly.

Generalization to u` ≥ 2 is straightforward.

r

r0 = h(r, 0)

r00 = h(r0, 0)
r000 =
h(r00, 0)

r001 =
h(r00, 1)

r01 = h(r0, 1)
r010 =
h(r01, 0)

r011 =
h(r01, 1)

r1 = h(r, 1)

r10 = h(r1, 0)
r100 =
h(r10, 0)

r101 =
h(r10, 1)

r11 = h(r1, 1)
r110 =
h(r11, 0)

r111 =
h(r11, 1)

Figure 4.2 – Compressing ωn using a hash tree.

4.1.7 Parameter Settings

Table 4.2 shows typical parameter values illustrating different trade-offs between security (λ), attestation
size (2u`R log k), modulus size (`), the number of required moduli (u), and the work factors of A and
V (ktG where tG is G’s average running time). Table 4.3 provides the same information for the multi-
modulus variant.

We (arbitrarily) consider that reasonable attestations and validations should occur in less than ten minutes
using standard HSM such as the IBM 4764 PCI-X Cryptographic Co-processor [IBM] or Oracle’s Sun
Crypto Accelerator SCA 6000 [Ora]. When run with 7 threads in the host application, the 4764 generates
on average 2.23 key-pairs per second (1,024 bits). The SCA 6000 (for which average key generation

10. I.e., we essentially only publish co-paths.

52 Designing Integrity Primitives 4.1
figures are not available) is about 11 times faster than the 4764 when processing RSA 1,024-bit keys.
Hence we can assume that the SCA 6000 would generate about 24 key-pairs per second. We thus consider
that average-cost current-date HSMs generate 10 key-pairs per second, i.e. 20 primes per second.

Spending ten minutes to generate or validate an attestation might not be an issue given that attestation
typically occurs only once during n’s lifetime. This means that a “reasonable” attestation implementation
would use k = 10×60×20 = 12,000. This gives ` = 10 and ` = 6 for the multi-prime and multi-modulus
A (respectively) for λ = 128.

Note that in practical field deployments an attestation would be verified once by a trusted Attestation
Authority and replaced by a signature on n (or n).

According to the bounds of Theorem 4.1, we have

λ ≥ −(`− 1)u log2

(
`u

k − (`− 1)u+ 1

)

Table 4.2 – Some typical parameters for multi-factor attestation (u = 2). Each table entry contains λ for
the corresponding choice of k and `.

log2 k Time ` = 6 ` = 8 ` = 10 ` = 12 ` = 14 ` = 16 ` = 18 ` = 20
8 25 s 43 54 64 72 79 84 89 93
9 51 s 53 69 83 95 107 117 126 135
10 1.7 min 64 83 101 118 134 148 162 175
11 3.4 min 74 97 119 140 160 179 197 214
12 6.8 min 84 111 138 162 186 209 231 253
13 13.7 min 94 125 156 185 212 239 266 291
14 27.3 min 104 139 174 207 238 269 300 329
15 54.6 min 114 153 192 229 264 299 334 367
16 1.8 hrs 124 167 210 251 290 329 368 405
17 3.6 hrs 134 181 228 273 317 359 402 443
18 7.3 hrs 144 195 246 295 343 389 436 481
19 14.6 hrs 154 209 264 317 369 419 470 519
20 1.2 d 164 223 282 339 395 449 504 557
21 2.4 d 174 237 300 361 421 479 538 595

Table 4.2 is read as follows: we can see that taking for instance ` = 10 and log2 k = 13 with the multi-
factor version gives 156-bit security. In Table 4.3, taking ` = 10 and log2 k = 13 with the multi-modulus
version gives 285-bit security.

4.1.8 Conclusion and Further Research

The construction described in this section attests in a non-interactive way that n was properly generated
using an arbitrary (publicly known) prime generator G. The attestation is compact and publicly verifiable.
As a result, any entity can convince herself of the modulus’ validity before using it. Even though
computation times may seem unattractive, we stress that attestation generation and verification only
need to be performed once.

This work raises a number of interesting questions.

Committing to the primes pi’s might also be achieved using more involved tools such as pairings. For
instance, given the commitments gp1 and gp2 , it is easy to check that e(gp1 , gp2) = e(g, g)n.

An interesting research direction consists in hashing N mod v (instead of N) for some public v, to speed-
up calculations. However, the condition v > n must be enforced by design to prevent an opponent from
using ωn as the “attestation” of n+ tv for some t ∈ N. Note that we did not adapt our security proof to
this (overly?) simplified variant.

4.1 Non-Interactive Attestations for Arbitrary RSA Prime Generation Algorithms 53
In general, any strategy allowing to reduce k without impacting λ would yield more efficient attestators.
Also, generalizing and applying this approach to the parameter generation of other cryptographic
problems, such as the discrete logarithm, may prove useful.

Finally, to date, no attestation method proves (without resorting to TTPs) that the random tape used for
forming the primes was properly drawn. Like all other prior work articles cited in Section 4.1.1, we do
not address this issue and assume that the random number that feeds G was not biased by the attacker.

4.1.9 Implementing the Second Hash FunctionH′

To implement the second hash functionH′d from a classical hash function, we can apply an unranking
hash function [SW86], which maps an integer (in some interval) to a subset {X1, . . . , Xu} ⊂ {0, . . . , k−1}.
As an example, we describe here a simple (natural) unranking function. Let H′′ be a classical hash
function with range {0, . . . ,M}, where M = k(k − 1) · · · (k − u + 1) − 1. To hash a value N , we first
compute r ← H′′(N). Then we compute the integers r1, . . . , rd as in Algorithm 7.

Algorithm 7 Unranking algorithm
Input: r, k, u
Output: r1, . . . , ru

for all i = 1 to u do
ri ← r mod (k − i+ 1)
r ← r div (k − i+ 1)

end for
return r1, . . . , ru

Algorithm 7 generates a mixed radix representation of r, hence any r ∈ [0,M] can be represented this
way. We now generate the unranking X1, . . . , Xd iteratively as follows:

— X1 ← r1

— Xi+1 ← ri+1 + #{Xj s.t. Xj ≤ ri+1 for j ≤ i}
In other terms, we have a pool of M values, and for each i, one of these values is drawn and assigned to
Xi. Hence it is easy to check that this provides a list of pairwise distinct integers.

This algorithm is simple and illustrates how unranking may be implemented. Alternative unranking
methods can be found in [SW86].

54 Designing Integrity Primitives 4.1

Table 4.3 – Some typical parameters for multi-modulus attestation (u = `/2). Each cell contains λ for the
corresponding choice of k and `. Some choices of parameters are incompatible and are hence indicated
by a dash.

lo
g

2
k

Ti
m

e
`

=
6

`
=

8
`

=
10

`
=

12
`

=
1
4

`
=

1
6

`
=

1
8

`
=

2
0

`
=

3
0

`
=

4
0

`
=

5
0

`
=

6
0

`
=

7
0

`
=

8
0

7
12

s
39

46
33

-
-

-
-

-
-

-
-

-
-

-
8

25
s

56
79

93
92

69
11

-
-

-
-

-
-

-
-

9
51

s
71

10
9

14
5

17
3

19
1

19
4

17
6

13
1

-
-

-
-

-
-

10
1.

7
m

in
87

13
8

19
3

24
6

29
5

33
8

37
1

39
1

16
9

-
-

-
-

-
11

3.
4

m
in

10
2

16
7

23
9

31
5

39
3

46
9

54
2

61
1

80
1

51
9

-
-

-
-

12
6.

8
m

in
11

7
19

5
28

5
38

3
48

7
59

4
70

4
81

4
13

15
16

00
14

70
65

5
-

-
13

13
.7

m
in

13
2

22
3

33
0

45
0

57
9

71
7

86
1

10
11

17
86

25
05

30
36

32
48

29
89

20
64

14
27

.3
m

in
14

7
25

1
37

5
51

6
67

1
83

8
10

16
12

04
22

39
33

42
44

10
53

47
60

65
64

68
15

54
.6

m
in

16
2

27
9

42
0

58
2

76
2

95
9

11
70

13
96

26
82

41
50

57
05

72
67

87
68

10
14

3
16

1.
8

hr
s

17
7

30
7

46
5

64
8

85
3

10
79

13
24

15
86

31
21

49
44

69
64

91
09

11
31

9
13

54
0

17
3.

6
hr

s
19

2
33

5
51

1
71

4
94

4
11

99
14

77
17

77
35

58
57

31
82

05
10

91
4

13
80

0
16

81
4

18
7.

3
hr

s
20

7
36

3
55

6
78

0
10

36
13

19
16

30
19

67
39

94
65

14
94

39
12

70
2

16
24

8
20

03
0

19
14

.6
hr

s
22

2
39

1
60

1
84

6
11

27
14

39
17

83
21

57
44

30
72

96
10

66
8

14
48

0
18

67
9

23
21

7
20

1.
2

d
23

7
41

9
64

6
91

2
12

18
15

59
19

36
23

47
48

65
80

76
11

89
5

16
25

5
21

10
2

26
39

1
21

2.
4

d
25

2
44

7
69

1
97

8
13

09
16

79
20

89
25

37
53

00
88

57
13

12
1

18
02

7
23

52
1

29
55

8

4.2 Legally Fair Contract Signing Without Keystones 55

4.2 Legally Fair Contract Signing Without Keystones

4.2.1 Introduction

When mutually distrustful parties wish to compute some joint function of their private inputs, they
require a certain number of security properties to hold for that computation:

— Privacy: Nothing is learned from the protocol besides the output;
— Correctness: The output is distributed according to the prescribed functionality;
— Independence: One party cannot make their inputs depend on the other parties’ inputs;
— Delivery: An adversary cannot prevent the honest parties from successfully computing the func-

tionality;
— Fairness: If one party receives output then so do all.

Any multi-party computation can be securely computed [Yao86; GMW87b; Gol04; BGW88; CCD88] as
long as there is a honest majority [Lin08]. In the case where there is no such majority, and in particular
in the two-party case, it is (in general 11) impossible to achieve both fairness and guaranteed output
delivery [Lin08; Cle86].

4.2.1.1 Weakening Fairness.

To circumvent this limitation, several authors have put forth alternatives to fairness that try and capture
the practical context (e.g. contract-signing, bank transactions, etc.). Three main directions have been
explored:

1. Gradual release models: The output is not revealed all at once, but rather released gradually (e.g. bit
per bit) so that, if an abort occurs, then the adversary has not learnt much more about the output
than the honest party. This solution is unsatisfactory because it is expensive and may not work if
the adversary is more computationally powerful [GHKL08; GL91; Pin03; GMPY06].

2. Optimistic models: A trusted server is setup but will not be contacted unless fairness is breached. The
server is able to restore fairness afterwards, and this approach can be efficient, but the infrastructure
requirements and the condition that the server be trusted limit the applicability of this solution
[Mic03; ASW97; CC00]. In particular, the dispute-resolving third party must be endowed with
functions beyond those usually required of a normal certification authority.

3. Legally fair, or concurrent model: The first party to receive output obtains an information dubbed the
“keystone”. The keystone by itself gives nothing and so if the first party aborts after receiving it, no
damage has been done – if the second party aborts after receiving the result (say, a signature) then
the first party is left with a useless keystone. But, as observed in [CKP04] for the signature to be
enforced, it needs to be presented to a court of law, and legally fair signing protocols are designed
so that this signature and the keystone give enough information to reconstruct the missing data.
Therefore, if the cheating party wishes to enforce its signed contract in a court of law, it by doing so
reveal the signature that the first party should receive, thereby restoring fairness [CKP04]. Legal
fairness requires neither a trusted arbitrator nor a high degree of interaction between parties.

Lindell [Lin08] also introduces a notion of “legally enforceable fairness” that sits between legal fairness
and optimistic models: a trusted authority may force a cheating party to act in some fashion, should their
cheating be attested. In this case the keystone consists in a digitally signed cheque for an frighteningly
high amount of money that the cheating party would have to pay if the protocol were to be aborted
prematurely and the signature abused.

Concurrent Signatures. Chen et al. [CKP04] proposed a legally fair signature scheme based on ring
signatures [RST01; AOS02] and designated verifier signatures [JSI96], that is proven secure in the Random
Oracle Model assuming the hardness of computing discrete logarithms.

11. See [GHKL08] for a very specific case where completely fair two-party computation can be achieved.

56 Designing Integrity Primitives 4.2
Concurrent signatures rely on a property shared by ring and designated verifier signatures called
“ambiguity”. In the case of two-party ring signatures, one cannot say which of the two parties produced
the signature – since either of two parties could have produced such an ambiguous signature, both
parties can deny having produced it. However, within the ring, if A receives a signature then she knows
that it is B who sent it. The idea is to put the ambiguity-lifting information in a “keystone”. When that
keystone is made public, both signatures become simultaneously binding.

Concurrent signatures schemes can achieve legal fairness depending on the context. However their
construction is not abuse-free [BW00; GJM99]: the party A holding the keystone can always determine
whether to complete or abort the exchange of signatures, and can demonstrate this by showing an
outside party the signature from B with the keystone, before revealing the keystone to B.

Our Results. In this work we describe a new contract signing protocol that achieves legal fairness and
abuse-freeness. This protocol is based on the well-known Schnorr signature protocol, and produces
signatures compatible with standard Schnorr signatures. For this reason, and as we demonstrate, the new
contract signing protocol is provably secure in the random oracle model under the hardness assumption
of solving the discrete logarithm problem. Our construction can be adapted to other DLP schemes, such
as most 12 of those enumerated in [HPM94], including Girault-Poupard-Stern [GPS06] and ElGamal
[ElG84].

4.2.2 Preliminaries

4.2.2.1 Schnorr Signatures

Schnorr digital signatures [Sch90] are an offspring of ElGamal [ElG84] signatures. This family of
signatures is obtained by converting interactive identification protocols (zero-knowledge proofs) into
transferable proofs of interaction (signatures). This conversion process, implicitly used by ElGamal, was
discovered by Feige, Fiat and Shamir [FFS88] and formalized by Abdalla, Bellare and Namprempre
[AABN02].

Throughout this section, we will refer to the original Schnorr signature protocol as “classical” Schnorr.
This protocol consists in four algorithms:

— Setup(`): On input a security parameter `, this algorithm selects large primes p, q such that q ≥ 2`

and p − 1 mod q = 0, as well as an element g ∈ G of order q in some multiplicative group G
of order p, and a hash function H : {0, 1}∗ → {0, 1}`. The output is a set of public parameters
pp = (p, q, g,G, H).

— KeyGen(pp): On input the public parameters, this algorithm chooses uniformly at random x
$←− Z×q

and computes y ← gx. The output is the couple (sk, pk) where sk = x is kept private, and pk = y
is made public.

— Sign(pp, sk,m): On input public parameters, a secret key, and a message m this algorithm selects a

random k
$←− Z×q , computes

r ← gk

e← H(m‖r)
s← k − ex mod q

and outputs 〈r, s〉 as the signature of m.
— Verify(pp, pk,m, σ): On input the public parameters, a public key, a message and a signature

σ = 〈r, s〉, this algorithm computes e ← H(m, r) and returns True if and only if gsye = r;
otherwise it returns False.

The security of classical Schnorr signatures was analyzed by Pointcheval and Stern [PS96; PS00] using
the Forking Lemma. Pointcheval and Stern’s main idea is as follows: in the Random Oracle Model, the
opponent can obtain from the forger two valid forgeries {`, s, e} and {`, s′, e′} for the same oracle query

12. In a number of cases, e.g. DSA, the formulae of s do not lend themselves to security proofs.

4.2 Legally Fair Contract Signing Without Keystones 57
{m, r} but with different message digests e 6= e′. Consequently, r = gsy−e = gs

′
y−e

′
and from that it

becomes straightforward to compute the discrete logarithm of y = gx. Indeed, the previous equation can
be rewritten as ye−e

′
= gs

′−s, and therefore:

y = g
s′−s
e−e′ ⇒ Dlogg(y) =

s′ − s
e− e′

The Forking Lemma for Schnorr signatures is originally stated as follows:

Theorem 4.2 (Forking Lemma, [PS00]) Let A be an attacker which performs within a time bound tF an
existential forgery under an adaptively chosen-message attack against the Schnorr signature, with probability εF .
Assume that A makes qh hashing queries to a random oracle and qs queries to a signing oracle.

Then there exists an adversary solving the discrete logarithm problem in subgroups of prime order in polynomial
expected time.

Assume that εF ≥ 10(qs + 1)(qs + qh)/q, then the discrete logarithm problem in subgroups of prime order can be
solved within expected time less that 120686 qhtF /εF .

This security reduction loses a factor O(qh) in the time-to-success ratio. Note that recent work by Seurin
[Seu12] shows that this is essentially the best possible reduction to the discrete logarithm problem.

4.2.2.2 Concurrent Signatures

Let us give a more formal account of legal fairness as described in [CKP04; Lin08] in terms of concurrent
signatures. Unlike classical contract-signing protocol, whereby contractors would exchange full-fledged
signatures (e.g. [Gol83]), in a concurrent signature protocol there are “ambiguous” signatures that do not,
as such, bind their author. This ambiguity can later be lifted by revealing some additional information:
the “keystone”. When the keystone is made public, both signatures become simultaneously binding.

LetM be a message space. Let K be the keystone space and F be the keystone fix space.

Definition 4.1 (Concurrent signature) A concurrent signature is composed of the following algorithms:
— Setup(k): Takes a security parameter k as input and outputs the public keys (yA, yB) of all participants, a

function KeyGen : K → F , and public parameters pp describing the choices ofM,K,F and KeyGen.
— aSign(yi, yj , xi, h2,M): Takes as input the public keys y1 and y2, the private key xi corresponding to yi,

an element h2 ∈ F and some message M ∈M; and outputs an “ambiguous signature”

σ = 〈s, h1, h2〉

where s ∈ S, h1, h2 ∈ F .
— aVerify(σ, yi, yj ,M): Takes as input an ambiguous signature σ = 〈s, h1, h2〉, public keys yi and yj , a

message M ; and outputs a Boolean value, with the constraint that

aVerify (σ′, yj , yi,M) = aVerify (σ, yi, yj ,M)

where σ′ = 〈s, h2, h1〉.
— Verify(k, σ, yi, yj ,M): Takes as input k ∈ K and σ, yi, yj ,M as above; and checks whether KeyGen(k) =

h2: If not it terminates with output False, otherwise it outputs the result of aVerify(σ, yi, yj ,M).

A valid concurrent signature is a tuple 〈k, σ, yi, yj ,M〉 that is accepted by the Verify algorithm. Concurrent
signatures are used by two parties A and B in the following way:

1. A and B run Setup to determine the public parameters of the scheme. We assume that A’s public
and private keys are yA and xA, and B’s public and private keys are yB and xB .

2. Without loss of generality, we assume that A initiates the conversation. A picks a random keystone
k ∈ K, and computes f = KeyGen(k). A takes her own public key yA and B’s public key yB and
picks a message MA ∈M to sign. A then computes her ambiguous signature to be

σA = 〈sA, hA, f〉 = aSign(yA, yB , xA, f,MA).

58 Designing Integrity Primitives 4.2
3. Upon receiving A’s ambiguous signature σA, B verifies the signature by checking that

aVerify(sA, hA, f, yA, yB ,MA) = True

If this equality does not hold, then B aborts. Otherwise B picks a message MB ∈M to sign and
computes his ambiguous signature

σB = 〈sB , hB , f〉 = aSign(yB , yA, xB , f,MB)

then sends this back to A. Note that B uses the same value f in his signature as A did to produce
σA.

4. Upon receiving B’s signature σB , A verifies that

aVerify(sB , hB , f, yB , yA,MB) = True

where f is the same keystone fix as A used in the previous steps. If the equality does not hold, then
A aborts. Otherwise A sends keystone k to B.

At the end of this protocol, both 〈k, σA〉 and 〈k, σB〉 are binding, and accepted by the Verify algorithm.

Remark Note that A has an the upper hand in this protocol: Only when A releases the keystone do both
signatures become simultaneously binding, and there is no guarantee that A will ever do so. Actually,
since A controls the timing of the keystone release (if it is released at all), A may only reveal k to a
third party C but withhold it from B, and gain some advantage by doing so. In other terms, concurrent
signatures can be abused by A [BW00; GJM99].

Chen et al. [CKP04] argue that there are situations where it is not in A’s interest to try and cheat B,
in which abuse-freeness is not necessary. One interesting scenario is credit card payment in the “four
corner” model. Assume that B’s signature is a payment to A. To obtain payment, A must channel via her
acquiring bank C, which would communicate with B’s issuing bank D. D would ensure that B receives
both the signature and the keystone — as soon as this happens A is bound to her signature. Since in this
scenario there is no possibility for A to keep B’s signature private, fairness is eventually restored.

Example 4.1 A concurrent signature scheme based on the ring signature algorithm of Abe et al. [AOS02] was
proposed by Chen et al. [CKP04]:

— Setup: On input a security parameter `, two large primes p and q are selected such that q|p − 1. An
element g ∈ Z×p of order q is selected. The spaces S = F = Zq andM = K = {0, 1}∗ are chosen. Two
cryptographic hash functions H1, H2 : {0, 1}∗ → Zq are selected and we set KeyGen = H1. Private
keys xA, xB are selected uniformly at random from Zq and the corresponding public keys are computed as
gxi mod p.

— aSign: The algorithms takes as input yi, yj , xi, h2,M , verifies that yi 6= yj (otherwise aborts), picks a
random value t ∈ Zq and computes

h = H2

(
gtyh2

j mod p‖M
)

h1 = h− h2 mod q

s = t− h1xi mod q

where ‖ denotes concatenation. The algorithm outputs 〈s, h1, h2〉.
— aVerify: This algorithm takes as input s, h1, h2, yi, yj ,M and checks whether the following equation holds:

h1 + h2 = H2

(
gsyh1

i y
h2
j mod p‖M

)
mod q

The security of this scheme can be proven in the Random Oracle model assuming the hardness of computing discrete
logarithms in Z×p .

4.2.2.3 Legal Fairness for Concurrent Signatures

A concurrent signature scheme is secure when it achieves existential unforgeability, ambiguity and
fairness against an active adversary that has access to a signature oracle. We define these notions in
terms of games played between the adversaryA and a challenger C. In all security games,A can perform
any number of the following queries:

4.2 Legally Fair Contract Signing Without Keystones 59
— KeyGen queries: A can receive a keystone fix f = KeyGen(k) where k is chosen by the challenger 13.
— KeyReveal queries: A can request that C reveals which k was chosen to produce a keystone fix f

in a previous KeyGen query. If f was not a previous KeyGen query output then C returns ⊥.
— aSign queries: A can request an ambiguous signature for any message of his choosing and any

pair of users 14.
— SKExtract queries: A can request the private key corresponding to a public key.

Definition 4.2 (Unforgeability) The notion of existential unforgeability for concurrent signatures is defined in
terms of the following security game:

1. The Setup algorithm is run and all public parameters are given to A.
2. A can perform any number of queries to C, as described above.
3. Finally, A outputs a tuple σ = 〈s, h1, f〉 where s ∈ S, h1, f ∈ F , along with public keys yC , yD and a

message M ∈M.
A wins the game if aVerify accepts σ and either of the following holds:

— A did not query SKExtract on yC nor on yD, and did not query aSign on (yC , yD, f,M) nor on
(yD, yC , h1,M).

— A did not query aSign on (yC , yi, f,M) for any yi 6= yC , and did not query SKExtract on yC , and f is the
output of KeyGen: either an answer to a KeyGen query, or A can produce a k such that k = KeyGen(k).

The last constraint in the unforgeability security game corresponds to the situation where A knows one
of the private keys (as is the case if A = A or B).

Definition 4.3 (Ambiguity) The notion of ambiguity for concurrent signatures is defined in terms of the follow-
ing security game:

1. The Setup algorithm is run and all public parameters are given to A.
2. Phase 1: A can perform any number of queries to C, as described above.
3. Challenge: A selects a challenge tuple (yi, yj ,M) where yi, yj are public keys and M ∈M. In response, C

selects a random k ∈ K, a random b ∈ {0, 1} and computes f = KeyGen(k). If b = 0, then C outputs

σ1 = 〈s1, h1, f〉 = aSign(yi, yj , xi, f,M)

Otherwise, if b = 1 then C computes

σ2 = 〈s2, h2, f〉 = aSign(yj , yi, xi, f,M)

but outputs σ′2 = 〈s2, f, h2〉 instead.
4. Phase 2: A can perform any number of queries to C, as described above.
5. Finally, A outputs a guess bit b′ ∈ {0, 1}.

A wins the game if b = b′ and if A made no KeyReveal query on f , h1 or h2.

Definition 4.4 (Fairness) The notion of fairness for concurrent signatures is defined in terms of the following
security game:

1. The Setup algorithm is run and all public parameters are given to A.
2. A can perform any number of queries to C, as described above.
3. Finally, A chooses two public keys yC , yD and outputs k ∈ K and S = (s, h1, f, yC , yD,M) where s ∈ S,
h1, f ∈ F , M ∈M.

A wins the game if aVerify(S) accepts and either of the following holds:
— f was output from a KeyGen query, no KeyReveal query was made on f , and Verify accepts 〈k, S〉.
— A can output S′ = (s′, h′1, f, yD, yC ,M

′) where aVerify(S′) accepts and Verify(k, S) accepts, but
Verify(k, S′) rejects.

This definition of fairness formalizes the idea that B cannot be left in a position where a keystone binds
his signature to him while A’s initial signature is not also bound to A. It does not, however, guarantee
that B will ever receive the necessary keystone.

13. The algorithm KeyGen being public,A can compute KeyGen(k) for any k of her choosing.
14. Note that with this information and using KeyGen queries,A can obtain concurrent signatures for any message and any

user pair.

60 Designing Integrity Primitives 4.2
4.2.3 Legally Fair Co-Signatures

4.2.3.1 Legal Fairness Without Keystones

The main idea builds on the following observation: Every signature exchange protocol is plagued by the
possibility that the last step of the protocol is not performed. Indeed, it is in the interest of a malicious
party to get the other party’s signature without revealing its own. As a result, the best one can hope for
is that a trusted third party can eventually restore fairness.

To avoid this destiny, the proposed paradigm does not proceed by sending A’s signature to B and vice
versa. Instead, we construct a joint signature, or co-signature, of both A and B. By design, there are no
signatures to steal — and stopping the protocol early does not give the stopper a decisive advantage.
More precisely, the contract they have agreed upon is the best thing an attacker can gather, and if she ever
wishes to enforce this contract by presenting it to a court of law, she would confirm her own commitment
to it as well as the other party’s. Therefore, if one can construct co-signatures without intermediary
individual signatures being sent, legal fairness can be achieved without keystones.

Since keystones can be used by the party having them to abuse the other [CKP04], the co-signature
paradigm provides an interesting alternative to concurrent signatures.

Schnorr Co-signatures. To illustrate the new paradigm, we now discuss a legally fair contract-signing
protocol built from the well-known Schnorr signature protocol, that produces signatures compatible with
standard Schnorr signatures. This contract signing protocol is provably secure in the random oracle
model under the hardness assumption of solving the discrete logarithm problem.

The construction can be adapted to other DLP schemes, such as most 15 of those enumerated in [HPM94],
including Girault-Poupard-Stern [GPS06] and ElGamal [ElG84].

— Setup: An independent (not necessarily trusted) authority generates a classical Schnorr parameter-
set p, q, g which is given to A and B. Each user U generates a usual Schnorr public key yU = gxU

and publishes yU on a public directoryD (see Figure 4.3). To determine the co-signature public-key
yA,B of the pair 〈A,B〉, a verifier consults D and simply computes yA,B = yA × yB . Naturally,
yA,B = yB,A.

Alice

D

Bob

g, p, q

yA
y
B

Figure 4.3 – Public directory D distributing the public keys.

— Cosign: To co-sign a message m, A and B compute a common r and a common s, one after the
other. Without loss of generality we assume that B initiates the co-signature.
— During the first phase (Figure 4.4), B chooses a private random number kB and computes

rB ← gkB . He commits to that value by sending to A a message digest ρ ← H(0‖rB). A
chooses a private random number kA, computes rA ← gkA and sends rA to B. B replies with
rB , which A checks against the earlier commitment ρ. Both parties compute r ← rA × rB , and
e← H(1‖m‖r), where m is the message to be co-signed.

— During the second phase of the protocol, B sends sB ← kB − e × xB mod q to A. A replies
with sA ← kA − e× xA mod q. Both users compute s← sA + sB mod q.

15. In a number of cases, e.g. DSA, the formulae of s do not lend themselves to security proofs.

4.2 Legally Fair Contract Signing Without Keystones 61
Alice Bob

yA,B ← yA × yB yA,B ← yA × yB
kA

$←− Z∗q kB
$←− Z∗q

rA ← gkA rB ← gkB

ρ← H(0‖rB)
ρ←−−−−−−−−−−
rA−−−−−−−−−−→
rB←−−−−−−−−−−

if H(0‖rB) 6= ρ abort
r ← rA × rB r ← rA × rB
e← H(1‖m‖r) e← H(1‖m‖r)
sA ← kA − exA mod q sB ← kB − exB mod q

sB←−−−−−−−−−−
sA−−−−−−−−−−→

s← sA + sB mod q s← sA + sB mod q

Figure 4.4 – Generating the Schnorr co-signature of message m.

— Verify: As in the classical Schnorr signature, the co-signature {r, s} is checked for a message m by
computing e← H(m‖r), and checking whether gsye = r (Figure 4.5). If the equality holds, then
the co-signature binds both A and B to m; otherwise neither party is tied to m.

Co-signature
m, r, s

r
?
= gsyeA,B

Incorrect co-signature. No
party involved with m.

Valid co-signature. Both
parties involved with m. noyes

Figure 4.5 – Verification of a Schnorr co-signature m, r, s.

Remark Note that during the co-signature protocol, A might decide not to respond to B: In that case, A
would be the only one to have the complete co-signature. This is a breach of fairness insofar as A can
benefit from the co-signature and not B, but the protocol is abuse-free: A cannot use the co-signature
as a proof that B, and B alone, committed to m. Furthermore, it is not a breach of legal fairness: If A
presents the co-signature in a court of law, she ipso facto reveals her commitment as well.

Remark In a general fair-contract signing protocol, A and B can sign different messages mA and mB .
Using the co-signature construction requires that A and B agree first on the content of a single message
m.

Security Analysis The security of the co-signature scheme essentially builds on the unforgeability of
classical Schnorr signatures. Since there is only one co-signature output, the notion of ambiguity does
not apply per se — albeit we will come back to that point later on. The notion of fairness is structural in
the fact that a co-signature, as soon as it is binding, is binding for both parties.

As for concurrent signatures, an adversary A has access to an unlimited amount of conversations and
valid co-signatures, i.e. A can perform the following queries:

— Hash queries: A can request the value of H(x) for a x of its choosing.

62 Designing Integrity Primitives 4.2
— CoSign queries: A can request a valid co-signature r, s for a message m and a public key yC,D of

its choosing.
— Transcript queries: A can request a valid transcript (ρ, rC , rD, sC , sD) of the co-signing protocol

for a message m of its choosing, between users C and D of its choosing.
— SKExtract queries: A can request the private key corresponding to a public key.
— Directory queries: A can request the public key of any user U .

The following definition captures the notion of unforgeability in the co-signing context:

Definition 4.5 (Unforgeability) The notion of unforgeability for co-signatures is defined in terms of the follow-
ing security game between the adversary A and a challenger C:

1. The Setup algorithm is run and all public parameters are provided to A.

2. A can perform any number of queries to C, as described above.

3. Finally, A outputs a tuple (m, r, s, yC,D).

A wins the game if Verify(m, r, s) = True and there exist public keys yC , yD ∈ D such that yC,D = yCyD and
either of the following holds:

— A did not query SKExtract on yC nor on yD, and did not query CoSign on m, yC,D, and did not query
Transcript on m, yC , yD nor m, yD, yC .

— A did not query Transcript on m, yC , yi for any yi 6= yC and did not query SKExtract on yC , and did not
query CoSign on m, yC , yi for any yi 6= yC .

We shall say that a co-signature scheme is unforgeable when the success probability of A in this game is negligible.

To prove that the Schnorr-based scheme described above is secure we use the following strategy:
Assuming an efficient forger A for the co-signature scheme, we turn it into an efficient forger B for
Schnorr signatures, then invoke the Forking Lemma to prove the existence of an efficient solver C for the
discrete logarithm problem. All proofs hold in the Random Oracle model.

Since the co-signing protocol gives the upper hand to the last-but-one speaker there is an asymmetry:
Alice has more information than Bob. Therefore we address two scenarios: When the attacker plays
Alice’s role, and when the attacker plays Bob’s.

Theorem 4.3 Let {y, g, p, q} be a DLP instance. If A plays the role of Bob (resp. Alice) and is able to forge in
polynomial time a co-signature with probability εF , then in the Random Oracle model A can break the DLP
instance with high probability in polynomial time.

The proof of Theorem 4.3, proceeds by splitting Theorem 4.3 in twain depending on whether A imper-
sonates Bob or Alice:

Adversary Attacks Bob

Theorem 4.4 Let {y, g, p, q} be a DLP instance. If AAlice plays the role of Alice and is able to forge in polynomial
time a co-signature with probability εF , then in the Random Oracle model AAlice can break that DLP instance with
high probability in polynomial time.

Proof: The proof consists in constructing a simulator SBob that interacts with the adversary and forces
it to actually produce a classical Schnorr forgery. Here is how this simulator behaves at each step of the
protocol.

1. Key Establishment Phase:
SBob is given a target DLP instance {y, g, p, q}. As a simulator, SBob emulates not only Bob, but also
all oracles and the directory D (see Figure 4.6).
SBob injects the target y into the game, namely by posting in the directory the “public-key” yB ←
y × y−1

A .
To inject a target DLP instance y ← gx into A, the simulator SBob reads yA from the public directory
and poses as an entity whose public-key is yS ← y × y−1

A . It follows that yA,S , the common
public-key of A and S will be precisely yA,S ← yS × yA which, by construction, is exactly y.

4.2 Legally Fair Contract Signing Without Keystones 63

AAlice SBob

g, p, q, yg, p, q

activate

1

yB = y/yA

2

ss

SAlice ABob

g, p, qg, p, q, y

activate

1

yA = y/yB

2

ss

Figure 4.6 – The simulator SBob (left) or SAlice (right) answers the attacker’s queries to the public directory
D.

Then SBob activates AAlice, who queries the directory and gets yB . At this point in time, AAlice is
tricked into believing that she has successfully established a common co-signature public-key set
{g, p, q, y}with the “co-signer” SBob.

2. Query Phase:
AAlice will now start to present queries to SBob. In a “normal” attack, AAlice and Bob would
communicate with a random oracle O representing the hash function H . However, here, the
simulator SBob will play O’s role and answer AAlice’s hashing queries.

SBob must respond to three types of queries: hashing queries, co-signature queries and transcript queries.
SBob will maintain an oracle table T containing all the hashing queries performed throughout the
attack. At start T ← ∅. When AAlice submits a hashing query qi to SBob, SBob answers as shown in
Algorithm 1.

Algorithm 1: Hashing oracle simulation.
Input: A hashing query qi from A

if ∃ei, {qi, ei} ∈ T then
ρ← ei

else
ρ

$←− Z×q
Append {qi, ρ} to T

end if
return ρ

When AAlice submits a co-signature query to SBob, SBob proceeds as explained in Algorithm 2.

Algorithm 2: Co-signing oracle simulation.
Input: A co-signature query m from AAlice

sB , e
$←− Z∗q

rB ← gsBye

Send H(0‖rB) to AAlice
Receive rA from AAlice
r ← rA × rB
u← 1‖m‖r
if ∃e′ 6= e, {u, e′} ∈ T then
abort

else
Append {u, e} to T

end if
return sB

64 Designing Integrity Primitives 4.2
Finally, whenAAlice requests a conversation transcript, SBob replies by sending {m, ρ, rA, rB , sB , sA}
from a previously successful interaction.

3. Output Phase:
After performing queries, AAlice eventually outputs a co-signature m, r, s valid for yA,S where
r = rArB and s = sA + sB . By design, these parameters are those of a classical Schnorr signature
and therefore AAlice has produced a classical Schnorr forgery.

To understand SBob’s co-signature reply (Algorithm 2), assume thatAAlice is an honest Alice who plays by
the protocol’s rules. For such an Alice, {s, r} is a valid signature with respect to the common co-signature
public-key set {g, p, q, y}. There is a case in which SBob aborts the protocol before completion: this
happens when it turns out that rA × rB has been previously queried by AAlice. In that case, it is no longer
possible for SBob to reprogram the oracle, which is why SBob must abort. Since AAlice does not know the
random value of rB , such a bad event would only occur with a negligible probability exactly equal to
qh/q (where qh is the number of queries to the hashing oracle).

Therefore, AAlice is turned into a forger for the target Schnorr instance with probability 1− qh/q. Since
AAlice succeeds with probability εF , AAlice’s existence implies the existence of a Schnorr signature forger
of probability εS = (1 − qh/q)εF , which by the Forking Lemma shows that there exists a polynomial
adversary breaking the chosen DLP instance with high probability. 2

Being an attacker, at some point AAlice will output a forgery {m′, r′, s′}. From here on we use the Forking
Lemma and transform AAlice into a DLP solver as described by Pointcheval and Stern in [PS00, Theorem
14].

Adversary Attacks Alice. The case where A targets A is similar but somewhat simpler, and the proof
follows the same strategy.

Theorem 4.5 Let {y, g, p, q} be a DLP instance. If ABob plays the role of Bob and is able to forge a co-signature
with probability εF , then in the Random Oracle model ABob can break that DLP instance with high probability in
polynomial time.

Proof: [Theorem 4.5] Here also the proof consists in constructing a simulator, SAlice, that interacts with
the adversary and forces it to actually produce a classical Schnorr forgery. The simulator’s behavior at
different stages of the security game is as follows:

1. The Key Establishment Phase:
SAlice is given a target DLP instance {y, g, p, q}. Again, SAlice impersonates not only Alice, but also
O andD. SAlice injects the target y into the game as described in Section 4.2.3.1. Now SAlice activates
ABob, who queries D (actually controlled by SAlice) to get yB . ABob is thus tricked into believing that
it has successfully established a common co-signature public-key set {g, p, q, y}with the “co-signer”
SAlice.

2. The Query Phase:
ABob will now start to present queries to SAlice. Here as well, SAlice will play O’s role and will
answer ABob’s hashing queries.

Again, SAlice must respond to hashing queries and co-signature queries. Hashing queries are
answered as shown in Algorithm 1. When ABob submits a co-signature query to SAlice, SAlice
proceeds as explained in Algorithm 8.
SAlice controls the oracle O, and as such knows what is the value of rB that ABob is committed to.
The simulator is designed to trick ABob into believing that this is a real interaction with Alice, but
Alice’s private key is not used.

3. Output:
Eventually, ABob produces a forgery that is a classical Schnorr forgery {m, r, s}.

4.2 Legally Fair Contract Signing Without Keystones 65
Algorithm 8 Co-signing oracle simulation for SAlice.
Input: A co-signature query m from ABob

Receive ρ from ABob
Query T to retrieve rB such that H(0‖rB) = ρ

e, sA
$←− Zq

r ← rBg
sAye

u← 1‖m‖r
if ∃e′ 6= e, {u, e′} ∈ T then
abort

else
Append {u, e} to T

end if
rA ← r × r−1

B

Send rA to ABob
Receive rB from ABob ; this rB is not used by SAlice
Receive sB from ABob
return sA

Algorithm 8 may fail with probability 1/q. Using the Forking Lemma again, we transform ABob into an
efficient solver of the chosen DLP instance. 2

4.2.3.2 Concurrent Co-signatures

4.2.3.2.1 Proofs of Involvement. We now address a subtle weakness in the protocol described in the
previous section, which is not captured by the fairness property per se and that we refer to as the existence
of “proofs of involvement”. Such proofs are not valid co-signatures, and would not normally be accepted
by verifiers, but they nevertheless are valid evidence establishing that one party committed to a message.
In a legally fair context, it may happen that such evidence is enough for one party to win a trial against
the other — who lacks both the co-signature, and a proof of involvement.

Example 4.2 In the co-signature protocol of Figure 4.4, sB is not a valid Schnorr signature for Bob. Indeed,
we have gsByeB = rB 6= r. However, Alice can construct s′ = sB − kA, so that m, r, s′ forms a valid classical
signature of Bob alone on m.

Example 4.2 illustrates the possibility that an adversary, while unable to forge a co-signature, may
instead use the information to build a valid (mono-) signature. Note that Alice may opt for a weaker
proof of involvement, for instance by demonstrating her possession of a valid signature using any
zero-knowledge protocol.

A straightforward patch is to refrain from using the public keys yA, yB for both signature and co-signature
— so that attempts at constructing proofs of involvement become vain. For instance, every user could
have a key y(1)

U used for classical signature and for certifying a key y(2)
U used for co-signature 16. If an

adversary generates a classical signature from a co-signature transcript as in Example 4.2, she actually
reveals her harmful intentions.

However, while this exposes the forgery — so that honest verifiers would reject such a signature — the
perpetrator remains anonymous. There are scenarios in which this is not desirable, e.g. because it still
proves that B agreed (with some unknown and dishonest partner) on m.

Note that the existence of proof of involvement is not necessary and depends on the precise choice of
underlying signature scheme.

16. The key y
(2)
U may be derived from y

(1)
U in some way, so that the storage needs of D are the same as for classical Schnorr.

66 Designing Integrity Primitives 4.2
4.2.3.3 Security Model

It is important to make extremely clear the security model that we are targeting. In this situation an
adversary A (possibly Alice or Bob) tries to forged signatures from partial and/or complete traces of
co-signature interactions, which can be of two kinds :

1. Co-signatures between two parties, at least one of which did not take part in the co-signature
protocol;

2. (Traditional) signatures of either party.

A succeeds if and only if one of these forgeries is accepted, which can be captured as the probability of
acceptance of A’s outputs, and the victim (purported mono-signatory, or co-signatory) doesn’t have a
co-signature with A 17.

Observe that due to the unforgeability of Schnorr signatures, the attacker must necessarily impersonate
one of the co-signatories to achieve either of the two forgeries mentioned above (in fact, the strongest
position is that of Alice, who has an edge over Bob in the protocol). This is the reason why the victim
may have a co-signature of A, so that this security model captures fairness.

In short, we propose to address such attacks in the following way:

1. By using a different key for co-signature and mono-signature;

2. By having Bob store specific co-signature-related information in non-volatile memory.

The reason for (1) is that it distinguishes between mono-signatures, and mono-signatures generated
from partial co-signature traces. Thanks to this, it is easy for the verifier to detect a forgery, and perform
additional steps.

The reason for (2) is twofold: On the one hand, it enables the verifier to obtain from Bob definitive proof
that there was forgery; on the other hand, once the forgery has been identified, it makes it possible for
the verifier to re-establish fairness binding the two real co-signatories together. Note that Bob is in charge
of keeping this information secure, i.e. available and correct.

4.2.3.4 Concurrent Co-signatures

In the interest of fairness, the best we can ask is that if A tries to incriminate B on a message they both
agreed upon, she cannot do so anonymously.

To enforce fairness on the co-signature protocol, we ask that the equivalent of a keystone is transmitted
first; so that in case of dispute, the aggrieved party has a legal recourse. First we define the notion of an
authorized signatory credential:

Definition 4.6 (Authorized signatory credential) The data field

ΓAlice,Bob = {Alice,Bob, kA, σ(gkA‖Alice‖Bob)}

is called an authorized signatory credential given by Alice to Bob, where σ is some publicly known auxiliary
signature algorithm using Alice’s private key xA as a signing key.

Any party who gets ΓAlice,Bob can check its validity, and releasing ΓAlice,Bob is by convention functionally
equivalent to Alice giving her private key xA to Bob. A valid signature by Bob on a message m exhibited
with a valid ΓAlice,Bob is legally defined as encompassing the meaning (V) of Alice’s signature on m:

{ΓAlice,Bob, signature by Bob on m}V signature by Alice on m

Second, the co-signature protocol of Figure 4.4 is modified by requesting that Alice provide t to Bob. Bob
stores this in a local memory L along with sB . Together, t and sB act as a keystone enabling Bob (or a
verifier, e.g. a court of law) to reconstruct ΓAlice,Bob if Alice exhibits a (fraudulent) signature binding Bob
alone with his co-signing public key.

Therefore, should Alice try to exhibit as in Example 4.2 a signature of Bob alone on a message they both
agreed upon (which is known as a fraud), the court would be able to identify Alice as the fraudster.

4.2 Legally Fair Contract Signing Without Keystones 67
proof of involvement

m, r, s̄B

proof of involvement
m, r, kA(or ZKA(kA)), sB

∃sB , t ∈ L s.t.
ν(t, gs̄B−sB)

?
= true

∃t ∈ L s.t.
ν(t, gkA)

?
= true

Alice is not involved with
m. Bob gets deniability.

No party involved with m.

Alice is Bob’s authorized signatory.
Now check Bob’s role:

r
?
= gs̄ByeB

Alice is Bob’s authorized
signatory but Bob did not sign.

No party involved with m.

Alice cheated, involved Bob and
involved herself as well with m.

Both parties involved with m.

no no

s̄ B
←
s B

+
k A

no

Figure 4.7 – The verification procedure: proof of involvement.

The modified signature protocol is described in Figure 4.8. Alice has only one window of opportunity to
try and construct a fraudulent signature of Bob: by stopping the protocol at breakpoint and using the
information sB 18.

Indeed, if the protocol is interrupted before breakpoint ¬, then no information involving m was released
by any of the parties: The protocol’s trace can be simulated without Bob’s help as follows

sB , r
$←− Zq

e← H(1‖m‖r‖Alice‖Bob)

rB ← gsByeB

rA ← r × r−1
B

t← σ(rA‖Alice‖Bob)

ρ← H(0‖rB)

and Bob has only received from Alice the signature of a random integer.

If Alice and Bob successfully passed the normal completion breakpoint ®, both parties have the co-
signature, and are provably committed to m.

4.2.3.5 Willingness to Sign Attacks

David Pointcheval [Poi] pointed out a subtle attack that exceeds our model. In the scenario considered
by Pointcheval Bob is willing to sign m. An attacker wanting to check this fact eavesdrops a legitimate
co-signature session with Alice and replays rA, t. Bob will proceed and pass breakpoint ¬ thereby
revealing to the attacker his intent to co-sign m with Alice. A possible way to avoid this attack consists in

17. In particular, the question of whether Bob “intended” to sign is outside the scope of this security model.
18. If Bob transmits a wrong or incorrect sB , this will be immediately detected by Alice as rB 6= gsByeB . Naturally, in such a

case, Bob never sent any information binding him to the contract anyway.

68 Designing Integrity Primitives 4.2
Alice Bob

yA,B ← yA × yB yA,B ← yA × yB
kA ∈R Z∗q kB ∈R Z∗q
rA ← gkA rB ← gkB

ρ← H(0‖rB)
ρ←−−−−−−−−−−

t← σ(rA‖Alice‖Bob)
rA,t−−−−−−−−−−→

if t is incorrect then abort
store t in L

rB←−−−−−−−−−−
if H(0‖rB) 6= ρ then abort
r ← rA × rB r ← rA × rB
e← H(1‖m‖r) e← H(1‖m‖r)
sA ← kA − exA mod q sB ← kB − exB mod q

store sB in L
breakpoint ¬

sB←−−−−−−−−−−
if sB is incorrect then abort

breakpoint
sA−−−−−−−−−−→

if sA is incorrect then abort
breakpoint ®

s← sA + sB mod q s← sA + sB mod q
if {m, r, s} is valid then

erase t, sB from L

Figure 4.8 – The legally fair co-signature of message m.

having Bob send an auxiliary random challenge z along with ρ. The definition of t will then be modified
to include z (i.e. t = σ(rA|z|Alice|Bob)). This will prevent the recycling (replay) of past protocol sessions.
We conjecture that this countermeasure suffices to thwart these willingness to sign attacks although we
did not prove that.

4.2.3.6 Conclusion and Further Work

In this section we described an alternative construction paradigm for legally fair contract signing that
doesn’t require keystones, but can be combined with them to provide additional power. The new
paradigm produces co-signatures that bind a pair of users, and can be adapted to a number of DLP
signature protocols. In the co-signature version of Schnorr’s protocol, the resulting co-signatures have the
same format as classical (single-user) signature. This paradigm guarantees fairness and abuse-freeness,
and can be equipped with keystones to add functionalities such as whistle-blower traceability.

CHAPTER 5

DESIGNING AUTHENTICATION
PROTOCOLS

Summary

This chapter presents our research results in the area of authentication.

Discrete-logarithm authentication protocols are known to present two interesting features: The first is
that the prover’s commitment, x = gr, claims most of the prover’s computational effort. The second is
that x does not depend on the challenge and can hence be computed in advance. Provers exploit this
feature by pre-loading (or pre-computing) ready to use commitment pairs ri, xi. The ri can be derived
from a common seed but storing each xi still requires 160 to 256 bits when implementing DSA or Schnorr.

Section 5.1 1 proposes a new concept called slow motion zero-knowledge (SM-ZK). SM-ZK allows the prover
to slash commitment size (by a factor of 4 to 6) by combining classical zero-knowledge and a timing
channel. We pay the conceptual price of requiring the ability to measure time but, in exchange, obtain
communication-efficient protocols.

Section 5.2 2 introduces “thrifty” zero-knowledge protocols, or TZK. These protocols are constructed by
introducing a bias in the challenge send by the prover. This bias is chosen so as to maximize the security
versus effort trade-off. We illustrate the benefits of this approach on several well-known zero-knowledge
protocols.

Section 5.3 3 presents a lightweight algorithm allowing a verifier to collectively identify a community of
provers. This protocol is more efficient than one-to-one node authentication, resulting in less commu-
nication, less computation, and hence a smaller overall energy consumption. The protocol is provably
secure, and achieves zero-knowledge authentication of a time linear in the degree of the spanning tree.

The proposed authentication protocol may be adapted to better fit constraints: in the context of Internet
of Things (IoT), communication is a very costly operation. We describe versions that reduce the amount
of data sent by individual nodes, while maintaining security.

Section 5.4 4 describes the forensic analysis of what the authors believe to be the most sophisticated smart
card fraud encountered to date. In a way, this section illustrates what can happen when authentication
protocols are wrongly designed. In 2010, Murdoch et al. [MDAB10] described a man-in-the-middle
attack against EMV cards. [MDAB10] demonstrated the attack using a general purpose FPGA board,
noting that “miniaturization is mostly a mechanical challenge, and well within the expertise of criminal gangs”.
This indeed happened in 2011, when about 40 sophisticated card forgeries surfaced in the field. These
forgeries are remarkable in that they embed two chips wired top-to-tail. The first chip is clipped from a

1. Co-authored with Rémi Géraud and David Naccache.
2. Co-authored with Simon Cogliani, Rémi Géraud and David Naccache.
3. Co-authored with Simon Cogliani, Rémi Géraud, Diana Maimuţ, David Naccache and Rodrigo Portella do Canto.
4. Co-authored with Rémi Géraud, David Naccache and Assia Tria.

69

70 Designing Authentication Protocols 5.0
genuine stolen card. The second chip plays the role of the man-in-the-middle and communicates directly
with the point of sale (PoS) terminal. The entire assembly is embedded in the plastic body of yet another
stolen card. The forensic analysis relied on X-ray chip imaging, side-channel analysis, protocol analysis,
and microscopic optical inspections.

5.1 Slow Motion Zero Knowledge – Identifying With Colliding Commitments 71

5.1 Slow Motion Zero Knowledge – Identifying With Colliding Com-
mitments

5.1.1 Introduction

Authentication is a cornerstone of information security, and much effort has been put in trying to
design efficient authentication primitives. However, even the most succinct authentication protocols
require collision-resistant commitments. As proved by Girault and Stern [GS94a], breaking beyond the
collision-resistance size barrier is impossible. The research work presented in this section shows that
if we add the assumption that the verifier can measure the prover’s response time, then commitment
collision-resistance becomes unnecessary.

We call this new construction slow-motion zero knowledge (SM-ZK). As we will show, the parameter
determining commitment size in SM-ZK protocols is the attacker’s online computational power rather
than the attacker’s overall computational power.

As a result, SM-ZK allows a significant reduction (typically by a factor of 4 to 6) of the prover’s com-
mitment size. The prover’s on-line computational effort remains unchanged (enabling instant replies in
schemes such as GPS [GPS06]).

The prover’s offline work is only slightly increased. The main price is paid by the verifier who has to
solve a time-puzzle per session. The time taken to solve this time-puzzle determines the commitment’s
shortness.

Note that the use of pre-computations is not new: the nearly-instant on-line performance of Schnorr-like
authentication protocols is known and largely commented upon [Roo97; MN94]. In the same vein,
[NM95; Gir00] were the first to explore and formalize the use of time measurement during coupon-based
authentication as a security improvement means. [Gir00] is, in itself, a continuation of [GS94a].

The major contribution of this work is thus a technique forcing a cheating prover to either attack
the underlying zero-knowledge protocol or exhaust the space of possible replies in the presence of a
time-lock function that slows down his operations. When this time-lock function is properly tuned,
a simple time-out on the verifier’s side rules out cheating provers. It is interesting to contrast this
approach to the notion of knowledge tightness introduced by Goldreich, Micali and Widgerson [GMW91],
and generalizations such as precise/local ZK introduced by Micali and Pass [MP06], which uses similar
time-constraint arguments but to prove reduced knowledge leakage bounds.

5.1.2 Building Blocks

SM-ZK combines two existing building blocks that we now recall: three-pass zero-knowledge protocols
and time-lock functions.

5.1.2.1 Three-Pass Zero-Knowledge Protocols

A Σ-protocol [HL10; Dam10; GMR85] is a generic 3-step interactive protocol, whereby a prover P
communicates with a verifier V . The goal of this interaction is for P to convince V that P knows
some value – without revealing anything beyond this assertion. The absence of information leakage
is formalized by the existence of a simulator S, whose output is indistinguishable from the recording
(trace) of the interaction between P and V .

The three phases of a Σ protocol can be summarized by the following exchanges:
x−−−−−→

P c←−−−−− V
y−−−−−→

72 Designing Authentication Protocols 5.1
Namely,

— The prover sends a commitment x to the verifier;
— The verifier replies with a challenge c;
— The prover gives a response y.

Upon completion, V may accept or reject P , depending on whether P’s answer is satisfactory. Such a
description encompasses well-known identification protocols such as Feige-Fiat-Shamir [FFS88] and
Girault-Poupard-Stern [Gir90].

Formally, let R be some (polynomial-time) recognizable relation, then the set L = {v s.t. ∃w, (v, w) ∈ R}
defines a language. Proving that v ∈ L therefore amounts to proving knowledge of a witness w such that
(v, w) ∈ R. A Σ-protocol satisfies the following three properties:

— Completeness: given an input v and a witness w such that (v, w) ∈ R, P is always able to convince
V .

— Special honest-verifier zero-knowledge 5: there exists a probabilistic polynomial-time simulator S
which, given v and a c, outputs triples (x, c, y) that have the same distribution as in a valid
conversation between P and V .

— Special soundness: given two accepting conversations for the same input v, with different challenges
but an identical commitment x, there exists a probabilistic polynomial-time extractor procedure E
that computes a witness w such that (v, w) ∈ R.

Many generalizations of zero-knowledge protocols have been discussed in the literature. One critical
question for instance is to compose such protocols in parallel [GMW91; MP06], or to use weaker
indistiguishability notions (e.g., computational indistinguishability).

5.1.3 Commitment Pre-Processing

Because the commitment x does not depend on the challenge c, authors quickly noted that x can be
prepared in advance. This is of little use in protocols where the creation of x is easy (e.g., Fiat-Shamir
[FFS88]). Discrete-logarithm commitment pre-processing is a well-known optimization technique (e.g.,
[Roo97; MN94]) that exploits two properties of DLP:

1. In DLP-based protocols, a commitment is generated by computing the exponentiation x = gr in a
well-chosen group. This operation claims most of the prover’s efforts.

2. The commitment x being unrelated to the challenge c, can hence be computed in advance. A
“pre-computed commitment” is hence defined as {r, x} computed in advance by P 6. Because
several pre-computed commitments usually need to be saved by P for later use, it is possible to
derive all the ri components by hashing a common seed.

Such pre-processing is interesting as it enables very fast interaction between prover and verifier. While
the technique described in this work does not require the use of pre-processing, it is entirely compatible
with such optimizations.

5.1.4 Time-Lock Puzzles

Time-lock puzzles [RSW96; MMV11] are problems designed to guarantee that they will take (approxi-
mately) τ units of time to solve. Like proof-of-work protocols [DN92], time-locks have found applications
in settings where delaying requests is desirable, such as fighting spam or denial-of-service attacks, as
well as in electronic cash [ABMW05; DGN03; DNW05].

Time-lock puzzles may be based on computationally demanding problems, but not all such problems
make good time-locks. For instance, inverting a weak one-way function would in general not provide a
good time-lock candidate [RSW96]. The intuition is that the time it takes to solve a time-lock should not
be significantly reduced by using more computers (i.e., parallel brute-force) or more expensive machines.

5. Note that special honest-verifier zero-knowledge implies honest-verifier zero-knowledge.
6. Or for P by a trusted authority.

5.1 Slow Motion Zero Knowledge – Identifying With Colliding Commitments 73
A time-lock puzzle is informally described as a problem such that there is a super-polynomial gap
between the work required to generate the puzzle, and the parallel time required to solve it (for a
polynomial number of parallel processors). The following definition formalizes this idea [Cio12].

Definition 5.1 (Time-lock puzzle) A time-lock puzzle is the data two PPT algorithms TG(1k, t) (problem
generator) and TV (1k, a, v) (solution verifier) satisfying the following properties:

— For every PPT algorithm B(1k, q, h), for all e ∈ N, there exists m ∈ N such that

sup
t≥km,|h|≤ke

Pr
[
(q, a)← TG(1k, t) s.t. TV (1k, a, B(1k, q, h)) = 1

]
is negl(k). Intuitively, TG generates puzzles of hardness t, and B cannot efficiently solve any puzzle of
hardness t ≥ km for some constant m depending on B.

— There is some m ∈ N such that, for every d ∈ N , there is a PPT algorithm C(1k, t) such that

min
t≤kd

Pr
[
(q, a)← TG(1k, t), v ← C(1k, q) s.t. TV (1k, a, v) = 1 and |v| ≤ km

]
is overwhelming in k. Intuitively, this second requirement ensures that for any polynomial hardness value,
there exists an algorithm that can solve any puzzle of that hardness.

Rivest, Shamir and Wagner [RSW96], and independently Boneh and Naor [BN00] proposed a time-lock
puzzle construction relying on the assumption that factorization is hard. This is the construction we
retain for this work, and to the best of our knowledge the only known one to achieve interesting security
levels. The original Rivest-Shamir-Wagner (RSW) time-lock [RSW96] is based on the “intrinsically
sequential” problem of computing:

22τ mod n

for specified values of τ and an RSA modulus n. The parameter τ controls the puzzle’s difficulty. The
puzzle can be solved by performing τ successive squares modulo n.

Using the formalism above, the RSW puzzle can be described as follows:

TG(1k, t) =
(
(p1p2,min(t, 2k)), (p1, p2,min(t, 2k))

)
TV (1k, (p1, p2, t

′), v) =

{
1 if (v = v1, v2) and v1 = 22t

′

mod n and v2 = n

0 otherwise

where p1 and p2 are (k/2)-bit prime numbers. Both solving the puzzle and verifying the solution can be
efficiently done if p1 and p2 are known.

Good time-lock problems seem to be hard to find, and in particular there exist impossibility results against
unbounded adversaries [MMV11]. Nevertheless, the RSW construction holds under a computational
assumption, namely that factorization of RSA moduli is hard

5.1.5 Slow Motion Zero-Knowledge Protocols

5.1.5.1 Definition

We can now introduce the following notion:

Definition 5.2 (SM-ZK) A Slow Motion Zero-Knowledge (SM-ZK) protocol (σ, T , τ,∆max), where σ defines
a Σ protocol, T is a time-lock puzzle, τ ∈ N, and ∆max ∈ R, is defined by the three following steps of σ:

1. Commitment: P sends a commitment x to V
2. Timed challenge: V sends a challenge c to P , and starts a timer.

3. Response: P provides a response y to V , which stops the timer.

V accepts iif
— y is accepted as a satisfactory response by σ; and
— x is a solution to the time-lock puzzle T with input (y, c) and hardness τ ; and

74 Designing Authentication Protocols 5.1
— time elapsed between challenge and response, as measured by the timer, is smaller than ∆max.

Such a protocol must satisfy a new notion of soundness:

Definition 5.3 (Time-constrained soundness) Let Σ̃ = (σ, T , τ,∆) be a slow-motion zero-knowledge proto-
col. Given two accepting conversations for the same input Let ε′ > 0, then there exists τ > 0 such that, if a
prover A is accepted with non-negligible probability ε = 1/BN + ε′ by honest verifiers, then with overwhelming
probability, A knows s.

5.1.5.2 Commitment shortening

Commitments in a Σ-protocol are under the control of P , which may be malicious. If commitments are
not collision-resistant, the protocol’s security is weakened. Hence commitments need to be long, and
in classical Σ protocols breaking below the collision-resistance size barrier is impossible as proved by
[GS94b].

However, as we now show, commitment collision-resistance becomes unnecessary in the case of SM-ZK
protocols.

5.1.6 An Example Slow Motion Zero Knowledge

P V

r
$←− [0, A− 1]

x← gr mod n
x−−−−−→

c
$←− [0, B − 1]

c←−−−−−
if c /∈ [0, B − 1] then
abort

else
y ← r + c× s

y−−−−−→
if y ∈ [0, A+ (B − 1)(S − 1)− 1]

and gyvc = x mod n then
valid

else
invalid

Figure 5.1 – Girault-Poupard-Stern identification protocol.

While SM-ZK can be instantiated with any three-pass ZK protocol, we will illustrate the construction
using the Girault-Poupard-Stern (GPS) protocol [PS98; GPS06; Gir90], and a modification of the time-lock
construction due to Rivest, Shamir and Wagner [RSW96].

5.1.6.1 Girault-Poupard-Stern Protocol

GPS key generation consists in generating a composite modulus n, choosing a public generator g ∈
[0, n− 1] and integers A,B, S such that A� BS. Choice of parameters depends on the application and
is discussed in [GPS06]. Implicitly, parameters A,B, S are functions of the security parameter k.

5.1 Slow Motion Zero Knowledge – Identifying With Colliding Commitments 75
The secret key is an integer s ∈ [0, S − 1], and the corresponding public key is v = g−s mod n. Authenti-
cation is performed as in Figure 5.1.

P can also pre-compute as many values xi ← gri as suitable for the application, storing a copy of ri for
later usage. The detailed procedure by which this is done is the following:

Figure 5.2 described one possible way in which pre-computed commitments are generated and used for
GPS. In this figure, we delegate the computation to a trusted authority. That role can be played by P
alone, but we leverage the authority to alleviate P’s computational burden.

To efficiently generate a sequence of commitments, the authority uses a shared secret seed J and a
cryptographic hash function H . Here J is chosen by P but it could be chosen by the authority instead.

Authority P

J
$←− N

J←−−−−−
for i = 1 to k do
ri ← H(J, i, s)
xi ← gri mod n

end for
x1,...,xk−−−−−→

Store J, x1, . . . , xk

P V

i← i+ 1
xi−1−−−−−→

r ← H(J, i− 1, s) c
$←− [0, B − 1]

c←−−−−−
y ← r + s× c

y−−−−−→
Verify(xi−1, y, c)

Figure 5.2 – Commitment pre-processing as applied to GPS. The first stage describes the preliminary
interaction with a trusted authority, where pre-computed commitments are generated and stored. The
second stage describes the interaction with a verifier. For the sake of clarity the range-tests on c and y
were omitted. The trusted authority can be easily replaced by P himself.

5.1.6.2 GPS-RSW SM-ZK

We can now combine the previous building-blocks to construct a pre-processing scheme that requires
little commitment storage.

The starting point is a slightly modified version of the RSW time-lock function τ 7→ 22τ . Let µ be some
deterministic function (to be defined later) and n an RSA modulus different from the n used for the GPS,
we define for integers τ, `:

fτ,`(x) =
(
µ(x)2τ mod n

)
mod 2`.

Here, τ controls the puzzle hardness and ` is a parameter controlling output size.

The function fτ,` only differs from the RSW time-lock in two respects: We use µ(x) instead of 2; and the
result is reduced modulo 2`.

76 Designing Authentication Protocols 5.1
The motivation behind using a function µ stems from the following observation: An adversary knowing
x2τ

1 and x2τ

2 could multiply them to get (x1x2)2τ . To thwart such attacks (and similar attacks based on
the malleability of RSA) we suggest to use for µ a deterministic RSA signature padding function (e.g.,
the Full Domain Hash [BR94]).

The reduction modulo 2` is of practical interest, it is meant to keep the size of answers manageable. Of
course, an adversary could brute-force all values between 0 and 2` − 1 instead of trying to solve the
time-lock. To avoid this situation, ` and τ should be chosen so that solving the time-lock is the most
viable option of the two.

Under the same assumptions as RSW (hardness of factorization), and if ` and τ are properly tuned, fτ,`
generates a time-lock problem.

Then, we adapt a construction of M’Raïhi and Naccache [MN94] to GPS[Gir90]. This is done by defining
a secret J , a public hash function H , and computing the quantities:

x′i = gH(J,i,s) mod n

This computation can be delegated to a trusted authority. This is interesting in our case because the
authority can compress these x′i by computing xi = fτ,`(x

′
i). Note that because the authority knows

the factors of n, computing the xi is fast. P is loaded with k pre-computed commitments x1, . . . , xk as
shown in Figure 5.3. The quantity k of pre-computed commitments depends on the precise application.

Authority P

J
$←− [1, 2512]

J←−−−−−
for i = 1 to k do
ri ← H(J, i, s)
x′i ← gri mod n
xi ← fτ,` (x′i)

end for
x1,...,xk−−−−−→

Store J, x1, . . . , xk

Figure 5.3 – Slow motion commitment pre-processing for GPS.

When V wishes to authenticate P the parties execute the protocol shown in Figure 5.4.

With a proper choice of τ, ` we can have a reasonable verification time (assuming that V is more powerful
than P), extremely short commitments (e.g., 40-bit ones) and very little on-line computations required
from P .

5.1.6.3 Choice of Parameters

What drives the choice of parameters is the ratio between:
— The time t it takes to a legitimate prover to compute y and transmits it. In GPS this is simply

one multiplication of operands of sizes log2B and log2 S (additions neglected), this takes time
λ log(B) log(S) for some constant λ (not assuming optimizations such as [Ber86] based on the fact
that operand s is constant).

— The time T it takes for the fastest adversary to evaluate once the time-lock function fτ,`. T does
not really depend on `, and is linear in τ . We hence let T = ντ . Note that there is no need to take
into account the size of n, all we require from n is to be hard to factor. That way, the slowing effect
will solely depend on τ .

In a brute-force attack, there are 2` possibilities to exhaust. The most powerful adversary may run
κ ≤ 2` parallel evaluations of the time-lock function, and succeed to solve the puzzle in t time units with

5.1 Slow Motion Zero Knowledge – Identifying With Colliding Commitments 77
P V

i← i+ 1
r ← H(J, i− 1, s)

xi−1−−−−−→
c

$←− [0, B − 1]
δ ← Time

c←−−−−−

y ← r + c× s
y−−−−−→

∆← Time− δ
z ← fτ,`(g

yvc)
if ∆ ≤ ∆max

and z =
xi−1 then

valid
else

invalid

Figure 5.4 – Slow Motion GPS. Range tests on c and y omitted for the sake of clarity.

probability

ε =
κt

2`T
=
κ log(B) log(S)λ

ν2`τ

A typical instance resulting in 40-bit commitments is {κ = 224, T = 1, t = 2−4, ε = 2−20} ⇒ ` = 40. Here
we assume that the attacker has 16.7 million (224) computers capable of solving one time-lock challenge
per second (T = 1) posing as a prover responding in one sixteenth of a second (t = 2−4). Assuming the
least secure DSA parameters (160-bit q) this divides commitment size by 4. For 256-bit DSA the gain
ratio becomes 6.4.

The time-out constant ∆max in Figure 5.4 is tuned to be as small as possible, but not so short that it
prevents legitimate provers from authenticating. Therefore the only constraint is that ∆max is greater or
equal to the time t it takes to the slowest legitimate prover to respond. Henceforth we assume ∆max = t.

5.1.7 Security Proof

The security of this protocol is related to that of the standard GPS protocol analysed in [PS98; GPS06].
We recall here the main results and hypotheses.

5.1.7.1 Preliminaries

The following scenario is considered. A randomized polynomial-time algorithm Setup generates the
public parameters (G, g, S) on input the security parameter k. Then a second probabilistic algorithm
GenKey generates pairs of public and private keys, sends the secret key to P while the related public
key is made available to anybody, including of course P and V . Finally, the identification procedure is a
protocol between P and V , at the end of which V accepts or not.

An adversary who doesn’t corrupt public parameters and key generation has only two ways to obtain in-
formation: either passively, by eavesdropping on a regular communication, or actively, by impersonating
(in a possibly non protocol-compliant way) P and V .

78 Designing Authentication Protocols 5.1
The standard GPS protocol is proven complete, sound and zero-knowledge by reduction to the discrete
logarithm with short exponent problem [GPS06]:

Definition 5.4 (Discrete logarithm with short exponent problem) Given a group G, g ∈ G, and integer S
and a group element gx such that x ∈ [0, S − 1], find x.

5.1.7.2 Compressed Commitments For Time-Locked GPS

We now consider the impact of shortening the commitments to ` bits on security, while taking into
account the time constraint under which P operates. The shortening of commitments will indeed weaken
the protocol [GS94b] but this is compensated by the time constraint, as explained below.

Lemma 5.1 (Completeness) Execution of the protocol of Figure 5.4 between a prover P who knows the secret
key corresponding to his public key, and replies in bounded time ∆max, and a verifier V is always successful.

Proof: This is a direct consequence of the completeness of the standard GPS protocol [GPS06, Theorem
1]. By assumption, P computes y and sends it within the time allotted for the operation. This computation
is easy knowing the secret s and we have

gyvc = gri+csvc = x′ig
csvc = x′iv

c−c = x′i

Consequently, fτ,`(gyvc) = fτ,`(x
′
i) = xi. Finally,

y = r + cs ≤ (A− 1) + (B − 1)(S − 1) < ymax.

Therefore all conditions are met and the identification succeeds. 2

Lemma 5.2 (Zero-Knowledge) The protocol of Figure 5.4 is statistically zero-knowledge if it is run a polynomial
number of times N , B is polynomial, and NSB/A is negligible.

The proof follows [GPS06] and is the following:

Proof: The zero-knowledge property of the standard GPS protocol is proven by constructing a polynomial-
time simulation of the communication between a prover and a verifier [GPS06, Theorem 2]. We adapt this
proof to the context of the proposed protocol. The function δ is defined by δ(true) = 1 and δ(false) = 0,
and ∧ denotes the logical operator “and”. For clarity, the function fτ,` is henceforth written f .

The scenario is that of a prover P and a dishonest verifier A who can use an adaptive strategy to bias the
choice of the challenges to try to obtain information about s. In this case the challenges are no longer
chosen at random, and this must be taken into account in the security proof. Assume the protocol is run
N times and focus on the i-th round.

A has already obtained a certain amount of information η from past interactions with P . P sends a
pre-computed commitment xi. Then A chooses a commitment using all information available to her, and
a random tape ω: ci (xi, η, ω).

The following is an algorithm (using its own random tape ωM) that simulates this round:

Step 1. Choose ci
$←− [0, B − 1] and yi

$←− [(B − 1)(S − 1), A− 1] using ωM .

Step 2. Compute xi = fτ,`
(
gyivci

)
.

Step 3. If ci (xi, η, ω) = ci then return to step 1 and try again with another pair (ci, yi), else return
(xi, ci, yi). 7

7. The probability of success at step 3 is essentially 1/B, and the expected number of executions of the loop is B, so that the
simulation of N rounds runs in O(NB): the machine runs in expected polynomial time.

5.1 Slow Motion Zero Knowledge – Identifying With Colliding Commitments 79
The rest of the proof shows that, provided Φ = (B − 1)(S − 1) is much smaller than A, this simulation
algorithm outputs triples that are indistinguishable from real ones, for any fixed random tape ω.

Formally, we want to prove that

Σ1 =
∑
α,β,γ

∣∣∣∣Pr
ωP

[(x, c, y) = (α, β, γ)]− Pr
ωM

[(x, c, y) = (α, β, γ)]

∣∣∣∣
is negligible, i.e., that the two distributions cannot be distinguished by accessing a polynomial number
of triples (even using an infinite computational power). Let (α, β, γ) be a fixed triple, and assuming a
honest prover, we have the following probability:

p = Pr
ωP

[(x, c, y) = (α, β, γ)]

= Pr
0≤r<A

[α = f(gr) ∧ β = c(α, η, ω) ∧ γ = r + βs]

=

A−1∑
r=0

1

A
δ
(
α = f(gγvβ) ∧ β = c(α, η, ω) ∧ r = γ − βs

)
=

1

A
δ
(
α = f(gγvβ) ∧ β = c(α, η, ω) ∧ γ − βs ∈ [0, A− 1]

)
=

1

A
δ
(
α = f(gγvβ)

)
δ (β = c(α, η, ω)) δ (γ − βs ∈ [0, A− 1]) .

where f = fτ,`.

We now consider the probability p = PrωM [(x, c, y) = (α, β, γ)] to obtain the triple (α, β, γ) during the
simulation described above. This is a conditional probability given by

p = Pr
y∈[Φ,A−1]
c∈[0,B−1]

[
α = f

(
gyvc

)
∧ β = c ∧ γ = y

∣∣ c = c
(
f
(
gyvc

)
, η, ω

)]
Using the definition of conditional probabilities, this equals

p =

Pr
y∈[Φ,A−1]
c∈[0,B−1]

[
α = f

(
gyvc

)
∧ β = c ∧ γ = y

]
Pr

y∈[Φ,A−1]
c∈[0,B−1]

[c = c (f (gyvc) , η, ω)]

Let us introduce
Q =

∑
y∈[Φ,A−1]
c∈[0,B−1]

δ
(
c = c

(
f
(
gyvc

)
, η, ω

))
then the denominator in p is simply Q/B(A− Φ). Therefore:

p =
∑

c∈[0,B−1]

1

B
Pr

y∈[Φ,A−1]

[
α = f

(
gyvc

)
∧ γ = y ∧ β = c = c(α, η, ω)

] B(A− Φ)

Q

= Pr
y∈[Φ,A−1]

[
α = f

(
gγvβ

)
∧ γ = y ∧ β = c(α, η, ω)

] A− Φ

Q

=
∑

y∈[Φ,A−1]

1

A− Φ
δ
(
α = f

(
gγvβ

)
∧ γ = y ∧ β = c(α, η, ω)

) A− Φ

Q

=
1

Q
δ
(
α = f

(
gγvβ

))
δ (β = c(α, η, ω)) δ (γ ∈ [Φ, A− 1])

We will now use the following combinatorial lemma:

Lemma 5.3 If h : G → [0, B − 1] and v ∈ {g−s, s ∈ [0, S − 1]} then the total number M of solutions
(c, y) ∈ [0, B − 1]× [Φ, A− 1] to the equation c = h(gyvc) satisfies A− 2Φ ≤M ≤ A.

80 Designing Authentication Protocols 5.1
Proof: [Proof of Lemma 5.3] [GPS06, Appendix A] 2

Specializing Lemma 5.3 to the function that computes c(f(gyvc), η, ω) from (c, y) gives A− 2Φ ≤ Q ≤ A.
This enables us to bound Σ1:

Σ1 =
∑
α,β,γ

∣∣∣∣Pr
ωP

[(x, c, y) = (α, β, γ)]− Pr
ωM

[(x, c, y) = (α, β, γ)]

∣∣∣∣
=

∑
α,β,γ∈[Φ,A−1]

∣∣∣∣Pr
ωP

[(x, c, y) = (α, β, γ)]− Pr
ωM

[(x, c, y) = (α, β, γ)]

∣∣∣∣
+

∑
α,β,γ /∈[Φ,A−1]

Pr
ωP

[(x, c, y) = (α, β, γ)]

=
∑

γ∈[Φ,A−1]
β∈[0,B−1]

α=f(gγvβ)

∣∣∣∣ 1

A
δ (β = c(α, η, ω))− 1

Q
δ(β = c(α, η, ω))

∣∣∣∣

+

1−
∑

α,β,γ∈[Φ,A−1]

Pr
ωP

[(x, c, y) = (α, β, γ)]

=

∣∣∣∣ 1

A
− 1

Q

∣∣∣∣Q+ 1−
∑

γ∈[Φ,A−1]
β∈[0,B−1]

α=f(gγvβ)

1

A
δ (β = c(α, η, ω))

=
|Q−A|
A

+ 1− Q

A

Therefore Σ1 ≤ 2|Q−A|/A ≤ 4Φ/A < 4SB/A, which proves that the real and simulated distributions
are statistically indistinguishable if SB/A is negligible. 2

The last important property to prove is that if V accepts, then with overwhelming probability P must
know the discrete logarithm of v in base g.

Lemma 5.4 (Time-constrained soundness) Under the assumption that the discrete logarithm with short expo-
nent problem is hard, and the time-lock hardness assumption, this protocol achieves time-constrained soundness.

Proof: After a commitment x has been sent, if A can correctly answer with probability > 1/B then
he must be able to answer to two different challenges, c and c′, with y and y′ such that they are both
accepted, i.e., fτ,`(gyvc) = x = fτ,`(g

y′vc
′
). When that happens, we have

µ (gyvc)
2τ

= µ
(
gy
′
vc
′
)2τ

mod n mod 2`

Here is the algorithm that extracts these values from the adversary A. We write Success(ω, c1, . . . , cn) the
result of the identification of A using the challenges c1, . . . , cn, for some random tape ω.

Step 1. Pick a random tape ω and a tuple c of N integers c1, . . . , cN in [0, B − 1]. If Success(ω, c) = false,
then abort.

Step 2. Probe randomN -tuples c′ that are different from each other and from c, until Success(ω, c′) = true.
If after BN − 1 probes a successful c′ has not been found, abort.

Step 3. Let j be the first index such that cj 6= c′j , write yj and y′j the corresponding answers of A. Output
cj , c

′
j , yj , y

′
j .

5.1 Slow Motion Zero Knowledge – Identifying With Colliding Commitments 81
This algorithm succeeds with probability≥ ε−1/BN = ε′, and takes at most 4∆max units of time [GPS06].
This means that there is an algorithm finding collisions in fτ,` with probability ≥ ε′ and time ≤ 4∆max.

Assuming the hardness of the discrete logarithm with short exponents problem, the adversary responds
in time by solving a hard problem, where as pointed out earlier the probability of success is given by

ζ =
κ log(B) log(S)λ

ν2`τ

where κ is the number of concurrent evaluations of fτ,` performed by A. There is a value of τ such that
ζ � ε. For this choice of τ , A is able to compute fτ,` much faster than brute-force, which contradicts the
time-lock hardness assumption. 2

5.1.8 Conclusion and Further Research

The research work of this section introduced a new class of protocols, called Slow Motion Zero Knowledge
(SM-ZK) showing that if we pay the conceptual price of allowing time measurements during a three-pass
ZK protocol then commitments do not need to be collision-resistant.

Because of its interactive nature, SM-ZK does not yield signatures but seems to open new research
directions. For instance, SM-ZK permits the following interesting construction, that we call a fading
signature: Alice wishes to send a signed message m to Bob without allowing Bob to keep a long-term
her involvement. By deriving c ← H(x,m, ρ) where ρ is a random challenge chosen by Bob, Bob can
can convince himself 8 that m comes from Alice. This conviction is however not transferable if Alice
prudently uses a short commitment as described in this section.

8. If y was received before ∆max.

82 Designing Authentication Protocols 5.2

5.2 Thrifty Zero-Knowledge: When Linear Programming Meets Cryp-
tography

5.2.1 Introduction

Since their discovery, zero-knowledge proofs (ZKPs) [GMR85; BCC88] have found many applications
and have become of central interest in cryptology. ZKPs enable a prover P to convince a verifier V that
some mathematical statement is valid, in such a way that no knowledge but the statement’s validity is
communicated to V . The absence of information leakage is formalized by the existence of a simulator S ,
whose output is indistinguishable from the recording (trace) of the interaction between P and V .

Thanks to this indistinguishability, an eavesdropper A cannot tell whether she taps a real conversation
or the monologue of S . P and V , however, interact with each other and thus know that the conversation
is real.

It may however happen, by sheer luck, that A succeeds in responding correctly to a challenge without
knowing P ’s secret. ZKPs are designed so that such a situation is expected to happen only with negligible
probability: Repeating the protocol renders the cheating probability exponentially small if the challenge
at each protocol round is random. Otherwise, Amay repeat her successful commitments while hoping
to be served with the same challenges.

Classically, the protocol is regarded as ideal when the challenge distribution is uniform over a large
set (for efficiency reasons, the cardinality of this set rarely exceeds 2128). Uniformity, however, has its
drawbacks: all challenges are not computationally equal, and some challenges may prove harder than
others to respond to.

The research work of this section explores the effect of biasing the challenge distribution. Warping this
distribution unavoidably sacrifices security, but it appears that the resulting efficiency gains balance
this loss in a number of ZKPs. Finding the optimal distribution brings out interesting optimization
problems which happen to be solvable exactly for a variety of protocols and variants. We apply this
idea to improve on four classical ZK identification protocols that rely on very different assumptions:
RSA-based Fiat-Shamir [FFS88], SD-based identification [Ste94], PKP-based identification [Sha90], and
PPP-based identification [Poi95].

5.2.2 Preliminaries

5.2.2.1 Three-Round Zero-Knowledge Protocols

A Σ-protocol [HL02; Dam10; GMW91] is a generic 3-step interactive protocol, whereby a prover P tries
to convince a verifier V that P knows a proof that some statement is true — without revealing anything
to V beyond this assertion. The three phases of a Σ-protocol are illustrated by Figure 5.5.

x−−−−−−−−−−→
P c←−−−−−−−−−− V

y−−−−−−−−−−→

Figure 5.5 – Generic Σ-protocol.

Namely,
— P sends a commitment x to V
— V replies with a challenge c;
— P provides a response y.

Upon completion, V may accept or reject P , depending on whether P’s response is satisfactory. In
practice, the protocol will be repeated several times until V is satisfied.

5.2 Thrifty Zero-Knowledge: When Linear Programming Meets Cryptography 83
An eavesdropper A should not be able to learn anything from the conversation between P and V . This
security notion is formalized by the existence of a simulator S, whose output is indistinguishable from
the interaction (or “trace”) T between P and V . Different types of zero-knowledge protocols exist, that
correspond to different indistinguishability notions.

In computational zero-knowledge, S’s output distribution is computationally indistinguishable from T ,
whereas in statistical zero-knowledge, S’s output distribution must be statistically close to the distribution
governing T : Thus even a computationally unbounded verifier learns nothing from T . The strongest
notion of unconditional zero-knowledge requires that A cannot distinguish S’s output from T , even if
A is given access to both unbounded computational resources and P’s private keys. The Fiat-Shamir
protocol [FFS88] is an example of unconditional ZKP.

Definition 5.5 (Statistical Indistinguishability) The statistical difference between random variables X and
Y taking values in Z is defined as:

∆(X,Y) := max
Z⊂Z

|Pr(X ∈ Z)− Pr(Y ∈ Z)|

= 1−
∑
z∈Z

min {Pr(X = z),Pr(Y = z)}

We say that X and Y are statistically indistinguishable if ∆(X,Y) is negligible.

Finally, we expect P to eventually convince V , and that V should only be convinced by such a P (with
overwhelming probability). All in all, we have the following definition:

Definition 5.6 (Σ-protocol) A Σ-protocol is a three-round protocol that furthermore satisfies three properties:
— Completeness: given an input v and a witness w such that vRw, P is always able to convince V .
— Zero-Knowledge: there exists a probabilistic polynomial-time simulator S which, given (v, c), outputs

triples (x, c, y) that follow a distribution indistinguishable from a valid conversation between P and V .
— Special Soundness: given two accepting conversations for the same input v, and the same commitment

x, but with different challenges c1 6= c2, there exists a probabilistic polynomial-time algorithm E called
extractor that computes a witness w = E(c1, c2, v, x) such that vRw.

5.2.2.2 Security Efficiency

During a Σ-protocol, P processes c to return the response y(x, c). The amount of computation W (x, c)
required for doing so depends on x, c, and on the challenge size, denoted k. Longer challenges — hence
higher security levels — would usually claim more computations.

Definition 5.7 (Security Level) Let P ↔ V be a Σ-protocol, the security level S(P ↔ V): is defined as the
challenge min-entropy

S(P ↔ V) := −min
c

log Pr(c)

This security definition assumes that A’s most rational attack strategy is to focus her efforts on the most
probable challenge. From a defender’s perspective, verifiers achieve the highest possible security level
by sampling challenges from a uniform distribution.

Definition 5.8 (Work Factor) Let P ↔ V be a Σ-protocol, the average work factor W (P ↔ V) is defined as
the expected value of W (x, c):

W (P ↔ V) := Ex,c [W (x, c)]

Definition 5.9 (Security Efficiency) Let P ↔ V be a Σ-protocol, the security efficiency of P ↔ V , denoted
E(P ↔ V), is defined as the ratio between S(P ↔ V) and W (P ↔ V):

E(P ↔ V) :=
S(P ↔ V)

W (P ↔ V)

Informally, E(P ↔ V) represents 9 the average number of security bits per mathematical operation.

9. i.e. is proportional to

84 Designing Authentication Protocols 5.2
5.2.2.3 Linear Programming

Linear programming (LP) [Dan51; DT06a; DT06b; BV04] problems appear when a linear objective
function must be optimized under linear equality and inequality constraints. These constraints define a
convex polytope. General linear programming problems can be expressed in canonical form as:

maximize c>x
subject to Ax ≤ b
and x ≥ 0

where x represents the vector of variables (to be determined), c and b are vectors of (known) coefficients
and A is a (known) matrix of coefficients.

Linear programming is common in optimization problems and ubiquitous in logistics, operational
research, and economics. Interestingly, linear programming has almost never surfaced in cryptography,
save a few occasional appearances in error correcting codes [BGS94], or under the avatar of its NP-hard
variant, integer programming [Len84].

Every linear problem can be written in so-called “standard form” where the constraints are all inequalities
and all variables are non-negative, by introducing additional variables (“slack variables”) if needed.
Not all linear programming problems can be solved: The problem might be unbounded (there is no
maximum) or unfeasible (no solution satisfies the constraints, i.e. the polytope is empty).

Many algorithms are known to solve LP instances, on the forefront Dantzig’s Simplex algorithm [Dan51].
The Simplex algorithm solves an LP problem by first finding a solution compatible with the constraints
at some polytope vertex, and then walking along a path on the polytope’s edges to vertices with non-
decreasing values of the objective function. When an optimum is found the algorithm terminates — in
practice this algorithm has usually good performance but has poor worst-case behavior: There are LP
problems for which the Simplex method takes a number of steps exponential in the problem size to
terminate [DT06a; Mur83].

Since the 1950’s, more efficient algorithms have been proposed called “interior point” methods (as
opposed to the Simplex which evolves along the polytope’s vertices). In particular, these algorithms
demonstrated the polynomial-time solvability of linear programs [Kar84]. Following this line of research,
approximate solutions to LP problems can be found using very efficient (near linear-time) algorithms
[KY08; ZO14].

In this work we assume that some (approximate) LP solver is available. Efficiency is not an issue, since
this solver is only used once, when the ZKP is designed

5.2.3 Optimizing E(P ↔ V)

The new idea consists in assigning different probabilities to different c values, depending on how much it
costs to generate their corresponding y values, while achieving a given security level. The intuition is
that by choosing a certain distribution of challenges, we may hope to reduce P’s total amount of effort,
but this also reduces security. As we show, finding the best trade-off is equivalent to solving an LP
problem.

Consider a set Γ of symbols, and a cost function η : Γ→ N. Denote by pj := Pr (i | i ∈ Γj) the probability
that a symbol i is emitted, given that i has cost j. We wish to find this probability distribution.

Let Γj denote all symbols having cost j, i.e. such that η(i) = j. Let γj be the cardinality of Γj . The
expected cost for a given choice of emission probabilities {pj} is

W = E [η] =
∑
i∈Γ

η(i) Pr(i) =
∑
j

j × γj × pj

5.2 Thrifty Zero-Knowledge: When Linear Programming Meets Cryptography 85
W is easy to evaluate provided we can estimate the amount of work associated with each challenge
isocost class Γj . The condition that probabilities sum to one is expressed as:

1 =
∑
i∈Γ

Pr(i) =
∑
j

γjpj

Finally, security is determined by the min-entropy

S = − log2 max
i

Pr(i) = − log2 max
j
pj

Let ε = 2−S , so that pj ≤ ε for all j. The resulting security efficiency is E = S/W = (− log2 ε) /W .

We wish to maximize E, which leads to the following constrained optimization problem:

Given {γj} and ε,

minimize W =

∑
j jpjγj

subject to 0 ≤ pj ≤ ε∑
j γjpj = 1

(5.1)

This is a linear programming problem [Dan51; DT06a; DT06b], that can be put in canonical form by
introducing slack variables qj = ε− pj and turning the inequality constraints into equalities pj + qj = ε.
The solution, if it exists, therefore lies on the boundary of the polytope defined by these constraints.

Note that a necessary condition for an optimal solution to exist is that ε ≥ 1/
∑
j γj , which corresponds

to the choice of the uniform distribution.

Exact solutions to Equation (5.1) can be found using the techniques mentioned in Section 5.2.2.3.

We call such optimized ZKP versions “thrifty ZKPs”. Note that the zero-knowledge property is not
impacted, as it is trivial to construct a biased simulator.

5.2.4 Thrifty Zero-Knowledge Protocols

The methodology described in Section 5.2.3 can be applied to any ZK protocol, provided that we can
evaluate the work factor associated with each challenge class. As an illustration we analyze thrifty
variants of classical ZKPs: Fiat-Shamir (FS, [FFS88]), Syndrome Decoding (SD, [Ste94]), Permuted Kernels
Problem (PKP, [Sha90]), and Permuted Perceptrons Problem (PPP, [Poi95]).

5.2.4.1 Thrifty Fiat-Shamir

In the case of Fiat-Shamir [FFS88] (see [FFS88]), response to a challenge c claims a number of multiplica-
tions proportional to c’s Hamming weight. We have k = n-bit long challenges. Here γj is the number of
n-bit challenges having Hamming weight j, namely

γj =

(
n

j

)
Note that the lowest value of ε for which a solution to Equation (5.1) exists is 2−n, in which case pj = ε is
the uniform distribution, and W = n/2. Hence the original Fiat-Shamir always has E = 2.

Example 5.1 Let n = 3. In that case Equation (5.1) becomes the following problem:

Given ε,

minimize W = 3p1 + 6p2 + 3p3

subject to 0 ≤ p0, p1, p2, p3 ≤ ε
p0 + 3p1 + 3p2 + p3 = 1

Security efficiency is (− log2 ε)/W . Note that the original Fiat-Shamir protocol has W = 3/2 and security S = 3
bits, hence a security efficiency of E = 2, as pointed out previously.

86 Designing Authentication Protocols 5.2

0 0.5 1 1.5 2 2.5 3

1.4

1.6

1.8

2

2.2

2.4

2.6

Security − log2 ε

M
ax

im
um

se
cu

ri
ty

ef
fic

ie
nc

y

Figure 5.6 – Security efficiency for biased Fiat-Shamir with n = 3, as a function of ε. Standard Fiat-Shamir
security efficiency corresponds to the dashed line.

Let for instance ε = 1/7, for which the solution can be expressed simply as p0 = p1 = p2 = ε, and p3 = 1− 7ε,
yielding an effort

W = 9ε+ 3(1− 7ε) = 3(1− 4ε)

Therefore the corresponding security efficiency is − log2 ε
3(1−4ε) , which at ε = 1/7 equals 7 log2 7/9 ' 2.18. This is a

10% improvement over a standard Fiat-Shamir.

Remark We can compute the optimal distribution for any value of ε ≥ 1/8, i.e. choose the pis that
yields the maximum security efficiency Ê(ε). The result of this computation is given in Figure 5.6.
Corresponding optimal probabilities p̂i are given in Figure 5.7.

Remark Figure 5.6 shows that Ê is not a continuously differentiable function of ε. The two singular
points correspond to ε = 1/7 and ε = 1/4. These singular points correspond to optimal strategy changes:
when ε gets large enough, it becomes interesting to reduce the probability of increasingly many symbols.
This is readily observed on Figure 5.7 which displays the optimal probability distribution of each symbol
group as a function of ε.

Example 5.2 Solving Equation (5.1) for Fiat-Shamir with n = 16 gives Figure 5.8 which exhibits the same
features as Figure 5.6, with more singular points positioned at ε = 2−4, 2−7, 2−9, etc.

5.2.5 Thrifty SD, PKP and PPP

The authors implemented 10 the SD, PKP and PPP protocols, and timed their operation as a function of
the challenge class. Only the relative time taken by each class is relevant, and can be used as a measure

10. Python source code is available upon request.

5.2 Thrifty Zero-Knowledge: When Linear Programming Meets Cryptography 87

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

Parameter ε

Pr
ob

ab
ili

ty
p̂0
p̂1
p̂2
p̂3

Figure 5.7 – Fiat-Shamir (k = n = 4) optimal probability distribution for challenges in group j = 0, . . . , 3,
as a function of ε. Branching happens at ε = 1/7 and ε = 1/4. Dashed line corresponds to the standard
Fiat-Shamir distribution.

Table 5.1 – Challenge effort distribution for SD [Ste94], with a 16× 16 parity matrix H , over 104 runs.

Challenge Operations by prover Time Optimal pi

0 Return y and σ 0 s ±0.01 0.333

1 Compute y ⊕ s 747.7 s ±2 0.333

2 Compute y · σ and s · σ 181.22 s ±2 0.333

Table 5.2 – Challenge effort distribution for PKP [Sha90], over 107 runs.

Challenge Operations by prover Time Optimal pi

0 Compute W 390 s ±2 0.5

1 Compute W and π(σ) 403 s ±2 0.5

ofW . The methodology of Section 5.2.3 is then used to compute the optimal probability distributions
and construct the thrifty variant of these protocols.

However, there is a peculiarity in these protocols: An adversary can correctly answer (k − 1) out of k
possible challenges, requiring a legitimate prover to achieves more than 2/3, 1/2 and 3/4 success rates
respecitvely for SD, PKP and PPP. In this case, the attacker’s optimal strategy is to bet on the most
probable combination of (k − 1) challenges. Hence security is no longer measured by the min-entropy,
but instead by − log2 min(pi). In that case it is easily seen that the security efficiency cannot be improved,
and linear optimisation confirms that the optimal parameters are that of uniform distributions.

88 Designing Authentication Protocols 5.2

0 2 4 6 8 10 12 14 16

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Security − log2 ε

M
ax

im
al

se
cu

ri
ty

ef
fic

ie
nc

y

Figure 5.8 – Maximal security efficiency Ê for biased Fiat-Shamir with n = 16, as a function of security
− log ε. Standard Fiat-Shamir security efficiency corresponds to the dashed line.

Table 5.3 – Challenge effort distribution for PPP [Poi95], over 106 runs.

Challenge Operations by prover Time Optimal pi

0 Return P,Q,W 0.206 s ±0.05 0.25

1 Compute W +Q−1V 6.06 s ±0.05 0.25

2 Compute Q(P (A)) and Q−1V 21.13 s ±0.5 0.25

3 Compute Q−1V 4.36 s ±0.05 0.25

The result of measurements 11 and optimisations is summarized in Tables 5.1 to 5.3. For details about the
protocols we refer the reader to the original descriptions. The code computing the thrifty Fiat-Shamir
parameters is given in the appendix of this thesis.

11. Experiments were performed on a Intel Core i7-4712HQ CPU at 2.30 GHz, running Linux 3.13.0, Python 2.7.6, numpy 1.9.3,
and sympy 0.7.6.1.

5.3 Public-Key Based Lightweight Swarm Authentication 89

5.3 Public-Key Based Lightweight Swarm Authentication

We describe a lightweight algorithm performing whole-network authentication in a distributed way.
This protocol is more efficient than one-to-one node authentication: it results in less communication, less
computation, and overall lower energy consumption.

The proposed algorithm is provably secure, and achieves zero-knowledge authentication of a network in
a time logarithmic in the number of nodes.

Related Work: Zero Knowledge (ZK) protocols have been considered for authentication of wireless
sensor networks. For instance, Anshul and Roy [AR05] describe a modified version of the Guillou-
Quisquater identification scheme [GQ88], combined with the µTesla protocol [PST+02] for authentication
broadcast in constrained environments. We stress that the purpose of the scheme of [AR05], and similar
ones, is to authenticate the base station.

Aggregate signature schemes such as [BGLS03; ZQWZ10] may be used to achieve the goal pursued here –
however they are intrinsically non-interactive, and the most efficient aggregate constructions use elliptic
curve pairings, which require powerful devices.

Closer to our concerns, [UMS11] describes a ZK network authentication protocol, but it only authenticates
two nodes at a time, and the base station acts like a trusted third party. As such it takes a very large
number of interactions to authenticate the network as a whole.

What we propose instead is a collective perspective on authentication and not an isolated one.

Organisation: Section 5.3.1 recalls the Fiat-Shamir authentication scheme and present a distributed
algorithm for topology-aware networks. We describe our core idea, a distributed Fiat-Shamir protocol
for IoT authentication, in Section 5.3.2. We analyze the security of the proposed protocol in Section 5.3.3.
Section 5.3.4 provides several improvements and explores trade-offs between security, transmission and
storage.

5.3.1 Preliminaries

5.3.1.1 Fiat-Shamir Authentication

The Fiat-Shamir authentication protocol [FS87] enables a prover P to convince a verifier V that P
possesses a secret key without ever revealing the secret key [GMR85; FFS88].

The algorithm first runs a one-time setup, whereby a trusted authority publishes an RSA modulus
n = pq but keeps the factors p and q private. The prover P selects a secret s < n such that gcd(n, s) = 1,
computes v = s2 mod n and publishes v as its public key.

When a verifier V wishes to identify P , he uses the protocol of Figure 5.9. V may run this protocol several
times until V is convinced that P indeed knows the square root s of v modulo n.

Figure 5.9 describes the original Fiat-Shamir authentication protocol [FS87], which is honest verifier
zero-knowledge 12, and whose security is proven assuming the hardness of computing arbitrary square
roots modulo a composite n, which is equivalent to factoring n.

As pointed out by [FS87], instead of sending x, P can hash it and send the first bits of H(x) to V , for
instance the first 128 bits. With that variant, the last step of the protocol is replaced by the computation
of H(y2

∏k
i=1 v

−ai
i mod n), truncated to the first 128 bits, and compared to the value sent by P . Using

this “short commitment” version reduces somewhat the number of communicated bits. However, it
comes at the expense of a reduced security level. A refined analysis of this technique in given in [GS02].

12. This can be fixed by requiring V to commit to the ai before P has sent anything, but this modification will not be necessary
for our purpose.

90 Designing Authentication Protocols 5.3
Prover Verifier
r ∈R [1, n− 1]
x← r2 mod n

x−−−−−→
Check x 6= 0
e1, . . . , ek ∈R {0, 1}

e1,...,ek←−−−−−

y ← r

k∏
i=1

seii mod n

y−−−−−→

Check y2 = x

k∏
i=1

veii mod n

Figure 5.9 – Fiat-Shamir authentication protocol.

5.3.1.2 Topology-Aware Distributed Spanning Trees

Due to the unreliable nature of sensors, their small size and wireless communication system, the overall
network topology is subject to change. Since sensors send data through the network, a sudden disruption
of the usual route may result in the whole network shutting down.

5.3.1.2.1 Topology-Aware Networks. A topology-aware network detects changes in the connectivity
of neighbors, so that each node has an accurate description of its position within the network. This
information is used to determine a good route for sending sensor data to the base station. This could
be implemented in many ways, for instance by sending discovery messages (to detect additions) and
detecting unacknowledged packets (for deletions). Note that the precise implementation strategy does
not impact the algorithm.

Given any graph G = (V,E) with a distinguished vertex B (the base station), the optimal route for
any vertex v is the shortest path from v to B on the minimum degree spanning tree S = (V,E′) of
G. Unfortunately, the problem of finding such a spanning tree is NP-hard [SL07], even though there
exist optimal approximation algorithms [SL07; LV08]. Any spanning tree would work for the proposed
algorithm, however the performance of the algorithm gets better as the spanning tree degree gets smaller.

5.3.1.2.2 Mooij-Goga-Wesselink’s Algorithm. The network’s topology is described by a spanning
tree W constructed in a distributed fashion by the Mooij-Goga-Wesselink algorithm [MGW03]. We
assume that nodes can locally detect whether a neighbor has appeared or disappeared, i.e. graph edge
deletion and additions.

W is constructed by aggregating smaller subtrees together. Each node in W is attributed a “parent” node,
which already belongs to a subtree. The complete tree structure of W is characterized by the parenthood
relationship, which the Mooij-Goga-Wesselink algorithm computes. Finally, by topological reordering,
the base station T can be put as the root of W .

Each node in W has three local variables {parent, root, dist} that are initially set to a null value ⊥. Nodes
construct distributively a spanning tree by exchanging “M -messages” containing a root information,
distance information and a type. The algorithm has two parts:

— Basic: maintains a spanning tree as long as no edge is removed (it is a variant of the union-find
algorithm [CSRL01]). When a new neighbor w is detected, a discovery M -message (root, dist)
is sent to it. If no topology change is detected for w, and an M -message is received from it, it
is processed by Algorithm 9. Note that a node only becomes active upon an event such as the
arriving of an M -message or a topology change.

5.3 Public-Key Based Lightweight Swarm Authentication 91
— Removal: intervenes after the edge deletion so that the basic algorithm can be run again and give

correct results.

Algorithm 9 Mooij-Goga-Wesselink algorithm, basic part.
Input: An M -message (r, d) coming from a neighbor w

1 (parent, root, dist)← (⊥,⊥,⊥)
if (r, d+ 1) < (root, dist) then

2 parent← w
root← r
dist← d+ 1
Send the M -message (root, dist) to all neighbors except w

3 end if

Algorithm 9 has converged once all topology change events have been processed. At that point we have
a spanning tree [MGW03].

For our purposes, we may assume that the network was set up and that Algorithm 9 is running on it, so
that at all times the nodes of the network have access to their parent node. Note that this incurs very
little overhead as long as topology changes are rare.

5.3.2 Distributed Fiat-Shamir Authentication

5.3.2.1 The Approach

Given a k-node network N1, ...,Nk, we may consider the nodes Ni as users and the base station as a
trusted center T . In this context, each node will be given only an 13 si. To achieve collective authentication,
we propose the following Fiat-Shamir based algorithm:

— Step 0: Wait until the network topology has converged and a spanning tree W is constructed with
Algorithm 9 presented in Section 5.3.1.2. When that happens, T sends an authentication request
message (AR-message) to all the Ni directly connected to it. The AR-message may contain a
commitment to e (cf. Step 2) to guarantee the protocol’s zero-knowledge property even against
dishonest verifiers.

— Step 1: Upon receiving an AR-message, each Ni generates a private ri and computes xi ←
r2
i mod n. Ni then sends anA-message to all its children, if any. When they respond,Ni multiplies

all the xj sent by its children together, and with its own xi, and sends the result up to its own
parent. This recursive construction enables the network to compute the product of all the xis
and send the result xc to the top of the tree in d steps (where d = deg W). This is illustrated for a
simple network including 4 nodes and a base station in Figure 5.10.

— Step 2: T sends a random e as an authentication challenge (AC-message) to the Ni directly
connected to it.

— Step 3: Upon receiving an AC-message e, each Ni computes yi ← ris
ei
i . Ni then sends the AC-

message to all its children, if any. When they respond, Ni multiplies the yj values received from
all its children together, and with its own yi, and sends the result to its own parent. The network
therefore computes collectively the product of all the yi’s and transmits the result yc to T . This is
illustrated in Figure 5.11.

— Step 4: Upon receiving yc, T checks that y2
c = xc

∏
veii , where v1, . . . , vk are the public keys

corresponding to s1, . . . , sk respectively.

Note that the protocol may be interrupted at any step. In the version of the algorithm that we have just
described, this results in a failed authentication.

13. This is for clarity. It is straightforward to give each node several private keys, and adapt the algorithm accordingly.

92 Designing Authentication Protocols 5.3
T

xc = x1x2x3x4 mod n

N4 x4 = r24

N2

x2 = r22

N3

x3 = r23

N1

x1 = r21

Figure 5.10 – The construction of xc.

T
yc = y1y2y3y4 mod n

N4 y4 = r4s
e4
4

N2

y2 = r2s
e2
2

N3

y3 = r3s
e3
3

N1

y1 = r1s
e1
1

Figure 5.11 – The construction of yc.

Figure 5.12 – The proposed algorithm running on a network. Each parent node aggregates the values
computed by its children and adds its own information before transmitting the result upwards to the
base station.

5.3.2.2 Back-up Authentication

Network authentication may fail for many reasons described and analyzed in detail in Section 5.3.3.3.3.
As a consequence of the algorithm’s distributed nature that we have just described, a single defective
node suffices for authentication to fail.

This is the intended behavior; however there are contexts in which such a brutal answer is not enough,
and more information is needed. For instance, one could wish to know which node is responsible for the
authentication failure.

A simple back-up strategy consists in performing usual Fiat-Shamir authentication with all the nodes
that still respond, to try and identify where the problem lies. Note that, as long as the network is healthy,
using our distributed algorithm instead is more efficient and consumes less bandwidth and less energy.

Since all nodes already embark the hardware and software required for Fiat-Shamir computations, and
can use the same keys, there is no real additional burden in implementing this solution.

5.3.3 Security Proofs

In this section we wish to discuss the security properties relevant to our construction. The first and
foremost fact is that algorithm given in Figure 5.11 is correct: a legitimate network will always succeed in
proving its authenticity, provided that packets are correctly transmitted to the base station T (possibly
hopping from node to node) and that nodes perform correct computations.

The interesting part, therefore, is to understand what happens when such hypotheses do not hold.

5.3.3.1 Soundness

Lemma 5.5 (Soundness) If the authentication protocol of Section 5.3.2.1 succeeds then with overwhelming
probability the network nodes are genuine.

Proof: Assume that an adversaryA simulates the whole network, but does not know the si, and cannot
compute in polynomial time the square roots of the public keys vi. Then, as for the original Fiat-Shamir
protocol [FS87], the base station will accept A’s identification with probability bounded by 1/2k where k
is the number of nodes.

2

5.3 Public-Key Based Lightweight Swarm Authentication 93
5.3.3.2 Zero-knowledge

Lemma 5.6 (Zero-knowledge) The distributed authentication protocol of Section 5.3.2.1 achieves statistical
zero-knowledge.

Proof: Let P be a prover and A be a (possibly cheating) verifier, who can use any adaptive strategy
and bias the choice of the challenges to try and obtain information about the secret keys.

Consider the following simulator S :

Step 1. Choose e ∈R {0, 1}k and y ∈R [0, n− 1] using any random tape ω′

Step 2. Compute x← y2
∏
veii and output (x, e, y).

The simulator S runs in polynomial time and outputs triples that are indistinguishable from the output
of a prover that knows the corresponding private key.

If we assume the protocol is run N times, and that A has learnt information which we denote η, then A
chooses adaptively a challenge using all information available to it e(x, η, ω) (where ω is a random tape).
The proof still holds if we modify S in the following way:

Step 1. Choose e ∈R {0, 1}k and y ∈R [0, n− 1] using any random tape ω′

Step 2. Compute x← y2
∏
veii

Step 3. If e(x, η, ω) = e then go to Step 1 ; else output (x, e, y).

Note that the protocol is also “locally” ZK, in the sense that an adversary simulating ` out of k nodes of
the network still has to face the original Fiat-Shamir protocol.

2

5.3.3.3 Security Analysis

5.3.3.3.1 Choice of Parameters. Let λ be a security parameter. To ensure this security level the
following constraints should be enforced on parameters:

— The identification protocol should be run t ≥ dλ/ke times (according to Lemma 5.5), which is
reasonably close to one as soon as the network is large enough;

— The modulus n should take more than 2λt operations to factor;
— Private and public keys are of size comparable to n.

5.3.3.3.2 Complexity. The number of operations required to authenticate the network depends on the
exact topology at hand, but can safely be bounded above:

— Number of modular squarings: 2kt
— Number of modular multiplications ≤ 3kt

In average, eachNi performs only a constant (a small) number of operations. Finally, only O(d) messages
are sent, where d is the degree of the minimum spanning tree of the network. Pathological cases aside,
d = O(log k), so that only a logarithmic number of messages are sent during authentication.

All in all, for λ = 256, k = 1024 nodes and t = 1, we have n ≥ 21024, and up to 5 modular operations per
node.

5.3.3.3.3 Root Causes of Authentication Failure. Authentication may fail for several reasons. This
may be caused by network disruption, so that no response is received from the network – at which point
not much can be done.

However, more interestingly, T may have received an invalid value of yc. The possible causes are easy to
spot:

1. A topology change occurred during the protocol:

94 Designing Authentication Protocols 5.3
— If all the nodes are still active and responding, the topology will eventually converge and the

algorithm will get back to Step 0.
— If however, the topology change is due to nodes being added or removed, the network’s

integrity has been altered.

2. A message was not transmitted: this is equivalent to a change in topology.

3. A node sent a wrong result. This may stem from low battery failure or when errors appear
within the algorithm the node has to perform (fault injection, malfunctioning, etc). In that case
authentication is expected to fail.

5.3.3.3.4 Effect of Network Noise. Individual nodes may occasionally receive incorrect (ill-formed,
or well-formed but containing wrong information) messages, be it during topology reconstruction
(M -messages) or distributed authentication (A-messages). Upon receiving incorrect A or M messages,
nodes may dismiss them or try and acknowledge them, which may result in a temporary failure to
authenticate. An important parameter which has to be taken into account in such an authentication
context is the number of children of a node (fanout). When a node with many children starts failing,
all its children are disconnected from the network and cannot be contacted or authenticated anymore.
While a malfunction at leaf level might be benign, the failure of a fertile node is catastrophic.

5.3.3.3.5 Man-in-the-Middle. An adversary could install itself between nodes, or between nodes
and the base station, and try to intercept or modify communications. Lemma 5.6 proves that a passive
adversary cannot learn anything valuable, and Lemma 5.5 shows that an active adversary cannot fool
authentication.

It is still possible that the adversary relays information, but any attempt to intercept or send messages
over the network would be detected.

5.3.4 Variants and Implementation Trade-offs

The protocol may be adapted to better fit operational constraints: in the context of IoT for instance
communication is a very costly operations. We describe variants that aim at reducing the amount of
information sent by individual nodes, while maintaining security.

5.3.4.1 Shorter Challenges Variant

In the protocol of Section 5.3.2, the long (say, 128-bit) challenge e is sent throughout the network to all
individual nodes. One way to reduce the length of e without compromising security is the following:

— A short 14 (say, 80-bit) value e is sent to the nodes;
— Each node i computes ei ← H(e‖i), and uses ei as a challenge;
— The base station also computes ei the same way, and uses {e1, ..., ek} to check authentication.

This variant does not impact security, assuming an ideal hash function H , and it can be used in conjunc-
tion with the other improvements described below.

5.3.4.2 Multiple Secret Variant

Instead of keeping one secret value si, each node could have multiple secret values si,1, . . . , si,`. Note
that these additional secrets need not be stored: they can be derived from a secret seed.

The multiple secret variant is described here for a single node, for the sake of clarity. Upon receiving a
challenge ei (assuming for instance that ei was generated by the above procedure), each node computes

14. but sufficiently long in terms of entropy

5.3 Public-Key Based Lightweight Swarm Authentication 95
a response

yi ← ri
∏̀
j=1

sei,j mod n

This can be checked by the verifier by checking whether

y2
i

?
= xi

∏̀
j=1

v
ei,j
i,j mod n.

To achieve swarm authentication, it suffices to perform aggregation as described in the protocol of
Section 5.3.2 at intermediate nodes.

Using this approach, one can adjust the memory-communication trade-off, as the security level is λ = t`
(single-node compromission). Therefore, if ` = 80 for instance, it suffices to authenticate once to get the
same security as t = 80 authentications with ` = 1 (which is the protocol of Section 5.3.2). This drastically
cuts bandwidth usage, a scarce resource for IoT devices.

Furthermore, computational effort can be reduced by using batch exponentiation techniques [MN96;
BGR98] to compute yi.

5.3.4.3 Pre-computed Alphabet Variant

The security level we aim at is 80 bits. A way to further reduce computational cost is the following: each
node chooses an alphabet of m words w0, . . . , wm−1 (a word is a 32-bit value), and computes once and
for all the table of all pairwise products pi,j = mimj . Note that each pi,j entry is 64 bits long.

The values si are generated by randomly sampling from the alphabet of ws. Put differently, si is built by
concatenating u words (bit patterns) taken from the alphabet only.

We thus see that each si, which is an mu-bit integer, can take mu possible values. For instance if
m = u = 32 then si is a 1024-bit number chosen amongst 3232 = 2160 possible values. Thanks to
the lookup table, word by word multiplications need not be performed, which provides a substantial
speed-up over the naive approach.

The size of the lookup table is moderate, for the example given, all we need to store is 32×31/2+32 = 528
values. This can be further reduced by noting that the first lines in the table can be removed: 32 values
are zeros, 31 values are the results of multiplications by 1, 30 values are left shifts by 1 of the previous
line, 29 values are the sum of the previous 2 and 28 values are left shifts by 2. Hence all in all the table can
be compressed into 528− 32− 31− 29− 28 = 408 entries. Because each entry is a word, this boils-down
to 1632 bytes only.

5.3.4.4 Pre-computed Combination Variant

Computational cost can be also cut down if we pre-compute and store some products, only to assemble
them online during Fiat-Shamir authentication: in this variant the values of si,1,2 ← si,1si,2, si,2,3 ←
si,2si,3, ... , etc. are stored in a lookup table.

The use of combined values si,a,b in the evaluation of y results in three possible scenarios for each:

1. sasb appears in y – the probability of this occurring is 1/4 – in which case one additional multipli-
cation must be performed;

2. sasb does not appear in y – the probability of this occurring is 1/4 – in which case no action is
performed;

3. sa or sb appears, but not both – this happens with probability 1/2 – in which case one single
multiplication is required.

96 Designing Authentication Protocols 5.3
Consequently the expected number of multiplications is reduced by 25%, to wit 3

4 × 2m−1, where m is
the size of e.

The method can be extended to work with a window of size κ ≥ 2, for instance with κ = 3 we would
pre-compute:

si,3j,3j+1 ← si,3j × si,3j+1

si,3j+1,3j+2 ← si,3j+1 × si,3j+2

si,3j,3j+2 ← si,3j × si,3j+2

si,3j,3j+1,3j+2 ← si,3j × si,3j+1 × si,3j+2

Following the same analysis above, the expected number of multiplications during the challenge-
response phase is 7

8 × 2m

3 . The price to pay is that larger κ values claim more pre-computing and more
memory.

More precisely, we have the following trade-offs, writing µ = 2m mod κ:

Multiplications (expected) = 2m
(

2κ − 1

2κ

(⌊
2m

κ
− 1

⌋)
− 2µ − 1

2µ

)
Pre-multiplications = `− 1 +

(
(2κ − κ− 1)

⌊
2m

κ

⌋)
+ (2µ − µ− 1)

Stored Values = (2κ − 1)

⌊
2m

κ

⌋
+ (2µ − 1)

where ` is the number of components of si.

5.4 When Organized Crime Applies Academic Results 97

5.4 When Organized Crime Applies Academic Results

5.4.1 Introduction

EMV [EMV; EMV08a; EMV08b; EMV08c] (Europay, MasterCard, Visa) is a global standard, currently
managed by the public corporation EMVCo, specifying interactions between integrated circuit cards
and PoS terminals. The standard also defines exchanges between cards and automatic teller machines
(ATMs). Over the recent years, additional payment operators (such as JCB, AmericanExpress, China
UnionPay and Discover) endorsed EMV. EMV cards rely on pre-existing physical, link, network, and
transport layer protocols such as ISO/IEC 7816 and ISO/IEC 14443.

According to EMVCo’s website, by Q4 2014 a third of card present transactions worldwide followed the
EMV protocol, and 3.423 billion EMV cards were in circulation.

5.4.1.1 Brief Overview of an EMV Transaction

A typical EMV transaction breaks down into three phases: ¬ card authentication, cardholder verifica-
tion and ® transaction authorization.

During card authentication, the PoS explores the applications supported by the card (e.g. credit, debit,
loyalty, ATM, etc.).

During cardholder verification, the PoS queries the PIN from the user and transmits it to the card. The
card compares the PIN and responds by “yes” (SW code 15 0x9000) or “no” (0x63CX 16).

Transaction authorization starts by feeding the card with the transaction details T (e.g. amount, currency,
date, terminal ID, fresh randomness, etc.). The card replies with an authorization request cryptogram
(ARQC) based on T . {ARQC, T } is sent to the issuer 17, who replies with an authorization request code
(ARC) instructing the PoS how the transaction should proceed. The issuer also sends to the PoS an
authorization response cryptogram (ARPC) which is a MAC of {ARQC, ARC}. ARPC is transmitted to
the card that responds with a transaction certificate (TC) sent to the issuer to finalize the transaction.

We refer the reader to [MDAB10] for a comprehensive diagram illustrating these three phases.

5.4.1.2 Murdoch et al.’s Attack

The protocol vulnerability described in [MDAB10] is based on the fact that the card does not condition
transaction authorization on successful cardholder verification.

Hence the attack consists in having the genuine card execute the first and last protocol phases, while
leaving the cardholder verification to a man-in-the-middle device.

To demonstrate this scenario’s feasibility, Murdoch et al. produced an FPGA-based proof-of-concept,
noting that miniaturization remains a mechanical challenge.

5.4.1.3 Fraud in the Field

In May 2011, the French’s bankers Economic Interest Group (GIE Cartes Bancaires) noted that a dozen
EMV cards, stolen in France a few months before, were being used in Belgium. A police investigation
was thus triggered.

15. Whenever a command is executed by a card, the card returns two status bytes called SW1 and SW2. These bytes encode a
success or a failure cause.

16. X denotes the number of further PIN verifications remaining before lock-up.
17. For our purposes, the issuer can be thought of as the bank.

98 Designing Authentication Protocols 5.4

Figure 5.13 – The judicial seizure. Personal information such as cardholder name are censored for privacy
reasons.

Because transactions take place at well-defined geographic locations and at well-defined moments in
time, intersecting the IMSIs 18 of SIM cards present near the crime scenes immediately revealed the
perpetrators’ SIM card details. A 25 years old woman was subsequently identified and arrested, while
carrying a large number of cigarette packs and scratch games. Such larceny was the fraudsters’ main
target, as they resold these goods on the black market.

Investigators quickly put a name on most of the gang members. Four were arrested, including the
engineer who created the fake cards. Arrests occurred in the French cities of Ezanville, Auchy-les-Mines
and Rouvroy. About 25 stolen cards were seized, as well as specialized software and e5000 in cash.

The net loss caused by this fraud is estimated to stand below e600,000, stolen over 7,000 transactions
using 40 modified cards.

A forensic investigation was hence ordered by Justice [Jus].

5.4.2 Physical Analysis

5.4.2.1 Optical Inspection

The forgery appears as an ISO/IEC 7816 smart card. The forgery’s plastic body indicates that the
card is a VISA card issued by Caisse d’Épargne (a French bank). The embossed details are: PAN 19 =
4978***********89; expiry date in 2013 20; and a cardholder name, hereafter abridged as P.S. The
forgery’s backside shows a normally looking CVV 21. Indeed, this PAN corresponds to a Caisse d’Épargne
VISA card.

The backside is deformed around the chip area (Figure 5.14). Such a deformation is typically caused by
heating. Heating (around 80◦C) allows melting the potting glue to detach the card module.

The module looks unusual in two ways: ¬ it is engraved with the inscription “FUN”; and glue traces
clearly show that a foreign module was implanted to replace the **89 card’s original chip (Figure 5.15).

The module is slightly thicker than normal, with the chip bulging somewhat through the card, making
insertion into a PoS somewhat uneasy but perfectly feasible (Figure 5.16).

18. International Mobile Subscriber Identity.
19. Permanent Account Number (partially anonymized here).
20. Precise date removed for privacy reasons.
21. Card Verification Value.

5.4 When Organized Crime Applies Academic Results 99

Figure 5.14 – Deformation due to heating of the forgery’s backside.

Figure 5.15 – Forgery’s ISO module. Red arrows show glue traces.

0.40 mm

0.72 mm

0.83 mm

Figure 5.16 – Side-views of the forgery, showing that it is somewhat thicker than a standard card (0.83 mm).
The extra thickness varies from 0.4 mm to 0.7 mm suggesting the existence of several components under
the card module, besides the FUN card.

100 Designing Authentication Protocols 5.4

9

19

6

8

7

31

C1 Vcc

C2 RST

C3 CLK

C4 MOSI SCK C8

MISO C7

C6

VSS C5

RESET

XTAL1

PB5

PB7

PB6

ICP

PB0
PB1
VCC
GND

1

2

40

20

A
T
9
0
S
8
5
1
5
A

AT24C64

SDA
SCL

+

+

5
6

8
7
1
2
3
4

Figure 5.17 – The FUN card’s inner schematics.

The “FUN” engraving indicates that the module belongs to a FUN card. FUN cards are open cards,
widely used for hobbying and prototyping purposes.

The FUN module contains an Atmel AVR AT90S8515 microcontroller and an EEPROM memory AT24Cxx.
The AVR has 8 kB of Flash memory and 512 bytes of internal EEPROM, 512 bytes of internal RAM and a
few other resources (timer, etc.). The AT24Cxx has varying capacity depending on the exact FUN card
model. For a FUNcard5, this capacity is 512 kB (Figure 5.17).

5.4.2.2 Magnetic Stripe Analysis

The magnetic stripe was read and decoded. The ISO1 and ISO2 tracks perfectly agrees with the embossed
information. ISO3 is empty, as is usual for European cards.

5.4.2.3 X-Ray Analysis

X-ray analysis was performed using a Y.Cougar Microfocus Xylon imager. Figure 5.18 shows an unmodi-
fied FUN card, while Figure 5.19 is an X-ray image of the forgery.

X-ray analysis reveals, using false colors, the different materials composing the forged module (Fig-
ure 5.21). Legitimate connection wires are made of gold, but connections between the FUN card and the
stolen chip underneath are made of another metal (copper, as will later appear after opening the forged
card). Soldering was made using a classical mixture of silver and tin.

5.4.2.4 Probing non-ISO Contacts

FUN cards are programmed using specialized hardware.

Programming is done via the two unstandardized pins MOSI and SCK.

We tried to use programming hardware to read back the card’s contents and reverse-engineer its software.

All reading attempts failed. FUN cards can be protected against reading at flashing time. Clearly, the
fraudster enabled this protection.

It is possible to identify the chip using the programming hardware, but this uses writing commands that
are invasive and possibly destructive. Therefore such an identification was not attempted.

5.4 When Organized Crime Applies Academic Results 101

Figure 5.18 – FUN card X-ray analysis. ¬ External memory (AT24C64); Microcontroller (AT90S8515A);
® Connection wires; ¯ Connection grid.

Figure 5.19 – Forgery X-ray analysis. ° Stolen card’s module; ± Connection wires added by the fraudster;
² Weldings by the fraudster (only three are pointed out here).

St
ol

en
 ca

rd

Pl
as

tic
 b

od
y

of
 a

 se
co

nd

st
ol

en
 ca

rd

FU
N

ca
rd

Figure 5.20 – Forgery structure suggested by Figure 5.19.

102 Designing Authentication Protocols 5.4

Figure 5.21 – False colors X-ray image of the forgery. Different colors correspond to different materials.
The stolen chip is clearly visible in green.

5.4.2.5 ISO/IEC 7816 Compliance

We assumed that the forged card’s software was rudimentary and did not fully comply with ISO/IEC
7816. The assumption was that the fraudsters contented themselves with a minimal implementation that
works reasonably well under usual conditions. We hence analyzed the forgery’s behavior at external
clock frequencies close to the most extreme value (5 MHz) allowed by ISO/IEC 7816.

The forgery behaved normally up to 4.90 MHz. At 4.91 MHz, the forgery stopped responding to com-
mands and only returned an ATR (Answer To Reset).

5.4.3 Protocol Analysis

The electronic exchanges between the forgery and the PoS were monitored using the Cardpeek 22 tool.
Cardpeek allows monitoring the APDU commands sent to the forgery.

This is a read-only operation that does not alter the analyzed card.

When queried, the forgery responded with the following information: PAN = 4561**********79;
expiry date in 2011; and the cardholder name henceforth refered to as H.D. All this information is in
blatant contradiction with data embossed on the card (mentioned in Section 5.4.2.1).

5.4.3.1 Application Selection

Application selection is performed by browsing the PSE 23, as described in [EMV08a].

5.4.3.1.1 Select 1PAY.SYS.DDF01. Selecting the DDF 24 named 1PAY.SYS.DDF01 succeeded 25.

22. See http://code.google.com/p/cardpeek/downloads/list.
23. Payment System Environment.
24. Directory Definition File.
25. Command: 00 A4 04 00 14.

http://code.google.com/p/cardpeek/downloads/list

5.4 When Organized Crime Applies Academic Results 103
5.4.3.1.2 Browsing the Payment System Directory Records in the Payment System Directory were
browsed in-order and revealed the presence of CB 26 and VISA applications.

ReadRecord SFI 27 1 record #1 28: this SFI contains:
— Application AID A0 00 00 00 42 10 10
— Label: CB
— Priority: 1

ReadRecord SFI 1 record #2: this SFI contains:
— Application AID: A0 00 00 00 03 10 10
— Label: Visa DEBIT
— Priority: 2

Attempting ReadRecord SFI 1 record #3 returns a status word equal to 0x6A83, i.e. “record not found”.
All applications have thus been found.

5.4.3.1.3 Select “VISA Debit” Cardpeek used the previously discovered AID to select the VISA
Debit application 29.

5.4.3.2 Transaction Initialization

5.4.3.2.1 GetProcessingOptions (GPO) Next, we retrieved the card’s processing options 30. This data
contains the AIP (Application Interchange Profile) and the AFL (Application File Locator) as defined in
[EMV08c, Chapter 10.2]. The card claims that it supports:

— static authentication (SDA);
— dynamic authentication (DDA);
— cardholder verification;
— and external authentication.

The card furthermore requests risk management by the PoS.

AFL consists in a list of 4-byte blocks describing which records should be read. In our case, the following
blocks were received:

— SFI #1, of record 01 to 01. No record of this SFI is used for “disconnected” mode data authentica-
tion.

— SFI #2, of record 01 to 02. Record #1 of this SFI is used for “disconnected” mode data authentica-
tion.

— SFI #3, of record 01 to 04. Record #1 of this SFI is used for “disconnected” mode data authentica-
tion.

5.4.3.2.2 SFI Records Having read the GPO data, the reader can access the SFI records.

ReadRecord SFI 2 record #1 (used for “disconnected” mode data authentication) contained the following
VISA application information:

— Application creation and expiry date: between a date in 2009 and a date in 2011 (omitted here for
privacy reasons).

— The card’s PAN: 4561**********79.
The Bank Identification Number of this PAN corresponds to a HSBC VISA card (4561), which is inconsis-
tent with the information embossed on the card.

ReadRecord SFI 2 record #2 of the VISA application provided the following information:
— The list of objects to be included upon the first GenerateAC (CDOL1) (tags list + lengths)
— The list of objects to be included upon the second GenerateAC (CDOL2).
— The list of objects to be included upon internal authentication (DDOL):

26. Carte Bancaire.
27. Short File Identifier.
28. Command: 00 B2 xx 0C Le, where xx is incremented as records are being read.
29. Command: 00 A4 04 00 07.
30. Command: 80 A8 00 00 02 followed by a GetResponse command: 00 C0 00 00 20.

104 Designing Authentication Protocols 5.4
— Tag 0x9F37 – “Unpredictable Number” (length: 4 octets)
— Cardholder’s name: abridged here as H.D. for privacy reasons.

The chip belongs to Mr. H.D., which is also inconsistent with the information embossed on the card.

ReadRecord SFI 3 record #1, 2, 3, 4 (used for “disconnected” mode data authentication) contained actions
codes, requested by the card to authorize a transaction, as well as a list of supported authentication
methods, their public keys and certificates.

ReadRecord SFI 1 record #1 should have revealed the exact same information encoded in the ISO2 track.
Instead, it contained, again, the following information:

— Account number: 4561**********79
— Expiration date (YYMM): a date in 2011 (anonymised for privacy reasons)

ReadRecord SFI 4 record #1 indicated an empty record.

5.4.3.3 Authentications

5.4.3.3.1 InternalAuthenticate In smart card terms, an InternalAuthenticate 31 is an authentication of
the card by the reader (cf. Chapter 6.5 of [EMV08b]). The reader requests that the card signs a random
4-byte number, as asked by the DDOL.

The reader accepted this authentication.

5.4.3.3.2 VerifyPIN (Cardholder verification) The reader checks that the card isn’t blocked by reading
the number of remaining PIN presentation tries 32. There are 3 remaining tries before the card is blocked.

PIN codes are verified using the command VerifyPIN 33. A correct PIN results in a 0x9000 status word.

Our experiments reveal that the PIN is always considered correct, regardless of P1 and P2, even for
inconsistent values. The card accepts any PIN unconditionally.

5.4.3.4 Transaction

The reader gathers risk management data before starting a transaction.

5.4.3.4.1 GetData (ATC) The ATC (Application Transaction Counter) was requested 34.

The ATC sent by the card does not change, regardless of the number of transactions performed. This ATC
is different from the one returned by the first GenerateAC (which is incremented at each transaction),
and is therefore clearly false.

The ATC is forged to manipulate the PoS risk management routine, which would otherwise request to
go on-line.

The above also applied to the reading of the last online ATC 35.

5.4.3.4.2 Risk management Based on available data, the reader performs risk management as de-
scribed in Chapter 10.6.3 of [EMV08c]:

“If the required data objects are available, the terminal shall compare the difference between the ATC
and the Last Online ATC Register with the Lower Consecutive Offline Limit to see if the limit has
been exceeded.”

31. Command: 00 88 00 00 04.
32. Command: 80 CA 9F 17 04.
33. Command: 00 20 00 80 08.
34. Command: 80 CA 9F 36 05.
35. Command: 80 CA 9F 13 05.

5.4 When Organized Crime Applies Academic Results 105

A4

00 A4 04 00 07

A0 00 00 00 03 10 10

61 30

00 A4 04 00 07

A4

A0 00 00 00 03 10 10

61 30

External I/O
Communication

Internal I/O
Communication

FUNcard Stolen
card

PoS terminal

Figure 5.22 – The FUN card intercepts the Select command and replays it to the stolen card. Then the
FUN card sends back the response to the PoS.

Here, ATC (0x04) – LOATC (0x02) > LCOL (0x01).

As the transaction log extracted from the card indicated, the fraudsters performed many small amount
purchases to avoid on-line connection requests.

5.4.4 Side-Channel Power Analysis

Measuring variations in the device’s power consumption enables detecting patterns that correspond
to repeated operations. This is a common way to try and determine secret keys used in cryptographic
operations. Although very rarely, side-channel analysis is also used by forensic experts (e.g. [SF13]).

Here, side-channel analysis will expose the fact that the forgery contains an underlying (legitimate) card,
by analysing in detail the forgery’s power trace when it is operated.

We shall contrast the “VerifyPIN” command, which does not propagate to the stolen card, with the
“Select” command, which must be relayed to the stolen card.

5.4.5 EMV “Select” Command

The VISA application is selected based on its AID.

The sequence diagram of Figure 5.22 shows what should happen if the forgery indeed behaved as a
“chip-in-the-middle” proxy.

Power consumption is measured and synchronized with the I/O between the card and the reader.
However, internal communication between the FUN card and the stolen chip is witnessed on the power
trace.

Figure 5.23 shows power consumption over time when the Select command is sent to the forgery. Patterns
clearly appear during I/O activity. Some patterns can also be noticed between I/O operations, while
there is no communication with the reader. A finer analysis shows that these patterns are made of sub-
patterns, whose number is equal to the number of bytes exchanged. This confirms that communication
is intercepted and re-transmitted by the FUN card, as illustrated in Figure 5.24.

106 Designing Authentication Protocols 5.4

7 patterns =7 bytes

A4 A4

7 patterns = 7 bytes

I/O Activity

Power consumption

Select
command

Procedure byte
0xA4 sent by
the stolen card

Procedure byte
0xA4 sent by
the FUNcard

FUNcard repeats
the 7 bytes to the
stolen card

7 data bytes sent
by the PoS

Figure 5.23 – The power trace analysis of the forgery during the Select command reveals a pattern that is
repeated, despite the absence of I/O operations. It is readily observed that the pattern corresponds to
the replay of data sent earlier by the PoS.

Figure 5.24 – ¬ PoS sends the ISO command 00 A4 04 00 07; The command is echoed to the stolen
card by the FUN card; ® The stolen card sends the procedure byte A4 to the FUN card; ¯ The FUN card
retransmits the procedure byte (A4) to the PoS; ° The PoS sends the data A0 00 00 00 03 10 10 to
the FUN card; ± The FUN card echoes A0 00 00 00 03 10 10 to the stolen card; ² The stolen card
sends the status word (SW1=61, SW2=30) to the FUN card; ³ and the FUN card transmits SW1 SW2 to
the PoS. Communication: PoS→ FUN card is shown in blue; FUN card→ stolen card in red; Stolen card
→ FUN card in green and FUN card→ PoS in black.

5.4 When Organized Crime Applies Academic Results 107

00 20 00 08 08 20 24 11 11 FF FF FF FF FF 90 00

Figure 5.25 – Power trace of the forgery during the VerifyPIN command. Notice the absence of a
re-transmission on the power trace before the returning of SW1 SW2.

GetData SW : WrongLen GetData Answer + SW

Answer + SWGetData
SW

(WrongLen)

GetData

PowerI/ORetransmission

Figure 5.26 – Power consumption during a GetData command.

5.4.6 EMV “VerifyPIN” Command

We now turn our attention to the “VerifyPIN” command which, in the case of a proxy chip, would never
be sent to the stolen chip.

As expected, this command is executed directly, as shown on the power trace of Figure 5.25. No
operations between I/Os are witnessed here.

5.4.6.1 GetData commands

When sent a GetData command, the card seems to modify some values used for risk management
purposes, so as to manipulate the PoS. The level of resolution offered by power trace analysis (Figure 5.26)
is insufficient for seeing when this happens.

5.4.7 Destructive Analysis

We finally de-capsulated the forged module to analyze its internal structure. Results are shown in
Figures 5.27, 5.28, and 5.29.

The Vcc, RST, CLK, GND contacts of the FUN card are connected to the corresponding pins of the stolen
card (Vcc to Vcc, RST to RST etc.). However the stolen card’s IO pin is connected to the SCK pin of the
FUN card (Figure 5.30).

108 Designing Authentication Protocols 5.4

Figure 5.27 – ¬ Connection grid; Stolen card’s module (outlined in blue); ® Stolen card’s chip; ¯ FUN
card module; ° Weldings of connection wires.

Figure 5.28 – ¬ FUN card module; genuine stolen card; ® welded wire.

GND

IO

Vcc

RST

CLK

Figure 5.29 – Original EMV chip clipped by the fraudsters, with the cut-out pattern overlaid.

5.4 When Organized Crime Applies Academic Results 109

GND

Vcc

CLK

RST

IO connected to SCK

Figure 5.30 – Wiring diagram of the forgery.

110 Designing Authentication Protocols 5.4

Figure 5.31 – Anti-forensics precautions taken by the perpetrator. Zoom on parts of Figures 5.30
(fraudulent card), 5.18 (X-ray of the fraudulent card), and 5.19 (unmodified FUN card). The abrasion and
cut wire are clearly visible.

5.4.7.1 Anti-Forensic Countermeasures

Figure 5.31 shows that the perpetrators scratched the printed circuit copper track of SCK to conceal the
traffic transiting via SCK. Recall that SCK is the most informative signal in the device because SCK is used
by the FUN card to communicate with the stolen card.

During questioning by law enforcement, two reasons were advanced by the perpetrator for doing so.
The first was, indeed, the intention to make forensic analysis harder. The second is way more subtle:
using a software update, PoSs could be modified to spy the traffic on SCK. This would have allowed
deploying a software countermeasure that would have easily detected forged cards.

5.4.8 Aftermath & Lessons Learned

The forensic report produced by the authors of this research work was sufficient for the court to condemn
the perpetrators. During our testimony we underlined to the court that this case shows that organised
crime is following very attentively advances in information security. We also noted that producing the
forgery required patience, skill and craftsmanship. It is important to underline that, as we write these
lines, the attack described in this research work is not applicable anymore, thanks to the activation of a

5.4 When Organized Crime Applies Academic Results 111

XRES = f2(K, RAND)
CK = f3(K, RAND)
IK = f4(K, RAND)

RES = f2(K, RAND)
CK = f3(K, RAND)
IK = f4(K, RAND)

XRES = RES ?

Phone Network

Encryption and integrity protection
with CK, IK

RES

RAND

Figure 5.32 – 3G authentication protocol (simplified).

new authentication mode (CDA, Combined Data Authentication) and network level protections acting
as a second line of defense. Until the deployment of CDA, this fraud was stopped using network-level
counter-measures and PoS software updates. While we cannot detail the network-level countermeasures
for confidentiality reasons 36, the following two fixes allowed to immediately stop the fraud:

5.4.8.0.1 Parity Faults We assumed that the fraudster only implemented the just-enough functionali-
ties allowing to perform the fraud. This was indeed the case: when injecting byte-level parity errors into
bytes transmitted from the PoS to the FUN card, the FUN card did not request byte re-transmission as
mandated by the ISO/IEC 7816 standard. Coding, testing and deploying this countermeasure took less
than a week.

5.4.8.0.2 Abnormal Applicative Behavior The forged card replies with a status word equal to 0x9000
to VerifyPIN commands sent outside of a transaction context (e.g. just after a reset). This is uncompliant
with EMV specifications (where a PIN is necessarily attached to a previously selected application) and
proves that the FUN card is not context-aware. Coding, testing and deploying this countermeasure was
done overnight.

In addition, four other software-updatable countermeasures were developed and tested, but never
deployed. These were left for future fraud control, if necessary.

Nonetheless, this case illustrates that, as a rule of thumb, an unmalleable cryptographic secure channel
must always exist between cards and readers. Other (more expensive) solutions allowing to avoid
man-in-the-middle devices consist in relying on physical attestation techniques such as [MMC06].

5.4.9 Other Applications of Miniature Spy Chips

The technique explained in this section can be generalized to attack non-payment devices.

112 Designing Authentication Protocols 5.4
5.4.9.1 Eavesdropping Mobile Communications

By extracting a chip from a FUN card and implanting it under the SIM connector of a smartphone, mobile
communications can be monitored and decrypted. The demonstrator, on which we currently work,
functions as follows: GSM and 3G communication confidentiality is based on session keys (denoted
Kc, CK and IK) transmitted by the SIM to the phone. These session keys are derived from a random
challenge (RAND) sent from the Authentication server (AuC) to the SIM (see Figure 5.32). A FUN card
implanted under the reader can easily monitor these exchanges and record Kc, CK and IK in EEPROM.

While this happens, the opponent intercepts and records encrypted voice communications without
decrypting them. It remains to extract the captured key material and transmit it to the attacker. This is
far from being a trivial task given that, unlike the EMV fraud case that we have just analyzed, a FUN
card implanted under a card reader does not actively control the SIM.

As strange as this may sound, as a matter of fact it does, assuming that the FUN card can read bits quicker
than the phone (which is the case in practice). The ISO/IEC 7816 protocol relies on the fact that the IO
signal connecting the card to the reader is pulled-up. This means that a party wishing to communicate
pulls-down the IO and hence signals a zero to the other party. When the communicator’s port is switched
to high impedance, the line automatically goes up again. Hence, if we connect the FUN card’s IO to the
SIM connector’s IO, both the FUN card and the legitimate SIM can signal zeros to the phone. In other
words, the phone will see the information bf ∧ bs where bf and bs (respectively) denote the bits sent by
the FUN card and by the SIM.

To prove its identity to the network, the SIM returns to the AuC a response called SRES (or RES). Hence,
the FUN card can intervene in the transmission of RES and force some of RES’s bits to zero. Because RES
is false the authentication will fail but information (in which the FUN card can embed Kc, CK or IK)
will be broadcast to the attacker over the air. This precise information encoding problem was already
considered by Rivest and Shamir in [RS82].

The implementation of this strategy is technical. It requires more than just turning bits to zero, because
every byte sent from the SIM to the phone has a parity bit. Switching a single bit to zero means that the
parity bit must also be flipped, which can only be done when the parity is one. Hence, the FUN card
needs to compute the parity p of bits [0:6]. If p = 0 or bit 7 is zero, the FUN card remains quiet. Else, the
FUN card pulls down the IO during bit 7 and during the parity. Another option consists in pulling down
two data bits during transmission and leaving the parity unchanged.

5.4.9.2 Characterizing Unknown Readers

Consider the case of a border control device, produced and sold in small quantities, to carefully chosen
clients. Users are given identification cards that interact with the device, but the description of the ISO
commands exchanged between the card and the device is kept confidential. Exhausting all possible
commands is impossible because critical-infrastructure cards usually embed a ratification counter that
limits the number of unknown commands to 10 before definitively blocking the card.

An intelligence agency wishing to characterize the readers and understand how they work may construct
a “chip-in-the-middle” command recorder based on a FUN card and a genuine identification card. The
ISO command set could then be retrieved for later analysis.

5.4.9.3 Low-Cost Hardware Security Modules

In a number of industrial settings, keys, signatures or ciphertexts must be generated at a fast pace. A
smart-card has relatively strong tamper resistance defenses but modest computational capabilities. Hard-
ware Security Modules (HSMs) are expensive devices featuring both tamper-resistance and important
computational capabilities.

36. These can potentially be efficient against yet unknown future forms of fraud.

5.4 When Organized Crime Applies Academic Results 113

Figure 5.33 – An industrial multi-SIM reader.

Vcc
Vss

RST

CLK IO

Figure 5.34 – Proposed low-cost HSM design based on SIM cards.

114 Designing Authentication Protocols 5.4
A number of manufacturers propose multi-smart-card readers (Figure 5.33). In such readers, a central
processor establishes distinct one-to-one connections with each smart-card. An alternative HSM concept,
illustrated in Figure 5.34, would consist in simply wiring card modules to each other. Power and clock
supply would be common to all card modules. All card modules will be reset at once (given that IO is
pulled up, the simultaneous emission of answers to reset will not cause signal conflicts). Communicating
with individual modules will only require the (software) coding of a non-ISO protocol, where modules
monitor IO and emit information to the reader while avoiding collisions.

CHAPTER 6

DESIGNING CONFIDENTIALITY
BUILDING-BLOCKS

Summary

This chapter presents our research results in the area of confidentiality.

The research work presented in Section 6.1 1 proposes a public-key cryptosystem and a short password
encryption mode, where traditional hardness assumptions are replaced by specific refinements of the
CAPTCHA concept called Decisional and Existential CAPTCHAs.

The public-key encryption method, achieving 128-bit security, typically requires from the sender to solve
one CAPTCHA. The receiver does not need to resort to any human aid.

A second symmetric encryption method allows to encrypt messages using very short passwords shared
between the sender and the receiver. Here, a simple 5-character alphanumeric password provides
sufficient security for all practical purposes.

We conjecture that the automatic construction of Decisional and Existential CAPTCHAs is possible and
provide candidate ideas for their implementation.

Honey Encryption (HE), introduced by Juels and Ristenpart (Eurocrypt 2014, [JR14]), is an encryption
paradigm designed to produce ciphertexts yielding plausible-looking but bogus plaintexts upon de-
cryption with wrong keys. Thus brute-force attackers need to use additional information to determine
whether they indeed found the correct key.

At the end of their paper, Juels and Ristenpart leave as an open question the adaptation of honey
encryption to natural language messages. A recent paper by Chatterjee et al. [CBJR15] takes a mild
attempt at the challenge and constructs a natural language honey encryption scheme relying on simple
models for passwords.

Section 6.2 2 explains why this approach cannot be extended to reasonable-size human-written documents
e.g. e-mails. We propose an alternative solution and evaluate its security.

Section 6.3 3 generalizes the concept of Hierarchical Identity-Based Encryption (HIBE) by proposing
a new primitive called Hierarchical Identity-Based Broadcast Encryption (HIBBE). Similar to HIBE,
HIBBE organizes users in a tree-like structure and users can delegate their decryption capability to their
subordinates, which mirrors real-world hierarchical social organizations. Unlike HIBE merely allowing
a single decryption path, HIBBE enables encryption to any subset of the users and only the intended
users (and their supervisors) can decrypt. We define Ciphertext Indistinguishability against Adaptively

1. Co-authored with Rémi Géraud and David Naccache.
2. Co-authored with Marc Beunardeau, Rémi Géraud and David Naccache.
3. Co-authored with Weiran Liu, Jianwei Liu, Qianhong Wu, Bo Qin and David Naccache.

115

116 Designing Confidentiality Building-Blocks 6.0
Chosen-Identity-Vector-Set and Chosen-Ciphertext Attack (IND-CIVS-CCA2) which capture the most
powerful attacks on HIBBE in the real world. We achieve this goal in the standard model in two steps. We
first construct an efficient HIBBE Scheme (HIBBES) against Adaptively Chosen-Identity-Vector-Set and
Chosen-Plaintext Attack (IND-CIVS-CPA) in which the attacker is not allowed to query the decryption
oracle. Then we convert it into an IND-CIVS-CCA2 scheme at only a marginal cost, i.e., merely adding
one on-the-fly dummy user at the first depth of hierarchy in the basic scheme without requiring any
other cryptographic primitives. Furthermore, our CCA2-secure scheme natively allows public ciphertext
validity test, which is a useful property when a CCA2-secure HIBBES is used to design advanced
protocols.

The last research work of this chapter 4 illustrates how standard cryptographic techniques can be applied
to real-life security products and services. Section 6.4 improves a little noticed yet ingenious Microsoft
patent by Thomlinson and Walker. The Thomlinson-Walker system distributes encrypted patches to
avoid reverse engineering by opponents (who would then be able to launch attacks on unpatched users).
When the proportion of users who downloaded the encrypted patch becomes big enough, the decryption
key is disclosed and all users install the patch.

4. Co-authored with Michel Abdalla, Hervé Chabanne, Julien Jainski and David Naccache.

6.1 Human Public-Key Encryption 117

6.1 Human Public-Key Encryption

6.1.1 Introduction

CAPTCHAs 5 [ABHL03] are problems that are hard to solve by computers, while being at the reach
of most untrained humans. There might be many reasons why, at a particular time, a given type of
CAPTCHA is considered hard for computers. The automated solving of CAPTCHAs may either require
more computational power than is available, or algorithms have yet to be invented. It might well be that
computers are inherently less efficient, or even incapable, at some tasks than human beings. Whichever
the cause, several candidate CAPTCHAs are widely used throughout the Internet to keep robots at bay,
or at least slow them down (e.g. [EDHS07; CGJ+08; Goo; CB03; NASK14; SHL+10]).

Most CAPTCHAs are used as human-interaction proofs [BL05] but their full potential as cryptographic
primitives has not been leveraged so far despite a few exploratory papers. Early attempts [Dzi10; CHS06;
ABHL03; CHS05] faced the inherent difficulty of malleability: given a CAPTCHA Q, an adversary could
generate Q′, whose solution gives a solution to Q. Thus the security of such constructions could only be
evaluated against unrealistic “conservative adversaries” [KOPW13]. All in all, we propose to fill the gap
by providing a finer taxonomy of CAPTCHAs as well as cryptosystems based on them, which can reach
real-life security standards.

The organization of this section is as follows: Section 6.1.2 defines the classes of problems we are
interested in, and estimates how many of those problems can be solved per time unit. We then refine the
classical CAPTCHA concept into Decisional and Existential CAPTCHAs. Section 6.1.3 describes how to
implement public-key encryption using Decisional CAPTCHAs; Section 6.1.4 describes a short password-
based encryption mode that uses Existential CAPTCHAs to wrap high-entropy keys. Section 6.1.5
presents Decisional and Existential CAPTCHA candidates.

6.1.2 Preliminaries and Definitions

6.1.2.1 CAPTCHA Problems

Let Q be a class of problem instances, A a class of answers, and S a relation such that S(Q,A) expresses
the fact that “A ∈ A is a solution of Q ∈ Q”. Solving an instance Q of problem Q means exhibiting
an A ∈ A such that S(Q,A). We assume that for each problem there is one and only one solution, i.e.
that S is bijective. This formal setting (similar to [KOPW13; CHS06]) allows us to provide more precise
definitions.

Because CAPTCHAs involve humans and considerations about the state of technology, we do not
pretend to provide formal mathematical definitions but rather clarifying definitional statements.

Definition 6.1 (Informal) A given problem Q ∈ CP (CAPTCHA Problem) if no known algorithm can solve a
generic instance Q ∈ Q with non-negligible advantage over 1/|A|, which is the probability to answer Q correctly
at random; yet most humans can provide the solution A to a random Q ∈R Q with very high probability in
reasonable time.

In Definition 6.1, it is worth pointing out that future algorithms might turn out to solve efficiently some
problems that evade today’s computers’ reach. As such, CP is not so much a complexity class as it is a
statement about technology at any given point in time.

There exist today several approaches to building CAPTCHAs, based for instance on deformed word
recognition, verbal tests, logic tests or image-based tasks. We are chiefly interested in those tests that can
be automatically generated.

We extend CP in two ways:

5. “Completely Automated Public Turing test to Tell Computers and Humans Apart”.

118 Designing Confidentiality Building-Blocks 6.1
Definition 6.2 (Informal) A given problemQ ∈ DCP (Decisional CP) ifQ ∈ CP and, given a random instance
Q ∈R Q and a purported solution A to Q, no known algorithm can decide whether A is a solution to Q, i.e.
evaluate S(Q,A), with non-negligible advantage over 1/|A|; while humans can determine with high probability
S(Q,A) in reasonable time.

Finally, we introduce a further class of problems:

Definition 6.3 (Informal) Let Q /∈ CP be a set of “decoy data” which are not CAPTCHAs. A given problem
Q ∈ ECP (Existential CP) ifQ ∈ CP and, given a generic instance Q ∈ Q or a decoy Q ∈ Q, no known algorithm
can decide whether Q ∈ Q with non-negligible advantage over |Q|/|Q ∪ Q|; while humans can decide correctly if
Q ∈ Q or Q ∈ Q in reasonable time with high probability.

Remark Definition 6.3 depends on the set Q. We silently assume that, for a given problem Q, an
appropriate Q is chosen. This choice makes no difference.

When Q is not exhaustively searchable, Definition 6.3 means that a computer cannot decide whether a
given Q is a CAPTCHA or not, let alone solve Q if Q is indeed a CAPTCHA.

Remark Definition 6.3 can be reformulated similarly to the IND-CPA [NY90] security game: we pick a
random bit b and provide the adversary with Qb, where Q0 ∈ Q and Q1 ∈ Q. The adversary is expected
to guess b no better than at random unless it resorts to human aid.

Remark ECP,DCP ⊆ CP, but there is no inclusion of ECP in DCP or vice versa. Informally, CP is about
finding an answer, DCP is about checking an answer, and ECP is about recognizing a question.

Remark Solving a problem Q ∈ CP is either done using computers which by definition provide unreli-
able answers at best; or by asking a human to solve Q – effectively an oracle. However, there is a limit on
the number of solutions humans can provide and on the rate at which humans can solve CAPTCHAs.

Consider a given Q ∈ CP whose generic instances can be solved by a human in reasonable time. Let us
estimate an upper bound b on the number of instances of Q that a human may solve during a lifetime.
Assuming a solving rate of 10 instances per minute, and working age of 15–75 years, spent exclusively
solving such problems, we get b ∼ 108. Taking into account sleep and minimal life support activities, b
can be brought down to ∼ 107.

There should be no measurable difference between solving a problem in CP or in DCP, however it might
be slightly simpler (and therefore quicker) for humans to identify whether a problem is a CAPTCHA
without actually solving it. For simplicity we can assume that CAPTCHA recognition is ten times faster
than CAPTCHA resolution.

There are various estimations on the cost of having humans solve CAPTCHAs. Some websites offer to
solve 1000 CAPTCHAs for a dollar 6. Of course, the oracle may employ more than one human, and be
proportionally faster, but also proportionally more expensive.

6.1.3 Human Public-Key Encryption

We now describe a public-key cryptosystem using problems in DCP. Let Q ∈ DCP. We denote by H(m)
a hash function (e.g. SHA) and by Ek(m) a block cipher (e.g. AES). Here, m is the plaintext sent by Bob
to Alice.

— Key-pair generation: The public key pk is a list of b instances of Q

pk = {Q1, . . . , Qb}

The private key is the set of solutions (in the CP sense) to the Qi:

sk = {A1, . . . , Ab}

i.e. for 1 ≤ i ≤ b, S(Qi, Ai) holds true.

6. At a first glance, the previous figures imply that breaking a public-key (as defined in the next section) would only cost $104.
We make the economic nonlinearity conjecture there are no $104 service suppliers allowing the scaling-up of this attack. In other
words, if the solving demand d increases so will the price. We have no data allowing to quantify price(d).

6.1 Human Public-Key Encryption 119
— Encryption: Bob wants to send m to Alice. Bob picks k random problems {Qi1 , . . . , Qik} from

Alice’s pk, and solves them 7. Let σ ← {Ai1 , . . . , Aik} and α ← {i1, . . . , ik}. Bob computes
κ← H(α) and c← Eκ(m), and sends (σ, c) to Alice.

— Decryption: Given σ, Alice identifies the set of indices α and computes κ← H(α). Alice then uses
κ to decrypt c and retrieve m. Decryption does not require any human help.

The general idea of this cryptosystem is somewhat similar to Merkle’s puzzles [Mer78], however unlike
Merkle’s puzzle here security is not quadratic, thanks to problems in CP not being automatically solvable.
We may assume that the Ais are pairwise different to simplify analysis.

Remark Indeed if Q ∈ CP it might be the case that a machine could decide if given A,Q the relation
S(A,Q) holds without solving Q. Hence Qmust belong to DCP.

Remark A brute-force attacker will exhaust all
(
b
k

)
possible values of α. Hence

(
b
k

)
should be large

enough. Given that b ∼ 107 or b ∼ 108, it appears that k = 6 provides at least 128-bit security.

Remark The main drawback of the proposed protocol is the size of pk. Assuming that each Qi can be
stored in 20 bytes, a pk corresponding to b ∼ 108 would require 2 GB. However, given that CAPTCHAs
are usually visual problems, it is reasonable to assume that pk might turn out to be compressible.

Remark Instead of sending back the solutions σ in clear, Bob could hash them individually. Hashing
would only make sense as long as solutions have enough entropy to resist exhaustive search.

Remark It is possible to leverage the DCP nature of the Qis in the following way: instead of sending a
random permutation of solutions, Bob could interleave into the permutation d random values (decoy
answers). Alice would spot the positions of these decoy answers and both Alice and Bob would generate
α = {i1, . . . , ik, j1, . . . , jd} where jd are the positions of decoys. Subsequently, security will grow to(
b

k+d

)
/d!. This is particularly interesting since for b = 107, k = 1 and d = 6 we exceed 128-bit security. In

other words, all the sender has to do is to solve one CAPTCHA.

Entropy can be further increased by allowing d to vary between two small bounds. In that case the
precise (per session) value of d is unknown to the attacker.

6.1.4 Short Password-Based Encryption

In the following scenario Alice and Bob share a short password w. We will show how a message m can
be securely sent from Alice to Bob using only w. This is particularly suited to mobile devices in which
storing keys is risky.

Let Q ∈ ECP ∩ DCP.

— Alice generates a full size 8 key R and uses it to encrypt m, yielding c0 ← E0|R(m). She generates
an instance Q ∈ Q, such that S(P,R). Alice computes c1 ← E1|w(P) and sends (c0, c1) to Bob.

— Bob uses w to decrypt c1, and solves P . He thus gets the key R that decrypts c0.

An adversary therefore faces the choice of either “attacking Shannon” or “attacking Turing”, i.e. either
automatically exhaust R, or humanly exhaust w. Each candidate w yields a corresponding P that cannot
be computationally identified as a CAPTCHA. The adversary must hence resort to humans to deal with
every possible candidate password.

Assuming that CAPTCHA identification by humans is ten times faster than CAPTCHA resolution, it
appears that w can be a 5-character alphanumeric code 9.

Remark R must have enough entropy bits to provide an acceptable security level. R can be generated
automatically on the user’s behalf. As we write these lines we do now know if there existsQ ∈ ECP∩DCP
admitting 128-bits answers. If suchQs do not exist,R could be assembled from several problem instances.

7. Here Bob must resort to human aid to solve {Qi1 , . . . , Qik}.
8. e.g. 128-bit.
9. There are 64 alphanumeric characters, and 645 > 10× b.

120 Designing Confidentiality Building-Blocks 6.1
Remark In the above we assume that R is generated first, and then embedded into the solution of
a problem instance P . All we require from R is to provide sufficient entropy for secure block cipher
encryption. Hence, it might be easier to generate P first, and collect R afterwards.

Remark The main burden resting on Bob’s shoulders might not be the solving on P but the keying of
the answer R. 128 bits are encoded as 22 alphanumeric characters. Inputting R is hence approximately
equivalent to the typing effort required to input a credit card information into e-commerce website
interfaces 10. Alternatively, Bob may as well read the solution R to a speech-to-text interface that would
convert R into digital form.

Remark Q ∈ ECP ∩ DCP is necessary because the adversary may partially solve Q and continue using
exhaustive search. Under such circumstances, c0 serves as a clue helping the attacker to solve Q. If
Q ∈ ECP ∩ DCP, such a scenario is avoided.

6.1.5 DCP and ECP Candidate Instances

The above constructions assume that ECP and DCP instances exist and are easy to generate. Because ECP
and DCP depend both on humans and on the status of technology, it is difficult to “prove” the feasibility
of the proposed protocols.

We hence propose a DCP candidate an ECP candidates and submit them to public scrutiny.

6.1.5.1 DCP Candidate

Figure 6.1 – A DCP candidate constructed from an existing CP.

As a simple way to generate DCPs, we propose to start from a standard CP (e.g. a number recognition
problem) and ask a further question about the answer. The further question should be such that its
answer may correspond to numerous potential contents. For instance, the further question could be
whether two sequences of digits recognized in an image Q sum up to A = 91173 or not (see Figure 6.1).

6.1.5.2 ECP Candidates

?
Figure 6.2 – An instance of a visual-logical task ECP problem. Recognizing objects in this image is
insufficient to tell whether there is a solution, nor to compute the solution should there be one.

This section proposes a few candidate Q that we conjecture to belong to ECP.

The first step is to design a task that we think is challenging for computers. Despite recent progress
(see e.g. [GBI+13]), computer vision is still expensive and limited. Most computer vision algorithms

10. PAN (16 characters), expiry date (4 characters) and a CVV (4 characters).

6.1 Human Public-Key Encryption 121
have to be trained specifically to recognize objects or features of a given kind (dog breeds, handwritten
characters, etc.), and fail whenever the task at hand requires more than mere object identification. Even
in that case, occlusion, distortion and noise cause drastic performance loss for most techniques. Many
CAPTCHAs ideas rely on this to generate problem instances [CLSC05].

Even if image contents can be detected, we can still pose a hard challenge. Indeed, while computers
excel at solving logical reasoning questions when those questions are encoded manually as logical
formulae, state of the art algorithms fail at even the most basic questions when challenges are presented
in visual form. Therefore, solving for instance a visual-logical task is a problem that is at least in DCP
(see Figure 6.2).

Good ECP candidates for cryptographic purposes should be easy to generate, they should have enough
possible solutions to thwart exhaustive search attempts, and it should be hard to tell automatically
whether there is a solution at all.

6.1.5.3 Temporal Sequence ECP

Figure 6.3 – Three instances of the temporal sequence ECP problem. The problem consists in temporally
arranging the pictures.

The intuition for this candidate is that although computer vision algorithms may reach human ac-
curacy (and even beat it), humans can make use of external knowledge, which provides additional
understanding of what is under scrutiny. Here the external knowledge is that real-life events abide by
causality.

We provide k images (e.g. k = 5), each of which is a snapshot of some situation: buying goods, driving a
car, dressing up, etc. The order of images is scrambled (some random images may be inserted as decoys)
and the problem is to put images back in the correct order. This task, which we call temporal sequence,
requires the contextual knowledge that some events can only happen after (or before) others. This is
illustrated in Figure 6.3.

We conjecture that the temporal sequence task is both in DCP and in ECP.

One drawback of this approach is that to reach an 80-bit security level we need k = 40 images 11 which
can be unwieldy. This may be solved by using ` collections of κ images, and tune `, κ so that (κ!)` > 280.

Temporal sequences may be automatically generated from videos, although it is not obvious how to
ensure that sequences generated like this are always meaningful to humans.

122 Designing Confidentiality Building-Blocks 6.1

Figure 6.4 – Visual Letter Recognition ECP: letters are concealed using an existing CP, and one digit is
inserted into each sequence of letters. The ECP problem is to reorder the CAPTCHAs in increasing digit
order, discarding all non-digit symbols. Here the solution consists in selecting the 4th, 5th, 2nd, 3rd, and
1st images, in that order.

6.1.5.4 Visual Letter Recognition ECP

Assume we have a CP problem Q, whose instances can successfully conceal letters (a “one-letter”
CAPTCHA). We provide k instances of Q1, . . . , Qk corresponding to answer letters A1, . . . , Ak, and ask
for the alphabetically sorted list of these Ai.

As an example, we would generate instances of Q for the letters {A,M, T,O,B,R}, and ask for the
solution ABMORT. Under the assumption that Q ∈ CP, determining whether a solution exists requires
human aid. Therefore we conjecture that this problem belongs to ECP.

A further variant of this idea is illustrated in Figure 6.4.

Note that the visual letter recognition problem is DCP if an only if Q ∈ DCP.

6.1.5.5 Honey Images ECP

Another candidate problem is inspired by honey encryption [JR14; YKJ+15]. The idea is that any integer
1 ≤ ` ≤ k would generate an image, but that only one value `OK generates a meaningful image 12. All
values ` 6= `OK generate images in a way that makes them indistinguishable from meaningful images.
The problem would then be to identify `OK, which we conjecture only humans can do reliably.

The main difficulty is that the notion of indistinguishability is tricky to define for images, and even
harder to enforce: humans and computers alike use very specific visual cues to try and perform object
recognition, which are hard to capture statistically. Following [YKJ+15], we may try and learn from a
dataset how to properly encode images, but this is cumbersome in our context, especially when dealing
with a large number of instances.

Our candidate is a simpler embodiment based on the following intuition: using biased noise (i.e. noise
that is not random), we can elicit pareidolia in computer vision programs. Each candidate value of `

11. There are k! combinations, and 40! > 280.
12. In the specific case of Figure 6.5, translation, rotation, mirroring as well as border cropping may also generate the meaningful

image corresponding to `OK, but the overall proportion of such images remains negligible.

6.1 Human Public-Key Encryption 123

Figure 6.5 – A honey image ECP. Left: original image; right: Q`OK , the transformed image for `OK.

Figure 6.6 – All values of ` other than `OK produce decoys whose statistical properties are conjectured to
be indistinguishable from the correct image, with salient features but no real meaning.

would then correspond to some object being recognized – but only one of those is really relevant. We
conjecture that only humans are able to pick this relevant object apart.

The authors implemented this idea. We start from a black and white picture of a clearly identifiable
object (Figure 6.5 left, here A = “rabbit”), turn it into a collection of black dots 13 (1). The picture is then
cut into blocks which are shuffled and rotated (2). Finally, noise is added, under the form of black dots
whose size is distributed as the size of black dots in the original picture (3). The image is then rotated
back in place (Figure 6.5 right) to provide the challenge Q`OK .

The motivation for this approach is as follows: (1) guarantees that individual pixels contain no infor-
mation on luminescence, and geometric features (lines, gradients and corners) – each dot being circular
destroys information about orientation; the shuffling and rotation of blocks in (2) is encoded as an integer
`; and (3) inserts decoy features, so that any shuffling/rotation would make geometric features appear
(to lure a computer vision algorithm into detecting something).

Now, many decoys Q` ∈ Q, ` 6= `OK can be generated easily from this image by shuffling and rotating
blocks (Figure 6.6). Each decoy shares the same statistical properties as the correct (unshuffled) image,
but has no recognizable content.

Our conjecture is that the human brain can perceive structures very efficiently and assign meaning to
them. Many such structures are irrelevant and inserted so as to fool computer vision algorithms, but the
familiar ones are immediately and intuitively grasped by humans. Consequently, although the original

13. For instance using an iteratively reweighted Voronoi diagram.

124 Designing Confidentiality Building-Blocks 6.1
picture is severely deteriorated, we conjecture that it should still be possible for humans to tell noise and
signal apart and identify correctly the contents of this image.

6.1.6 Further Applications

Figure 6.7 – Credit card PAN and expiry date, stored as a DCP instance.

Beyond their cryptographic interest, DCP and ECP tasks may have interesting applications in their own
right.

One such application is the following: users may wish to store sensitive data as a DCP instance, for
instance credit card information, instead of plaintext. Indeed, attackers often browse their victims’
computers looking for credit card information, which is easy to recognize automatically. By storing
credentials in an ECP the attacker’s task can be made harder.

6.2 Honey Encryption for Language: Robbing Shannon to Pay Turing? 125

6.2 Honey Encryption for Language: Robbing Shannon to Pay Tur-
ing?

6.2.1 Introduction

Cryptography assumes that keys and passwords can be kept private. Should such secrets be revealed,
any guarantee of confidentiality or authenticity would be lost. To that end, the set of possible secrets –
the keyspace K – is designed to be very large, so that an adversary cannot possibly exhaust it during the
system’s lifetime.

In some applications however, the keyspace is purposely limited – for instance, passwords. In addition to
the limited keyspace size, secret selection has a fundamental limitation: keys should be chosen uniformly
at random – yet users routinely pick (the same) poor passwords. Consequently, key guessing is a guided
process in which the adversary does not need to exhaust all possibilities. The deadly combination of
low-entropy key generation and small keyspace make password-based encryption (PBE) particularly
vulnerable [LHAS14].

The best security achievable by a PBE is measured by the min-entropy of the key distribution over K:

µ = − log2 max
k∈K

pk(k).

where pk is the probability distribution of keys. The min-entropy captures how probable is the most
probable guess. Conventional PBE schemes such as [Kal13] can be broken with constant effort with
probability O(2−µ), but µ is in practice very small: [Bon12] reports µ < 7 for passwords observed in
a population of about 69 million users. If a message m were to be protected by such passwords, an
adversary could easily recover m by trying the most probable passwords 14.

But how would the adversary know that the key she is trying is the correct one? A message has often
some structure — documents, images, audio files for instance — and an attempt at decrypting with an
incorrect key would produce something that, with high probability, does not feature or comply with this
structure. The adversary can therefore tell apart a correct key from the incorrect ones, judging by how
appropriate the decryption’s output is. Mathematically, the adversary uses her ability to distinguish
between the distribution of outputs for her candidate key k′ and the distribution pm of inputs she is
expecting to recover.

Using such a distinguisher enables the attacker to try many keys, then select only the best key candidates.
If there are not many possible candidates, the adversary can recover the plaintext (and possibly the key
as well). In the typical case of password vaults, when one « master password » is used to encrypt a list of
passwords, such an attack leads to a complete security collapse.

Example 6.1 Assume that we wish to AES-decrypt what we know is an English word protected with a small 4
digits key: c← Enck(m). An efficient distinguisher is whether mk′ ← Deck′(c) is made of letters belonging to
the English alphabet. For instance, if

c = 0f 89 7d 66 8b 4c 27 d7 50 fa 99 0c 5a d6 11 eb

Then the adversary can distinguish between two candidate keys 5171 and 1431:

m5171 = 48 6f 6e 65 79 00 00 00 00 00 00 00 00 00 00 00

m1431 = bd 94 11 05 a2 e5 a7 c8 48 57 87 2a 88 52 bc 7e

Indeed, m5171 spells out ‘Honey’ in ASCII while m1431 has many characters that do not correspond to any letters.
Exhausting all 4 digit keys yields only one message completely made of letters, hence k = 5171 and the adversary
succeeded in recovering the plaintext m5171.

To thwart such attacks, Juels and Ristenpart introduced Honey Encryption (HE) [JR14]. HE is an
encryption paradigm designed to produce ciphertexts which, upon decryption with wrong keys, yields

14. Such passwords may be learned from password leaks [VCT14; WAdG09; JD12].

126 Designing Confidentiality Building-Blocks 6.2
plausible-looking plaintexts. Thus brute-force attackers need to use additional information to decide
whether they indeed found the correct key.

Mathematically, the decoding procedure in HE outputs candidate plaintexts distributed according to
a distribution pd close to the distribution pm of real messages. This renders distinguishing attacks
inoperant. The advantages of HE are discussed at length in [JR14] where the concept is applied to
password-based encryption of RSA secret keys, credit card PINs and CVVs. In particular, HE does not
reduce the security level of the underlying encryption scheme, but may act as an additional protection
layer.

However, the applications of HE highlighted in [JR14] are very specific: Passwords protecting passwords
(or passwords protecting keys). More precisely, low min-entropy keys protecting high min-entropy keys.
The authors are wary not to extend HE to other settings and note that designing HE

« ...for human-generated messages (password vaults, e-mail, etc.) (...) is interesting as a natural
language processing problem. » [JR14]

To give a taste of the challenge, realizing HE as Juels and Ristenpart defined it is equivalent to modeling
the probability distribution of human language itself. A more modest goal is to restrict to subsets of
human activity where choices are more limited, such as passwords — this is indeed the target of a
recent paper by Chatterjee, Bonneau, Juels and Ristenpart [CBJR15], which introduces encoders for
human-generated passwords they call « natural language encoders » (NLE). Chatterjee et al.’s approach
to language is to model the distribution of messages using either a 4-gram generative Markov model or
a custom-trained probabilistic grammar model. This works reasonably well for passwords.

A natural question is therefore: Could the same techniques be extended or generalized to human-
generated documents in general? Chatterjee et al. hint at it several times, but never actually take a leap:
The core reason is that these approaches do not scale well and fail to model even simple sentences – let
alone entire documents.

6.2.2 Preliminaries

6.2.2.1 Notations

We write x D←− X to denote the sampling of x from X according to a distribution D, and x $←− X when D
is the uniform distribution.

6.2.2.2 Message Recovery Attacks

LetM be a message space and let K be a key space. We denote by pm the message distribution overM,
and by pk the key distribution over K. Let Enc be any encryption scheme. The message-recovery advantage
of an adversary A against Enc is defined as

AdvMR
Enc,pm,pk(A) = Pr

[
MRAEnc,pm,pk = True

]
where the MR security game is described below. A may run for an unbounded amount of time, and
make an unbounded number of queries to a random oracle.

This advantage captures the ability of an adversary knowing the distributions pm, pk to recover a message
encrypted with Enc.

When key and message entropy are low, this advantage might not be negligible. However, using
Honey Encryption, Juels and Ristempart show that A’s advantage is bounded by 2−µ, where µ =
− log maxk∈K pk(k) is the min-entropy of the key distribution.

6.2 Honey Encryption for Language: Robbing Shannon to Pay Turing? 127

Game 1 Message recovery (MR) security game MRAEnc,pm,pk .

K ′
pk←− K

M ′
pm←−−M

C ′
$←− Enc(K ′,M ′)

M ← A(C ′)
return M == M ′

Figure 6.8 – SAMP0BDTE

x′
$←− [0, 1]

M ′ ← DTDecode(x′)

b
$←− B(M ′, x′)

return b

Figure 6.9 – SAMP1BDTE,pm

M ′
pm←−−M

x′
$←− DTEncode(M ′)

b
$←− B(M ′, x′)

return b

6.2.2.3 Distribution Transforming Encoding

Honey Encryption (HE), introduced by Juels and Ristenpart [JR14], is an encryption paradigm designed
to produce ciphertexts yielding plausible-looking but bogus plaintexts called honey messages upon
decryption with wrong keys. Thus brute-force attackers need to use additional information to determine
whether they indeed found the correct key. The advantages of HE are discussed at length in [JR14] where
the process is applied to password-based encryption of RSA secret keys and credit card numbers.

HE relies on a primitive called the distribution transforming encoding (DTE). The DTE is really the central
object of HE, which is then used to encrypt or decrypt messages. A DTE is composed of two algorithms,
DTEncode and DTDecode which map messages into numbers in the interval [0, 1] and back, i.e. such that

∀M ∈M, DTDecode(DTEncode(M)) = M.

More precisely, DTEncode : M → [0, 1] is designed such that the output distribution of DTEncode is
uniform over [0, 1] when the input distribution over M is specified and known — in other terms,
DTDecode samples messages inM according to a distribution pd close to pm, with

pd(M) = Pr
[
M ′ = M | x $←− [0, 1] and M ′ ← DTDecode(S)

]

As such, DTEs cannot be arbitrary: They need to mimic the behavior of the cumulative distribution
function and its inverse. More precisely, the closeness of pd and pm is determined by the advantage of an
adversary A in distinguishing the games of Figures 6.8 and 6.9:

AdvADTE,pm =
∣∣Pr
[
SAMP1ADTE,pm = 1

]
− Pr

[
SAMP0ADTE = 0

]∣∣
A is provided with either a real message and its encoding, or a fake encoding and its decoding. A
outputs 1 or 0 depending on whether it bets on the former or the latter. A perfectly secure DTE is a
scheme for which the indistinguishability advantage is zero even for unbounded adversaries (this is
equivalent to pd = pm).

Having good DTEs is the central aspect of building a Honey Encryption scheme as well as the main
technical challenge. Given a good DTE, the honey encryption and decryption of messages is provided
by a variation of the “DTE-then-encrypt” construction described in Figures 6.10 and 6.11 where some
symmetric encryption scheme (ESEncode,ESDecode) is used. In the “DTE-then-encrypt” paradigm, a
message is first transformed by the DTE into an integer x in some range, and x (or rather, some binary
representation of x) is then encrypted with the key. Decryption proceeds by decrypting with the key,
then reversing the DTE.

128 Designing Confidentiality Building-Blocks 6.2

Figure 6.10 – Algorithm HEncES

HEncES(K,M)
x← DTEncode(M)
C ← ESEncode(x,K)
return C

Figure 6.11 – Algorithm HDecES

HDecH(K,C)
x← ESDecode(K,C)
M ← DTDecode(x)
return M

6.2.3 Natural Language Encoding

Chaterjee et al. [CBJR15] developed an approach to generating DTEs based on two natural language
models: an n-gram Markov model, and a custom probabilistic grammar tree.

6.2.3.1 Markov Model

The n-gram model is a local description of letters whereby the probability of the next letter is determined
by the n− 1 last letters:

Pr[w1 · · ·wk] =
k∏
i=1

Pr
[
wi | wi−(n−1) · · ·wi−1

]
It is assumed that these probabilities have been learnt from a large, consistent corpus.

Such models are language-independent, yet produce strings that mimic the local correlations of a training
corpus — but, as Chomsky pointed out [Cho02; Cho56; Cho59], the output of such models lack the
long-range correlations typical of natural language. The latter is not an issue though, as Chatterjee et al.
train this model on passwords.

The model can be understood as a directed graph where vertices are labeled with n-grams, and edges are
labeled with the cumulative probability from some distinguished root node. To encode a string it suffices
to encode the corresponding path through this graph from the root — and decoding uses the input as
random choices in the walk. Encoding and decoding can be achieved in time linear in message size.

6.2.3.2 Grammar Model

Probabilistic context-free grammars (PCFG) are language-dependent models that learn from a tagged
corpus a set of grammatical rules, and then uses these rules to generate syntactically possible sentences.
PCFGs are a compact way of representing a distribution of strings in a language.

Although it is known that context-free grammars do not capture the whole breadth of natural language,
PCFGs are a good starting point, for such grammars are easy to understand, and from a given probabilistic
context-free grammar, one can construct compact and efficient parsers [KM03]. The Stanford Statistical
Parser, for instance, has been used by the authors to generate parse trees in this section.

Mathematically, a probabilistic context-free grammar G is a tuple of the form (N,T,R, P,ROOT) where
N are non-terminal symbols, T are terminal symbols (disjoint from N), R are production rules, P is the
set of probabilities on production rules and ROOT is the start symbol. Every production rule is of the
form A→ b, where A ∈ N and b ∈ (T ∪N)∗.

Figure 6.12 shows a parse tree aligned with a sentence. Some grammatical rules can be read at every
branching: S→ NP VP, NP→ DT VBN NN, NP→ DT NN, etc.

Chaterjee et al. [CBJR15] rely on a password-specific PCFGs [WAdG09; JD12; VCT14; MYLL14; KKM+12]
where grammatical roles are replaced by ad hoc roles.

The DTE encoding of a string is the sequence of probabilities defining a parse tree that is uniformly
selected from all parse trees generating to the same string (see e.g. Figure 6.13, which provides an

6.2 Honey Encryption for Language: Robbing Shannon to Pay Turing? 129
ROOT

S

VP

SBAR

S

VP

VP

VP

PP

NP

NN

message

DT

the

IN

about

VBN

inferred

VB

be

MD

can

SBAR

S

VP

VP

ADVP

RB

little

VBN

revealed

VBZ

is

NP

PP

NP

PP

NP

NN

message

DT

a

IN

of

NP

NN

tree

JJ

syntactic

DT

the

IN

of

NP

NN

part

IN

if

IN

that

PP

NP

NN

assumption

DT

the

IN

on

VBZ

relies

NP

NN

scheme

VBN

proposed

DT

The

Figure 6.12 – Syntactic tree of an example sentence.

ROOT

S

VP

NP

PP

NP

NN

cheese

DT

some

IN

with

NP

NN

sandwich

DT

a

VT

had

NP

NN

student

DT

the

ROOT

S

VP

PP

NP

NN

cheese

DT

some

IN

with

VP

NP

NN

sandwich

DT

a

VT

had

NP

NN

student

DT

the

Figure 6.13 – Two possible derivations of the same sentence. Note that these derivations correspond to
two possible meanings which are not identical.

example of two parse trees for a same sentence, amongst more than 10 other possibilities). Decoding just
emits the string indicated by the encoded parse tree.

In the probabilistic context, the probability of each parse tree can be estimated. A standard algorithm for
doing so is due to Cocke, Younger, and Kasami (CYK) [Coc69; You67; Kas65].

6.2.3.3 Generalized Grammar Model

The generalized idea relies on the assumption that if part of the syntactic tree of a message is revealed,
little can be inferred about the message. To understand the intuition, consider the syntactic tree of the
previous sentence (clause) shown in Figure 6.14.

As we can see, words are tagged using the clause level, phrase level and word level labels listed in Sec-
tion 6.2.7.

130 Designing Confidentiality Building-Blocks 6.2
ROOT

S

VP

SBAR

S

VP

VP

VP

PP

NP

NN

message

DT

the

IN

about

VBN

inferred

VB

be

MD

can

SBAR

S

VP

VP

ADVP

RB

little

VBN

revealed

VBZ

is

NP

PP

NP

PP

NP

NN

message

DT

a

IN

of

NP

NN

tree

JJ

syntactic

DT

the

IN

of

NP

NN

part

IN

if

IN

that

PP

NP

NN

assumption

DT

the

IN

on

VBZ

relies

NP

NN

idea

VBN

generalized

DT

The

Figure 6.14 – Syntactic tree of an example sentence.

The idea underlying syntactic honey encryption consists in revealing a rewritten syntactic tree’s word
layer while encrypting words 15. The process starts by a syntactic analysis of the message allowing to
extract the plaintext’s syntactic tree. This is followed by a projection at the word level. When applied to
the previous example, we get the following projection (hereafter called skeleton).

Given a clause, we can automatically associate each word si to a label Li 16. For instance, if the third
word of the clause is “relies”, then L3 ← VBZ. We denote by Ri the rank of the skeleton’s i-th word in
the dictionary of the category Li. Finally we denote by |X| the cardinality of the set X .

To map our ordered wordlist into a single integer, we note that because in the above example there are 5
DTs, 3 VBNs, 6 NNs, 2 VBZs, 6 INs, and 1 JJ, RB, MD and 1 VB, our specific clause is one amongst exactly B
syntactically correct messages where:

B = |DT|5|VBN|3|NN|6|VBZ|2|IN|6|JJ||RB||MD||VB|

We can thus map a clause skeleton into N by writing:

e←
k−1∑
i=0

Ri

i−1∏
j=0

|Lj |

where, by typographic convention, L−1 = 1.

To get back the original clause, given e and the skeleton, we use the algorithm of Figure 6.15.

The skeleton is transferred in clear:

s = DT VBN NN VBZ IN DT NN IN IN NN IN DT JJ NN

IN DT NN VBZ VBN RB MD VB VBN IN DT NN

Note that there is no need to tune precisely the plaintext size of the underlying block cipher because
the decoding process for e stops automatically when i reaches k − 1. In other words, we can randomize
encryption at little cost by replacing e by e+ µB for some random integer µ.

15. We stress that unlike e.g. Kamouflage[BBBB10] which deals with passwords, syntacting honey encyrption applies to natural
language.

16. Note that such a skeleton might be ambiguous in certain constructions, for instance in sentences such as “Time flies like an
arrow; fruit flies like a banana”.

6.2 Honey Encryption for Language: Robbing Shannon to Pay Turing? 131
Decoding

`← |L0|
for i← 0 to k − 1

Ri ← e mod `

e← (e−Ri)/`
`← `× |Li+1|
wordi ← DictionaryLi(Ri)

Figure 6.15 – Decoding algorithm.

The number e is then honey encrypted, thus attempting to protect the actual content of the plaintext
sentence.

6.2.4 Limitations of Honey Encryption

As observed by [JR14], HE security does not hold when A has some side information about the target
message. This puts strong constraints on HE’s applicability to situations such as protecting RSA or
HTTPS private keys. A second limitation is that the HE construction assumes that the key and message
distributions are independent. When these distributions are correlated, A can identify a correct message
by comparing that message with the decryption key that produced it. Similarly, encrypting two correlated
messages under the same key enables A to identify correct messages.

Finally, constructing a DTE requires knowing the distribution pm of messages inM. As we will argue,
this turns out to be extremely difficult to evaluate when M becomes a large enough space, such as
human-generated messages (emails, etc.). In those cases, it might even turn out that adversaries know
pm better than users.

The methods described in Section 6.2.3 apply reasonably well to short passwords, but as we will now
argue they cannot scale to deal with natural language as used in real-world scenarios such as: e-mails
and written documents. The reason is threefold: First the methods require a huge amount of context-
relevant information; Second, even when this information is available, the methods of [CBJR15] fail to
produce convincing honey messages, i.e. messages that fool automated tools in telling them apart from
real messages with high probability; Third, natural language HE may actually leak information about
the underlying message.

6.2.4.1 Scaling NLE

The models developed for passwords in [CBJR15] can be extended: Markov models for instance can
be configured to generate arbitrary-length messages. Instead of letters, such models can be trained to
produce words, in accordance with some known distribution of n-grams. But while there are only a few
English letters, a recent study of the English language [MSA+11] counts more than a million individual
words in usage.

As a result, the memory required to store an n-gram database is of the order of 106n ≈ 220n. That becomes
prohibitive not only in terms of storage, but also when access latency is taken into account. Applying
directly the method of [CBJR15] to words (using n = 5) would require knowing, storing, and sharing
2100 bytes of data 17. The real issue however is that measuring accurately 5-grams usage is extremely
difficult in practice, so that most of this impossibly large database is essentially unknown 18.

Using grammars is one way to avoid this combinatorial explosion by keeping a simple and compact
model of language. To that end, a sentence is parsed to reveal its grammatical structure as in Figures 6.12
and 6.13. Each word is labeled with an indication of its grammatical role (see Section 6.2.7).

17. This is conceptually similar to Borges’ famous library [Bor41; Bor44].
18. See for instance http://www.ngrams.info/.

http://www.ngrams.info/

132 Designing Confidentiality Building-Blocks 6.2
A sentence is therefore uniquely represented by a list of grammatical tags, and a list of integers denoting
which word is used. The idea behind syntactic honey encryption consists in revealing the tags but honey
encrypting the words. By construction, honey messages generated have the same syntax as the original
message, which makes decryption with a wrong key yield an often plausible plaintext. For instance,
a sentence such as s1 = « Secure honey encryption is hard » could be honey decrypted as Chomsky’s
famous sentence s2 =« Colorless green ideas sleep furiously » [Cho56], illustrating a sentence that is
grammatically correct while being semantically void. Here s1 and s2 share the same syntax. To use
this algorithm the communicating parties must agree on a dictionary that includes a set of labels and a
parsing algorithm.

There are however two structural limitations to this grammatical approach. First, revealing the syntactic
structure of a message leaks information: Unless the message is long enough, there might be only
very few possible sentences with that given syntax. Second, a grammar is language-dependent — and
furthermore, to some extent, there is variability within a given language 19. The consequence of an
inaccurate or incorrect tagging is that upon honey decoding, the sentence might be noticeably incorrect
from the suitable linguistic standpoint.

This opens yet another research avenue. Automatically translate the sentence into an artificially created
language where syntactic honey encryption would be very efficient. For instance translate French to
Hindi, then perform honey encryption on the Hindi sentence.

6.2.4.2 Quality of NLE

The question of whether a honey message is “correct” in a given linguistic context can be rephrased: Is it
possible, to an adversary having access to a large corpus (written in the same language), to distinguish
honey messages from the legitimate plaintext?

It turns out that the two approaches to modeling natural language provide two ways to construct a
distinguisher: We can compare a candidate to a reference, either statistically or syntactically. But we can
actually do both simultaneously: We can use Web search engines to assess how often a given sentence or
word is used 20. This empirical measure of probability is interesting in two respects: First, an adversary
may query many candidates and prune those that score badly; Second, the sender cannot learn enough
about the distribution of all messages using that “oracle” to perform honey encryption.

The situation is that there is a measurable distance between the model (used by the sender) of language,
and language itself (as can be measured by e.g. a search engine). Mathematically, the sender assumes
an approximate distribution pm on messages which is different from the real-world distribution p̂m.
Because of that, a good DTE in the sense of Figures 6.8 and 6.9 would, in essence, yield honey messages
that follow pm and not p̂m. An adversary capable of distinguishing between these distributions can
effectively tell honey messages apart.

What is the discrepancy between pm and p̂m? Since p̂m measures real-world usage, we can make the
hypothesis that such messages correspond to human concerns, i.e. that they carry some meaning — in
one word, what distinguishes pm from p̂m is semantics.

6.2.4.3 Leaking Information

Another inherent limitation of HE is precisely that decryption of uniformly random ciphertexts produces
in general the most probable messages. There are many situations in which linguistic constraints force a
certain structure on messages, e.g. the position of a verb in a German sentence. As a consequence, there
might be enough landmarks for a meaningful reconstruction (see also [RWJL06]).

19. An extreme example is William Shakespeare’s use of inversion as a poetic device: “If’t be so, For Banquo’s issue have I fil’d my
mind,/ For them the gracious Duncan have I murther’d,/Put rancors in the vessel of my peace” (MacBeth, III.1.8).

20. We may assume that communication with such services is secure, i.e. confidential and non-malleable, for the sake of
argument.

6.2 Honey Encryption for Language: Robbing Shannon to Pay Turing? 133
To thwart such reconstruction attacks, it is possible to consider phrase-level defenses. Such defenses
imply modifying the syntactic tree in a way which is both reversible and indistinguishable from other
sentences of the language. Phrase-level defenses heavily depend on the language used. For instance the
grammar of Latin, like that of other ancient Indo-European languages, is highly inflected; consequently,
it allows for a large degree of flexibility in choosing word order. For example, femina togam texuit, is
strictly equivalent to texuit togam femina or togam texuit femina. In each word the desinence (also called
ending or suffix): -a, -am and -uit, and not the position in the sentence, marks the word’s grammatical
function. This specific example shows that even if the target language allows flexibility in word order,
this flexibility does not necessarily imply additional security. Semitic languages, such as Arabic or
Hebrew, would on the contrary offer very interesting phrase-level defenses. In semitic languages, words
are formed by associating three-consonant verbs to structures. In Hebrew for example the structure
mi��a�a corresponds to the place where action takes place. Because the verb drš means to teach (or
preach), and because the verb zrk means to throw (or project), the words midraša 21 and mizraka respectively
mean “school” and “water fountain” (the place that projects (water)). This structure which allows, in
theory, to build O(ab) terms using O(a) verbs and O(b) and thus turns out to be HE-friendly.

6.2.5 Corpus Quotation DTE

We now describe an alternative approach which is interesting in its own right. Instead of targeting the
whole breadth of human language, we restrict users to only quote from a known public document 22.

The underlying intuition is that, since models fail to capture with enough detail the empirical properties
of language, we should think the other way around and start from an empirical source directly. As such,
the corpus quotation DTE addresses the three main limitations of HE highlighted in Section 6.2.4: It
scales, it produces realistic sentences (because they are actual sentences), and it does not leak structural
information.

Consider a known public string M (the “corpus”). We assume thatM consists in contiguous sequence of
words sampled from M, i.e. from the set of substrings of M. To build a DTE we consider the problem of
mapping a substring m ∈M to [0, 1].

6.2.5.1 Interval Encoding of Substrings

Let M be the size of M, there are |M| = M(M − 1)/2 substrings denoted mi,j , where i is the starting
position and j is the ending position, with i ≤ j. Substrings of the form mi,i are 1-letter long.

The DTE encoding of m ∈ M is a point in a sub-interval of [0, 1], whose length is proportional to the
probability pm(m) of choosing m. If pm is uniform overM, then all intervals have the same length and
are of the form

Ik =

]
2k

M(M − 1)
,

2(k + 1)

M(M − 1)

]
.

where k is the index of m ∈ M for some ordering onM. Decoding determines which Ik contains the
input and returns k, from which the original substring can be retrieved. For more general distributions
pm, each substring mi,j is mapped to an interval whose size depends on pm(m).

6.2.5.2 Length-Dependent Distributions

Let’s consider the special case where pm(m) depends only on the length of m. We will therefore consider
the function p : [1,M] −→ [0, 1] giving the probability of a substring of a given length. This captures
some properties of natural languages such as Zipf’s law [Hei01]: Short expressions and words are used
much more often than longer ones. Note that part of this is captured by the fact that there are fewer long
substrings than short ones.

21. The Arabic equivalent is madrasa.
22. The way some characters do in Umberto Eco’s novel, Il pendolo di Foucault[Eco11].

134 Designing Confidentiality Building-Blocks 6.2

m0,0

m0,M-1 mM-1,M-1

Figure 6.16 – Triangle representation T of the substringsM⊆M. Substrings along right diagonals have
equal length. The top-left point represents the entire corpus M.

Thus the encoding of a message mi,j is a random point in an interval of size `(j − i) proportional to
pm(mi,j) = p(j − i):

`(k) =
p(k)

L
, L =

M∑
k=1

(M − k)p(k).

This ensures that
M∑
k=1

(M − k)`(k) = 1.

The intervals associated to each substring are defined as follows. First, substrings mi,j are mapped via
the map τ : mi,j 7→ (i, j) to a triangle (see Figure 6.16):

T = {(i, j) | j ≥ i ∈ [0,M − 1]} ⊂ N2.

Then points in T are mapped to [0, 1] using the function:

Φ: (i, j) 7→ (i− 1)`(diag(i, j)) +

diag(i,j)−1∑
k=1

k`(k)

where diag(i, j) = M − 1 − (j − i) indicates on which upright diagonal (i, j) is. All in all, a substring
mi,j is encoded using the following algorithm:

DTEncode : mi,j 7→ (Φ + ε` ◦ diag) (τ(mi,j))

where ε is sampled uniformly at random from [0, 1].

Encoding can be understood as follows: Substrings of equal length k are mapped by τ to points along
a diagonal of constant k = j − i. The first diagonal is the whole corpus M and the only substring of
length M . The (M − 1 − k)-th diagonal is the set of substrings {mi,i+k | i ∈ [0,M − 1− k]} of length
k. Decoding is achieved by Algorithm 10, which takes a number x ∈ [0, 1] and returns the position
(i, j) = Φ−1(x) of the corresponding substring by determining the position in T . The idea is to count the
segment length before x. At each iteration we update the segment length and the current position in the
diagonal.

This decryption algorithm is linear in the number of substrings, i.e. it runs in time O(M2). We can speed
things up using pre-computations, Algorithms 11 and 12 run in O(M) time and memory.

6.2.6 Further Research

This work opens a number of interesting research directions:

6.2 Honey Encryption for Language: Robbing Shannon to Pay Turing? 135
Algorithm 10 Position of Φ−1(x)

Input: x ∈ [0, 1]
Output: (a, b) ∈ [|0,M |]2 such that Φ(a, b) = x
i← 0
j ← 0
k ←M
while i < x do
i← i+ `(k)
j ← j + 1
if j ≥M − k + 1 then
j ← 0
k ← k − 1

end if
return (j − 1,M + j − k − 1)

end while

Algorithm 11 Pre-computation
Output: vector V such that intervals in [V [i], V [i+ 1]] are the intervals of length `(i)

let V [1..M] be a vector of length M
for i← 1 to M do
V [i]← V [i− 1] + (M − i+ 1)`(i)

end for
return V

Algorithm 12 Fast Decryption
Input: x ∈ [0, 1], V the result of Algorithm 11.
Output: (a, b) ∈ [|0,M |]2 such that Φ(a, b) = x
i← 1
while V [i] < x do
i+ +

end while
j ← (x− V [i])/`(i)
return (j − 1,M − i− 1)

6.2.6.1 Machine to Human HE:

Search engines, and more generally computational knowledge engines and answer engines such as
Wolfram Alpha 23 provide users with structured answers that mimic human language. These algorithms
generate messages using well-defined algorithmic process having a precise probability distribution
which DTEs can be better modeled. Such sentences are hence likely to be safer to honey encrypt.

6.2.6.2 Automated Plaintext Pre-Processing:

A more advanced, yet not that unrealistic option consists in having a machine understand a natural
language sentence m and re-encode m as a humanly understandable yet grammatically and syntactically
simplified sentencem′ having the same meaning for a human. Such an ontology-preserving simplification
process will not modify the message’s meaning while allowing the construction better DTEs.

23. www.wolframalpha.com.

www.wolframalpha.com

136 Designing Confidentiality Building-Blocks 6.2
6.2.6.3 Adding Syntactic Defenses:

This work was mostly concerned by protecting messages at the word level. It is however possible to
imagine the adding of defenses at the clause and at the phrase levels. Two simple clause-level protections
consist in adding decoy clauses to the message, and shuffling the order of clauses in the message. Both
transforms can be easily encoded in the ciphertext by adding an integer field interpreted as the rank of a
permutation and a binary strong whose bits indicate which clauses should be discarded. Decryption
with a wrong key will yield a wrong permutation and will remove useful skeletons from the message. It
should be noted that whilst the permutation has very little cost, the addition of decoy skeletons impacts
message length. It is important to use decoy skeletons that are indistinguishable from plausible skeletons.
To that end the program can either pick skeletons in a huge database (e.g. the web) or generate them
artificially.

6.2.6.4 Adding Phrase-Level Defenses:

Adding phrase-level defenses is also a very interesting research direction. A simple way to implement
phrase-level defenses consists in adding outgrowths to the clause. An outgrowth is a collection of fake
elements added using a specific rewriting rule. Note that information cannot be removed from the
sentence. Here is an example of scrambling using outgrowths: the original clause m0 is the sentence
“During his youth Alex was tutored by a skilled architect until the age of 16”. The syntactic tree of m0 is:

ROOT

S

VP

VP

PP

NP

PP

NP

CD

16

IN

of

NP

NN

age

DT

the

IN

until

PP

NP

NN

architect

JJ

skilled

DT

a

IN

by

VBN

tutored

VBD

was

NP

NNP

Alex

PP

NP

NN

youth

PRP$

his

IN

During

The skeleton of m0 is IN PRP$ NN NNP VBD VBN IN DT JJ NN IN DT NN IN CD.

Now consider the following rewrite rules:

PRP$ NN → PRP$ JJ NN

DT NN → DT JJ NN

IN DT JJ NN → IN DT NN CC IN DT JJ NN

We can apply these rules to m0 to obtain:

m0 IN PRP$ NN NNP VBD VBN IN DT JJ NN IN DT NN IN CD

m1 ← r1(m0) IN PRP$ JJ NN NNP VBD VBN IN DT JJ NN IN DT NN IN CD

m2 ← r2(m1) IN PRP$ JJ NN NNP VBD VBN IN DT JJ NN IN DT JJ NN IN CD

m3 ← r3(m2) IN PRP$ JJ NN NNP VBD VBN IN DT NN CC IN DT JJ NN IN DT JJ NN IN CD

m3 is a plausible skeleton that could have corresponded to the clause: “During his early youth Alex was
tutored by a linguist and by a skilled architect until the approximate age of 16”:

6.2 Honey Encryption for Language: Robbing Shannon to Pay Turing? 137

Table 6.1 – Partial list of grammatical roles.

Clause Level
S Simple declarative clause

SBAR Clause introduced by a (possibly empty) subordinating conjunction.

Phrase Level
ADVP Adverb phrase

NP Noun phrase
PP Prepositional phrase
VP Verb phrase

Word Level
CC Conjunction, coordinating
DT Determiner
IN Preposition or subordinating conjunction
JJ Adjective

MD Modal
NN Noun, singular or mass
PRP Pronoun, personal

PRP$ Pronoun, possessive
RB Adverb
VB Verb, base form

VBN Verb, past participle
VBZ Verb, third person singular present

ROOT

S

VP

VP

PP

NP

PP

NP

CD

16

IN

of

NP

NN

age

JJ

approximate

DT

the

IN

until

PP

PP

NP

NN

architect

JJ

skilled

DT

a

IN

by

CC

and

PP

NP

NN

linguist

DT

a

IN

by

VBN

tutored

VBD

was

NP

NNP

Alex

PP

NP

NN

youth

JJ

early

PRP$

his

IN

During

It remains to show how to reverse the process to recover the original skeleton m0. To that end, we include
in the ciphertext a binary string indicating which outgrowths should be removed. Removal consists
in scanning m0 and identifying what could have been the result of rewriting. Scanning reveals one
potential application of rule 1 (namely “his early youth”), two potential applications of rule 2 (“a skilled
architect” and “the approximate age”) and one potential application of rule 2 (“by a linguist and by a
skilled architect”). Hence 4 bits suffice to identify and remove the outgrowths.

6.2.7 Grammatical Tags for English

138 Designing Confidentiality Building-Blocks 6.3

6.3 Compact CCA2-Secure Hierarchical ID-Based Broadcast Encryp-
tion with Public Ciphertext Test

6.3.1 Introduction

Identity-Based Encryption (IBE), introduced by Shamir [Sha85], allows one to securely communicate
with others if he/she knows their public identities. In IBE, users’ recognizable identities such as their
social security numbers, IPs or email addresses, are used as their public keys. A Private Key Generator
(PKG) is used to generate secret keys associated with the users’ public identities. One can encrypt to any
user by specifying its recognizable identity and only the intended user can decrypt.

Hierarchical IBE (HIBE) extends IBE to endow a large number of users with a delegation mechanism.
HIBE [GS02] organizes users in a tree-like structure which is consistent with the structure of many social
organizations [DWQ+14; ZWD+14]. PKG’s burden is shared by upper-level users who can delegate
secret keys to their subordinates. In the encryption process, the sender associates the ciphertext with an
identity vector instead of a single identity. Then only the users whose identities appear in the specified
identity vector can decrypt. For instance, to securely communicate with a university professor, one just
needs to encrypt with a specified identity vector “university: XXX

∣∣ school: XXX
∣∣ laboratory: XXX

∣∣
professor: XXX”. Then, only the individuals whose identity vectors match the prefix of the assigned
identity vector are able to decrypt.

In applications similar to the above, one may have to simultaneously communicate with multiple users
in hierarchical organizations. For example, a company may cooperate with a number of professors from
different laboratories in a university to develop a new software system. The company can separately
encrypt to these professors by specifying their respective decryption paths. However, this trivial solution
incurs heavy encryption burden and long ciphertexts. Another application comes from IP-based multicast
networks, in which all network nodes are organized in a hierarchy expressed in terms of IP addresses
and subnet masks. Since sensitive contents in such networks can be easily intercepted by packet sniffers,
efficient and secure cryptographic systems are needed. Applying existing HIBE Schemes (HIBES) in
multicast networks would be a reasonable solution. However, HIBES gradually becomes inefficient
when the number of nodes from different IP paths increases. We are interested in more practical solutions
to such applications.

6.3.1.1 Our Contributions

Motivated by the above scenarios, we propose a new cryptographic primitive called Hierarchical
Identity-Based Broadcast Encryption (HIBBE). Users in a tree-like structure can delegate their decryption
capabilities to their subordinates, so that the burden of the PKG can be shared when the system hosts a
large number of users. One can encrypt to any subset of the users and only the intended ones and their
supervisors can decrypt.

We define Ciphertext Indistinguishability against Adaptively Chosen-Identity-Vector-Set and Chosen-
Ciphertext attack (IND-CIVS-CCA2). In this notion, the attacker is simultaneously allowed to adaptively
query for the secret keys of users recognized by identity vectors of its choice and to issue decryption
queries for receiver identity vector sets at wish. Even such an attacker cannot distinguish the encrypted
messages, provided that the attacker does not query for the secret keys of the target users or their
supervisors. Clearly, this definition captures the most powerful attacks on HIBBE in the real world.

We obtain an IND-CIVS-CCA2 scheme in the standard model (without using random oracles) in two
steps. We first construct an HIBBE Scheme (HIBBES) against Adaptively Chosen-Identity-Vector-Set and
Chosen-Plaintext Attack (IND-CIVS-CPA) in the standard model, in which the attacker is not allowed to
issue decryption queries. Then, at merely marginal cost, we convert the basic scheme into an IND-CIVS-
CCA2 scheme by adding only one on-the-fly dummy user, rather than adding one hierarchy of users
in existing conversions from a CPA-secure hierarchical encryption scheme to a CCA2-secure one. Both
schemes have constant size ciphertext and are efficient in terms of communications in multi-receiver
situations.

6.3 Compact CCA2-Secure Hierarchical ID-Based Broadcast Encryption with Public Ciphertext Test 139
Compared with the preliminary version [LLWQ14] of the paper, in this extended work we give the
formal security proof of the CPA security of the basic scheme; we further convert the CPA-secure HIBBES
into a CCA2-secure HIBBES with compact design in the sense that the conversion does not require
any other cryptographic primitives; we formally prove that the resulting scheme is CCA2-secure in the
standard model. Our CCA2-secure HIBBES allows public ciphertext validity test which is useful for a
third party, e.g., a firewall, to filter invalid spam and for system designers to design advanced protocols
from HIBBE, e.g., publicly verifiable HIBBE and fair exchange of HIBBE-encrypted digital contents.

6.3.1.2 Related Work

Identity-Based Encryption. Since the concept of Identity-Based Encryption (IBE) was introduced by Shamir
[Sha85], it took a long time for researchers to construct a practical and fully functional IBE Scheme (IBES).
In 2001, Boneh and Franklin [BF01; BF03] precisely defined the security model of IBE and proposed the
first practical IBES by using bilinear pairings. In the Boneh-Franklin security model, the adversary can
adaptively request secret keys for the identities of its choice and can choose the challenge identity it wants
to attack at any point during the key-requesting process, provided that the secret key for the challenging
identity is not queried. The security of their IBES [BF01; BF03] requires cryptographic hash functions to
be modeled as random oracles. Canetti et al. [CHK03; CHK04] formalized a slightly weaker security
notion, called selective-ID security, in which the adversary must disclose the challenge identity before the
public parameters are generated. They exhibited a selective-ID secure IBES without using random oracles.
Since then, more practical IBES have been proposed that are shown to be secure without random oracles
in the selective-ID security model [BB04] or in the standard security model [Wat05]. These schemes are
secure against CPA. Interestingly, some recent works [BK05; BMW05; CHK04] showed CPA-secure IBES
can be used to construct regular Public-Key Encryption systems with CCA2 security. Canetti, Halevi
and Katz [CHK04] exhibited a generic conversion by adding a one-time signature scheme and hash the
signature parameters as a special “identity” in encryption. Boneh and Katz [BK05] later presented a
more efficient construction using a MAC to replace the one-time signature. More recently, Boyen et al.
[BMW05] introduced a new technique that can directly obtain CCA2 security from some particular IBES
without extra cryptographic primitives. Park et al. [PLL15] proposed a concrete CCA2-secure IBES with
a tight security reduction in the random oracle model.

Broadcast Encryption. In Broadcast Encryption (BE) [FN94], a dealer is employed to generate and distribute
decryption keys for users. A sender can encrypt to a subset of the users and only the privileged users
can decrypt. This functionality models flexible secure one-to-many communication scenarios [QWZ+12].
Since the BE concept was introduced in 1994 [FN94], many BE Schemes have been proposed to gain
preferable properties. We mention just a few of those properties, such as “Stateless Receivers” (after
getting the broadcast secret keys, users do not need to update them) [DF03; HS02], “Fully Collusion
Resistant” (even if all users except the receiver set collude, they can obtain no information about the
plaintext) [BGW05], “Dynamic” (the dealer can dynamically recruit new members while the other
members will not be affected) [DPP07], “Anonymity” (a receiver does not need to know who the other
receivers are when decrypting ciphertexts) [LPQ12], and “Contributory Broadcast” (Anyone can send
messages to any subset of the group members without a trusted key server) [WQZ+16].

Identity-Based Broadcast Encryption. Identity-Based Broadcast Encryption (IBBE) incorporates the idea
of BE into IBE and recognizes the users in a BES with their identities, instead of indexes assigned by
the system. When one needs to send confidential messages to multiple users, the sender in IBBE can
efficiently encrypt the message once to multiple users and simply broadcasts the resulting ciphertext.
Fully functional IBBE was formalized and realized by Delerablée with constant size ciphertexts and
secret keys [Del07], although it is only selective-ID secure in the random oracle model. The up-to-date
IBBE Schemes [GW09; RG09; KSAS15] are shown to be secure in the standard security model.

Hierarchical Identity-Based Encryption. Horwitz and Lynn [HL02] first proposed the concept of HIBE
and presented a two-level HIBES in the same article. The first fully functional HIBE construction was
proposed by Gentry and Silverberg [GS02]. The security relies on the Bilinear Diffie-Hellman assumption
in the random oracle model. Subsequently, Boneh and Boyen [BB04] introduced HIBES in the selective-
ID model without using random oracles. Boneh, Boyen and Goh [BBG05] presented a selective-ID

140 Designing Confidentiality Building-Blocks 6.3
secure HIBE with constant size ciphertext. Gentry and Halevi [GH09] constructed a fully secure HIBES
supporting polynomial hierarchy depth. In 2009, Waters [Wat09] proposed a new framework, called Dual
System Encryption, for constructing fully secure IBES and HIBES. This approach has become a powerful
tool for obtaining fully secure encryption schemes [LW10; LW12]. These plain HIBES are CPA-secure.
The techniques in the previously reviewed conversions [BK05; BMW05; CHK04] can be extended to
achieve CCA2-secure HIBES with CPA-secure ones by adding one extra hierarchy to the underlying
CPA-secure HIBES.

Generalized Identity-Based Encryption. Boneh and Hamburg [BH08] proposed a general framework for
constructing IBES, referred to as Generalized Identity-Based Encryption (GIBE), to incorporate different
properties in IBE via a product rule. They also introduced an important instance of GIBE called Spatial
Encryption (SE), showing that many GIBES are embedded in it, e.g., HIBE, inclusive IBE, co-inclusive IBE,
in an identity-based like settings. HIBBE can also be derived from SE. However, the HIBBE derived from
their SE only has selective and chosen-plaintext security. Very recently, Zhang et al. [ZYT14] suggested
two fully secure and anonymous SE schemes, which not only obtain full security, but further protect
the recipient identity privacy. Their constructions achieve CPA security and can be extended to CCA2
security, but also with the help of one-time signature schemes.

6.3.1.3 Organization of This Section

The rest of the section is organized as follows. In sub-section 6.3.2, we review composite order bilinear
groups and the assumptions used in our constructions. Sub-section 6.3.3 formalizes HIBBE and its
security definitions. We propose a secure HIBBES against Adaptively Chosen-Identity-Vector-Set and
Chosen-Plaintext Attack in Sub-section 6.3.4. We then introduce a compact transformation that converts
our CPA-secure HIBBES into a CCA2-secure one in Sub-section 6.3.5. Finally, we state our conclusions in
Sub-section 6.3.6.

6.3.2 Preliminaries

6.3.2.1 Composite Order Bilinear Groups

Composite order bilinear groups were first introduced in [BGN05]. Let G be an algorithm which takes
a security parameter λ as input and outputs the description of a bilinear group, (N,G,GT , e), where
N = p1p2p3 is a composite integer with three distinct large prime factors p1, p2 and p3, G and GT are
cyclic groups of order N , and a bilinear map e : G×G→ GT satisfying the following properties:

1. Bilinearity: for all g, h ∈ G and a, b ∈ ZN , e(ga, hb) = e(g, h)ab;

2. Non-degeneracy: there exists at least an element g ∈ G such that e(g, g) has order N in GT ;

3. Computability: There exists an efficient algorithm (in polynomial time with respect to λ) computing
the bilinear pairing e(u, v) for all u, v ∈ G.

In addition to these properties, the three subgroups of order p1, p2 and p3 in G (we respectively denote
them by Gp1 , Gp2 and Gp3) satisfy the orthogonality property:

For all hi ∈ Gpi and hj ∈ Gpj , if i 6= j, then e(hi, hj) = 1

This special property will be an essential tool in our constructions and the security proofs.

6.3.2.2 Assumptions in Composite Order Bilinear Groups

We will use three static assumptions to prove the security of our HIBBES. These three assumptions, which
were first introduced by Lewko and Waters [LW10], hold if it is hard to find a nontrivial factor of N . Let
G be a group generating algorithm that outputs a composite order bilinear group (N = p1p2p3,G,GT , e).
For ease of description, we let Gpipj denote the subgroup of order pipj in G.

6.3 Compact CCA2-Secure Hierarchical ID-Based Broadcast Encryption with Public Ciphertext Test 141
Let g R← Gp1 be a random generator of Gp1 and X3

R← Gp3 be a random element in Gp3 . Assumption 1 is
that it is hard to determine whether T is a random element in Gp1p2 , or a random element in Gp1 given
D1 = (g,X3) as an input. We define the advantage of an algorithm A that outputs b ∈ {0, 1} in solving
the first assumption in G to be

Adv1A(λ) =
∣∣∣Pr
[
A
(
D1, T

R← Gp1p2
)

= 1
]
− Pr

[
A
(
D1, T

R← Gp1
)

= 1
]∣∣∣

Definition 6.4 Assumption 1 states that Adv1A(λ) is negligible for all polynomial time algorithms A.

Let g R← Gp1 be a random generator of Gp1 . Choose random elements X1
R← Gp1 , X2, Y2

R← Gp2 and
X3, Y3

R← Gp3 . Assumption 2 is that given D2 = (g,X1X2, X3, Y2Y3) as an input, it is hard to determine
whether T is a random element in G or a random element in Gp1p3 . We define the advantage of an
algorithm A that outputs b ∈ {0, 1} in solving the second assumption in G to be

Adv2A(λ) =
∣∣∣Pr
[
A
(
D2, T

R← G
)

= 1
]
− Pr

[
A
(
D2, T

R← Gp1p3
)

= 1
]∣∣∣

Definition 6.5 Assumption 2 states that Adv2A(λ) is negligible for all polynomial time algorithms A.

Similarly, let g R← Gp1 be a random generator of Gp1 , X2, Y2, Z2
R← Gp2 be random elements in Gp2 ,

X3
R← Gp3 be a random element in Gp3 , α, s R← ZN be random exponents chosen in ZN . Assumption 3

states that, given D3 = (g, gαX2, X3, g
sY2, Z2) as an input, it is hard to determine whether T is e(g, g)αs,

or a random element in GT . We define the advantage of an algorithmA that outputs b ∈ {0, 1} in solving
the third assumption in G to be

Adv3A(λ) =
∣∣∣Pr [A (D3, T ← e(g, g)αs) = 1]−

[
A
(
D3, T

R← GT
)]

= 1
∣∣∣

Definition 6.6 Assumption 3 states that Adv3A(λ) is negligible for all polynomial time algorithms A.

6.3.3 Syntax

6.3.3.1 Terminology and Notations

We introduce several notations to simplify the description of HIBBES. Table 6.2 summarizes these
notations and their corresponding meanings that will be used in the paper.

Table 6.2 – Notations
Notation Description Notation Description

λ Security Parameter PK Public Key
MSK Master Key CT Ciphertext

ID Identity ID Identity Vector
IID Identity Vector Position SKID Secret Key for Identity Vector
‖ID‖ Depth of ID SID Identity Set Associated with ID

V Identity Vector Set IV Identity Vector Set Position
‖V‖ Depth of V SV Identity Set Associated with V

We use [a, b] to denote the integer set {a, a + 1, · · · , b}. |S| denotes the cardinality of the set S. For
an identity vector ID = (ID1, ID2, · · · , IDd), we define ‖ID‖ = d as the depth of ID and SID =
{ID1, · · · , IDd} as the identity set associated with ID. The identity vector position of ID is defined
by IID = {i : IDi ∈ SID}. Similarly, we define the maximal depth of an identity vector set as ‖V‖ =
max{‖ID‖ : ID ∈ V}. The associated identity set SV of V and the identity vector set position IV of V can
be defined accordingly.

We slightly abuse the term prefix and define the prefix of an identity vector ID = (ID1, · · · , IDd) as an
identity vector set denoted by Pref(ID) = {(ID1, · · · , IDd′) : d′ ≤ d}. Clearly, |Pref(ID)| = ‖ID‖ = d.
We similarly define the prefix of an identity vector set V as Pref(V) =

⋃
ID∈V Pref(ID).

142 Designing Confidentiality Building-Blocks 6.3

Figure 6.17 – A Typical Example of an HIBBES.

In practice, a user may have more than one identity or parent node. In this case, we treat these users as
different users with the same identity. Hence, without loss of generality, we assume that each user has a
unique identity vector and can have at most one parent node.

For example, assume that the users are organized as in Figure 6.17. For the user whose identity vec-
tor is ID = (ID1, ID3), we have that ‖ID‖ = 2, SID = {ID1, ID3}, and IID = {1, 3}. The prefix of ID is
Pref(ID) = {(ID1), (ID1, ID3)}. Similarly, for the broadcast identity vector set V = {(ID1, ID3), (ID2, ID6, ID7)},
we have that ‖V‖ = max{2, 3} = 3, SV = {ID1, ID3, ID2, ID6, ID7}, and IV = {1, 3, 2, 6, 7}. The prefix of
V is

Pref(V) = {(ID1), (ID1, ID3), (ID2), (ID2, ID6), (ID2, ID6, ID7)}

6.3.3.2 Hierarchical Identity-Based Broadcast Encryption (HIBBE)

A (D,n)-HIBBES consists of five polynomial time algorithms: Setup, KeyGen, Delegate, Encrypt and
Decrypt defined as follows:

— Setup(D, n, λ). Takes as inputs the maximal depth D of the hierarchy, the maximal number n of
users, and the security parameter λ. It outputs a masker key MSK and a public key PK.

— Encrypt(PK, M , V). Takes as inputs the public key PK, a message M in the message spaceM,
and a receiver identity vector set V. The algorithm outputs the ciphertext CT of the message M .

— KeyGen(MSK, ID). Takes as inputs the master key MSK and an identity vector ID. It outputs a
secret key SKID for the user whose identity vector is ID.

— Delegate(SKID′ , ID). Takes as inputs a secret key of a user whose identity vector is ID′ of
depth d and an identity ID. It returns a secret key SKID for the user whose identity vector is
ID = (ID′, ID).

— Decrypt(V, CT , SKID). Takes as inputs a receiver identity vector set V, a ciphertext CT of a
message M , and a secret key SKID of a user whose identity vector is ID. If ID ∈ Pref(V), it
returns M .

An HIBBES must satisfy the standard consistency constraint, namely for all D ≤ n ∈ N, all (PP , MSK)
← Setup(D, n, λ), all SKID ← KeyGen(MSK, ID) or SKID ← Delegate(SKID′ , ID) with ‖ID‖ ≤ D,
all M ∈ M, and all CT ← Encrypt(PP , M , V) with ‖V‖ ≤ D and |SV| ≤ n, if ID ∈ Pref(V), then
Decrypt(V, CT , SKID) = M .

We define Ciphertext Indistinguishability against Adaptively Chosen-Identity-Vector-Set and Chosen-
Ciphertext Attack (IND-CIVS-CCA2) in HIBBE. In this security model, the adversary is allowed to obtain
the secret keys associated with any identity vectors ID of its choice and to issue decryption queries for its
chosen ciphertexts, provided that the adversary does not query for the secret keys of its chosen receivers
or their supervisors, or for the challenge ciphertext as one of its chosen messages. We require that even
such an adversary cannot distinguish the encrypted messages of its choice.

6.3 Compact CCA2-Secure Hierarchical ID-Based Broadcast Encryption with Public Ciphertext Test 143
Formally, IND-CIVS-CCA2 security is defined through a game played by an adversaryA and a challenger
C. Both of them are given the parameters D,n and λ as inputs.

— Setup. C runs Setup algorithm to obtain the public key PK and gives it to A.
— Phase 1. A adaptively issues two kinds of queries:

— Secret key query for an identity vector ID. C generates a secret key for ID and gives it to A.
— Decryption query for the ciphertext CT with a receiver identity vector set V. C responds by

running algorithm KeyGen to generate a secret key SKID for an identity vector ID satisfying
ID ∈ Pref(V). It then decrypts the ciphertext CT and returns the resulting message to A.

— Challenge. When A decides that Phase 1 is over, it outputs two equal-length messages M0 and
M1 on which A wishes to be challenged. Also, A outputs a challenge identity vector set V∗ which
contains all the users thatAwishes to attack. The identity vector set V∗ should be such that for all
the secret key queries for ID issued in Phase 1, ID /∈ Pref(V∗). C flips a random coin b R← {0, 1}
and encrypts Mb under the challenge identity vector set V∗. C returns the challenge ciphertext
CT ∗ to A.

— Phase 2. A further adaptively issues two kinds of queries:
— Secret key queries for identity vectors ID such that ID /∈ Pref(V∗).
— Decryption queries for ciphertexts CT such that CT 6= CT ∗.
C responds the same as in Phase 1.

— Guess. Finally, A outputs a guess b′ ∈ {0, 1} and wins in the game if b = b′.

The advantage of such an A in attacking the (D,n)-HIBBES with security parameter λ is defined as

AdvIND−CIV S−CCA2
A,D,n (λ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣
Definition 6.7 A (D,n)-HIBBES is (τ, q, qd, ε)-secure if for any τ -time IND-CIVS-CCA2 adversary A that
makes at most q secret key queries and qd decryption queries, we have that AdvIND−CIV S−CCA2

A,D,n (λ) < ε

As usual, we define Ciphertext Indistinguishability against Adaptively Chosen-Identity-Vector-Set and
Chosen-Plaintext Attack (IND-CIVS-CPA) for HIBBE as in the preceding game, with the constraint that
A is not allowed to issue any decryption query. A is still able to adaptively issue secret key queries.

Definition 6.8 A (D,n)-HIBBES is (τ, q, ε)-secure if for any τ -time IND-CIVS-CPA adversary A that makes at
most q secret key queries, we have that AdvIND−CIV S−CPAA,D,n (λ) < ε.

It is challenging to achieve full (identity/identity-vector) security in BE and (H)IBE, some weaker security
notions have been proposed to bridge security proofs or cater for special applications which require
only moderate security levels. One useful security notion, called selective security, was first proposed
by Canetti, Halevi, and Katz [CHK03; CHK04] in IBES. In this notion, A should commits ahead of time
to the challenge identity it will attack. Similar security notions can also be found in HIBES [BB04] and
IBBES [Del07]. A counterpart security notion can be naturally defined in HIBBES, by requiring the
adversary in HIBBE to submit a challenge identity vector set before seeing the public parameters.

Another useful security notion, named semi-static security, can also be extended in HIBBES. This security
notion was first defined by Gentry and Waters [GW09] in BES. In this notion, Amust first commit to a
set S before the Setup phase. A cannot query for secret key of any user in S, but it can attack any target
set S∗ ⊆ S. This security notion is weaker than full security but stronger than selective security, since
A can partly decide which set is allowed to query adaptively. In HIBBES, a similar security notion can
be defined by requiring A to submit an identity vector set V before the Setup phase and later allow A
to challenge any identity vector set V∗ ⊆ Pref(V). Recently, a practical HIBBES with moderate security
result was proposed to meet this security notion [LLW+16a].

6.3.4 IND-CIVS-CPA Secure HIBBE with Constant Size Ciphertext

In this section, we propose an IND-CIVS-CPA secure HIBBE with constant size ciphertext over composite
order bilinear groups of order N = p1p2p3. Our starting point is the Lewko-Waters fully secure HIBES
[LW10] which was inspired by the Boneh-Boyen-Goh selectively secure HIBES [BBG05]. To support

144 Designing Confidentiality Building-Blocks 6.3
broadcast, every user in our system, instead of every depth of hierarchy in [BBG05; LW10], is associated
with a random element for blinding its own identity vector in its secret key. Since users’ identities have
been randomized by different elements, users cannot reveal any information about other users’ secret
keys from their own ones.

We realize the functionalities in Gp1 , while randomizing secret keys in Gp3 . The Gp2 space, called
semi-functional space, is only used in security proofs.

6.3.4.1 Basic Construction

We first assume that the identity vectors ID = (ID1, · · · , IDk) at depth k are vector elements in (ZN)k.
We later extend the construction to identity vectors over ({0, 1}∗)k by first hashing each component
IDj ∈ SID using a collision resistant hash function H : {0, 1}∗ → ZN . We also assume that plaintexts are
elements of GT . Similar to HIBES, we assume that users’ positions in HIBBE are publicly known with
the processing of KeyGen, Delegate, Encrypt and Decrypt. Our (D,n)-HIBBES works as follows.

Setup(D, n, λ). Run (N,G,GT , e)← G(1λ) to generate a composite integer N = p1p2p3, two groups G,
GT of order N , and a bilinear map e : G × G → GT . Then, select a random generator g R← Gp1 , two
random elements h R← Gp1 , X3

R← Gp3 , and a random exponent α R← ZN . Next, pick random elements
ui

R← Gp1 for all i ∈ [1, n]. The public key PK includes the description of (N,G,GT , e), as well as

(g, h, u1, · · · , un, X3, e(g, g)α)

The master key is MSK ← gα.

KeyGen(MSK, ID). For an identity vector ID of depth d ≤ D, the key generation algorithm picks a
random exponent r R← ZN and two random elements A0, A1

R← Gp3 . It then chooses random elements
Uj

R← Gp3 for all j ∈ [1, n]\IID and outputs

SKID ←
(
gα

(
h ·
∏
i∈IID

uIDii

)r
A0, g

rA1,
{
urjUj

}
j∈[1,n]\IID

)

Delegate(SKID′ , ID). Given a secret key

SKID′ =

gα
h · ∏

i∈IID′

uIDii

r′

A′0, g
r′A′1,

{
ur
′

j U
′
j

}
j∈[1,n]\IID′

 =
(
a0, a1, {bj}j∈[1,n]\IID′

)

the delegation algorithm generates a secret key for ID = (ID′, ID) as follows. It first picks a random
exponent t R← ZN , and also chooses two random elements R0, R1

R← Gp3 . Next, for all j ∈ [1, n]\IID, it
chooses random elements Tj

R← Gp3 . The algorithm outputs

SKID =

a0

(
bIDi
)
i∈IID\IID′

(
h
∏
i∈IID

uIDii

)t
R0, a1g

tR1,
{
bju

t
jTj
}
j∈[1,n]\IID

Note that by implicitly setting r = r′ + t ∈ ZN , A0 = A′0U

′
iR0 ∈ Gp3 with i ∈ IID\IID′ , A1 = A′1R1 ∈ Gp3 ,

and Uj = U ′jTj ∈ Gp3 for all j ∈ [1, n]\IID, this delegated secret key can be written under the form

SKID ←
(
gα

(
h ·
∏
i∈IID

uIDii

)r
A0, g

rA1,
{
urjUj

}
j∈[1,n]\IID

)

6.3 Compact CCA2-Secure Hierarchical ID-Based Broadcast Encryption with Public Ciphertext Test 145
which is well-formed as if it were generated by the KeyGen algorithm. Hence, SKID is a properly
distributed secret key for ID = (ID′, ID).

Encrypt(PP , M , V). For the receiver identity vector set V the encryption algorithm picks a random
exponent β R← ZN and outputs the ciphertext

CT = (C0, C1, C2) =

gβ ,(h ·∏
i∈IV

uIDii

)β
, e(g, g)

αβ ·M

Decrypt(V, CT , SKID). Given the ciphertext CT = (C0, C1, C2), any user whose identity vector is
ID ∈ Pref(V) can use its secret key SKID =

(
a0, a1, {bj}j∈[1,n]\IID

)
to compute

K = a0 ·
∏

j∈IV\IID

b
IDj
j

Then it outputs the message by calculating

M = C2 ·
e(C1, a1)

e(K,C0)

Soundness. If the ciphertext CT = (C0, C1, C2) is well-formed, then we have

K = a0 ·
∏

j∈IV\IID

b
IDj
j = gα

(
h ·
∏
i∈IV

uIDii

)r
·

A0

∏
j∈IV\IID

Uj

Note that all random elements in Gp3 can be cancelled in the pairing operations due to the orthogonality
property. Therefore, for the blinding factor in C2, the following equalities hold:

e(C1, a1)

e(K,C0)
=

e

(h · ∏
i∈IV

uIDii

)β
, grA1

e

(
gα

(
h · ∏

i∈IV

uIDii

)r
·
(
A0

∏
j∈IV\IID

Uj

)
, gβ

) =

e

(h · ∏
i∈IV

uIDii

)β
, gr

e (gα, gβ) · e

(
h ·
(∏
i∈IV

uIDii

)r
, gβ

) =
1

e (g, g)
αβ

It follows that C2 · e(C1, a1)/e(K,C0) = M · e(g, g)αβ/e(g, g)αβ = M .

6.3.4.2 Security Analysis

The security of our scheme is guaranteed by the following Theorem. In a high level, the proof of our
HIBBES follows the proof framework of Lewko-Waters HIBES [LW10], with an extra effort to generate
ciphertexts for supporting broadcast.

Theorem 6.1 Let G be a group (of composite order N) endowed with an efficient bilinear map. Our HIBBES is
IND-CIVS-CPA secure if all the three assumptions defined in Definition 6.4, Definition 6.5 and Definition 6.6
hold in G.

To prove the chosen-identity-vector-set and chosen-plaintext security of our scheme, we apply the Dual
System Encryption technique introduced by Waters [Wat09] for obtaining adaptively secure IBES and
HIBES. This technique has been shown to be a powerful tool for security proofs [LW10; LW12]. In a Dual
System Encryption system, the ciphertexts and keys can take one of two indistinguishable forms: normal
form and semi-functional form. Normal keys can decrypt normal or semi-functional ciphertexts, and
semi-functional ciphertexts can be decrypted by normal or semi-functional keys. However, decryption
will fail when one uses a semi-functional key to decrypt a semi-functional ciphertext. Since these two

146 Designing Confidentiality Building-Blocks 6.3
kinds of keys and ciphertexts are indistinguishable, the simulator can replace all normal ciphertexts and
keys with semi-functional ones in the security game. When all ciphertexts and keys are semi-functional,
A obtains no information about the challenge ciphertext as none of the given keys are useful to decrypt
the challenge ciphertext.

We first need to define the semi-functional key and the semi-functional ciphertext. They will only be
used in the security proof. Let g2

R← Gp2 be a random generator of Gp2 , the semi-functional ciphertext
and the semi-functional key are defined as follows:

Semi-Functional Ciphertext. Run Encrypt to construct a normal ciphertext CT = (C ′0, C
′
1, C

′
2). Then,

choose random exponents x, yc
R← ZN and set

C0 = C ′0, C1 = C ′1g
xyc
2 , C2 = C ′2g

x
2

Semi-Functional Key. For an identity vector ID, run KeyGen to generate its normal secret key

SK = (a′0, a
′
1, {b′j}j∈[1,n]\IID)

Then, choose random exponents γ, yk ∈ GN , zj ∈ GN for all j ∈ [1, n]\IID and set

a0 = a′0g
γ
2 , a1 = a′1g

γyk
2 , {bj = b′jg

γzj
2 }j∈[1,n]\IID

It can be seen that Decrypt will correctly output the message M when decrypting a semi-functional
ciphertext using a normal key or a semi-functional key since the added elements in Gp2 will be cancelled
due to the orthogonality property. However, the blinding factor will be multiplied by the additional
term e(g2, g2)xγ(yk−yc) when trying to decrypt the semi-functional ciphertext using a semi-functional
key, unless yk = yc with probability 1

N . In this case, we call the key a nominally semi-functional key. In
addition, in the semi-functional secret key, the exponent yk used for blinding the second component a1

and the exponents zj used for blinding the third component a2 are chosen randomly and only appear at
most twice in the security game. Therefore, fromA’s view the components in Gp2 for the semi-functional
secret keys look random so that it does not helpful for A to distinguish the semi-functional secret key
from a normal one, except with negligible probability 1

N when nominally semi-functional secret keys is
coincidentally generated.

We prove security by using a sequence of games:
— GameReal. This game is the real HIBBE security game.
— GameRestricted. This game is identical with GameReal, except that in Phase 2, A cannot ask for any

identity vectors ID = (ID1, · · · , IDd) satisfying that ∃ID∗ = (ID∗1 , · · · , ID∗d′) ∈ Pref(V∗) with d′ ≤
d, s.t. ∀i ∈ [1, d′], IDi = ID∗i mod p2, where V∗ is the challenge identity vector set.

— Gamek. Suppose that A can make q secret key queries in Phase 1 and Phase 2. This game is
identical with the GameRestricted, except that the challenge ciphertext is semi-functional and the
first k keys are semi-functional, while the rest of the keys are normal. We note that in Game0, only
the challenge ciphertext is semi-functional; in Gameq, the challenge ciphertext and all secret keys
are semi-functional.

— GameFinal. This game is the same as Gameq, except that the challenge ciphertext is a semi-
functional encryption of a random message in GT , not one of the messages given by A.

Given a security parameter λ, we represent the advantages of winning in the games GameReal, GameRestricted,
Gamek and GameFinal by AdvCPA

Real (λ), AdvCPA
Restricted(λ), AdvCPA

k (λ) and AdvCPA
Final(λ), respectively. We show

that these games are indistinguishable in the following four lemmas.

Lemma 6.2 Suppose Assumption 2 defined in Definition 6.5 holds. Then there is no polynomial time algorithm
that can distinguish GameReal from GameRestricted with non-negligible advantage.

6.3 Compact CCA2-Secure Hierarchical ID-Based Broadcast Encryption with Public Ciphertext Test 147
Proof: If there exists an adversary A that can distinguish GameReal from GameRestricted with advantage
εR, then by the definition of GameRestricted, A can issue a secret key query for the identity vector
ID = (ID1, · · · , IDd) from others satisfying that

∃ID∗ = (ID∗1 , · · · , ID∗d′) ∈ Pref(V∗) with d′ ≤ d, s.t. ∀i ∈ [1, d′], IDi = ID∗i mod p2

Then a factor of N can be extracted by computing gcd(IDi − ID∗i , N), from which we can build a similar
algorithm described in the proof of Lemma 5 in [LW10] that can refute the second assumption with
advantage Adv2B(λ) ≥ εR/2. We omit the details here for avoiding repetition. 2

Compared with GameRestricted, the challenge ciphertext is replaced with a semi-functional one in Game0.
Since A does not know the factor of N = p1p2p3, it cannot determine whether the components of the
challenge ciphertext are in Gp1 or in Gp1p2 . HenceA is unable to know of which form the given challenge
ciphertext is. This implies indistinguishability between GameRestricted and Game0. Formally, we have
the following Lemma.

Lemma 6.3 Suppose Assumption 1 defined in Definition 6.4 holds. Then there is no polynomial time algorithm
that can distinguish GameRestricted from Game0 with non-negligible advantage.

Proof: Suppose that there exists an adversary A that can distinguish GameRestricted from Game0 with
advantage ε0. Then we can construct an algorithm B that can refute Assumption 1 with advantage
Adv1B(λ) ≥ ε0. The input of B is the challenge tuple (g,X3, T) of Assumption 1. B needs to determine
whether T is in Gp1 or in Gp1p2 . B sets the public key as follows. It randomly chooses α R← ZN and
γi

R← ZN for all i ∈ [0, n]. Then, it sets h← gγ0 and ui ← gγi for all i ∈ [1, n]. Finally, B gives the public
key PK ← (g, h, u1, · · · , un, X3, e(g, g)α) to A. It keeps the master key MSK ← gα to itself.

Assume that A issues a secret key query for the identity vector ID = (ID1, · · · IDd). B chooses random
elements r, w0, w1

R← ZN and vj
R← ZN for all j ∈ [1, n]\I, where I = {i : IDi ∈ SID}. Then B returns a

normal key

SKID ←
(
gα

(
h ·
∏
i∈I

uIDii

)r
Xw0

3 , grXw1
3 ,
{
urjX

vj
3

}
j∈[1,n]\I

)

When A decides that the Challenge phase starts, it outputs two equal-length messages M0,M1 ∈ GT ,
together with a challenge identity vector set V∗. B flips a random coin b

R← {0, 1}, and returns the
challenge ciphertext

CT ∗ ← (C∗0 , C
∗
1 , C

∗
2)←

(
T, T

γ0+
∑
i∈I∗

ID∗i ·γi
,Mb · e(g, T)

α

)
where I∗ = {i : ID∗i ∈ SV∗}.
Finally, A outputs a guess that it is in GameRestricted or in Game0. B guesses T ∈ Gp1 if A decides it is in
GameRestricted. Otherwise, B outputs T ∈ Gp1p2 .

If T ∈ Gp1 , this is a normal ciphertext by implicitly setting T ← gβ . Hence, B is simulating GameRestricted.
Otherwise, if T ∈ Gp1p2 , all components in this ciphertext contain elements in subgroup Gp2 , thus it is a
semi-functional ciphertext. In this case, B is simulating Game0. If A has advantage ε0 in distinguishing
GameRestricted from Game0, B can distinguish the distribution of T with advantage Adv1B(λ) ≥ ε0. 2

Similarly, Gamek-1 and Gamek are two indistinguishable games. The way to determine whether the kth

queried key is normal or semi-functional is to determine whether the key components are in Gp1p3 or
in GN . However, this is computationally difficult without factoring N = p1p2p3. Hence, we have the
following Lemma.

Lemma 6.4 Suppose Assumption 2 defined in Definition 6.5 holds. Then there is no polynomial time algorithm
that can distinguish Gamek-1 from Gamek with non-negligible advantage.

148 Designing Confidentiality Building-Blocks 6.3
Proof: Suppose that there exists an adversary A that can distinguish Gamek-1 from Gamek with
advantage εk. Then we can construct an algorithm B that can refute Assumption 2 with advantage
Adv2B(λ) ≥ εk. The input of B is the challenge tuple (g,X1X2, X3, Y2Y3, T) of Assumption 2. B has to
answer T is in GN or in Gp1p3 .

B runs exactly the same as Setup in the proof of Lemma 6.3. The public key can be published as
PK ← (g, h, u1, · · · , un, X3, e(g, g)α) with g ← g, h← gγ0 and ui ← gγi for all i ∈ [1, n]. The master key
is MSK ← gα that is kept secret to B.

When receiving the `th secret key query for identity vector ID = (ID1, · · · IDd) with ` < k, B creates a
semi-functional key to response to the query. Denote I = {i : IDi ∈ SID}. B chooses random elements
r, w0, w1

R← ZN and vj
R← ZN for all j ∈ [1, n]\I. Then it returns the secret key

SKID ←
(
gα

(
h ·
∏
i∈I

uIDii

)r
(Y2Y3)w0 , gr(Y2Y3)w1 ,

{
urj(Y2Y3)vj

}
j∈[1,n]\I

)

This is a well-formed semi-functional key obtained by implicitly setting gγ2 = Y w0
2 and yk = w1/w0.

If A issues the `th secret key query for k < l ≤ q, B calls the usual key generation algorithm to generate a
normal secret key and returns it to A.

WhenA issues the kth secret key query for identity vector ID with I = {i : IDi ∈ SID}, B chooses random
exponents w0

R← ZN and vj
R← ZN for all j ∈ [1, n]\I. It then outputs

SKID ←
(
gαT

γ0+
∑
i∈I
IDi·γi

Xw0
3 , T,

{
T γjX

vj
3

}
j∈[1,n]\I

)
If T ∈ Gp1p3 , then all components in this secret key are in Gp1p3 . Hence it is a normal secret key.
Otherwise, it is a semi-functional key by implicitly setting yk = γ0 +

∑
i∈I
IDi · γi.

When B receives two equal-length messages M0,M1 ∈ GT and a challenge identity vector set V∗ from A,
it chooses a random bit b R← {0, 1} and returns

CT ∗ ← (C∗0 , C
∗
1 , C

∗
2)←

(
X1X2, (X1X2)

γ0+
∑
i∈I∗

ID∗i ·γi
,Mb · e(g,X1X2)

α

)
to A, where I∗ = {i : ID∗i ∈ SV∗}.
Note that this ciphertext is semi-functional with yc = γ0 +

∑
i∈I∗

ID∗i · γi. Since from GameRestricted, the

identity vector associating with the kth secret key is not a prefix of the challenge receiver identity vector
set modulo p2, yc and yk will seem randomly distributed to A so that the relationship between yc and yk
offers no help for A to distinguish the two games.

Although hidden from A, the relationship between yc and yk is important: it prevents B from testing
whether the kth secret key is semi-functional by generating a semi-functional ciphertext for any identity
vector set V with ID ∈ Pref(V) and decrypts it using the kth key. Indeed, B only can generate a
nominally semi-functional key for the kth key query for ID. Note that yk +

∑
i∈I\I

IDi · γi = yc, where

I = {i : IDi ∈ SID} and I = {i : IDi ∈ SV}. Hence, if B tries to do that, then decryption will always
work, even when the kth key is semi-functional. So, using this method, B cannot test whether the kth

key for identity vector ID is semi-functional or not without A’s help. Note that this is the only case the
nominally semi-functional secret key is used. For other queried secret keys, the exponents used in the
subgroup Gp2 are randomly chosen so that the secret keys are randomly blinded by the elements in Gp2
and helpless for A to win the security game.

B finally outputs T ∈ Gp1p3 if A outputs that it is in Gamek-1, or outputs T ∈ GN if A answers that it is
in Gamek.

If T ∈ Gp1p3 , all components in the kth secret key generated by B are in Gp1p3 . Hence it is a normal secret
key. In this case, B is simulating Gamek-1. Otherwise, if T ∈ GN , then the kth secret key is semi-functional.

6.3 Compact CCA2-Secure Hierarchical ID-Based Broadcast Encryption with Public Ciphertext Test 149
In this case, B is simulating Gamek. If A has advantage εk in distinguishing these two games, B can also
distinguish T ∈ Gp1p3 from T ∈ GN with advantage AdvB(λ) ≥ εk. 2

Lemma 6.5 Suppose Assumption 3 defined in Definition 6.6 holds. Then there is no polynomial time algorithm
that can distinguish Gameq from GameFinal with non-negligible advantage.

Proof: Suppose that there exists an adversary A that can distinguish Gameq from GameFinal with
advantage εF . By invoking A as a blackbox, we build an algorithm B refuting the third assumption with
advantage Adv3B(λ) ≥ εF . B is given the challenge tuple (g, gαX2, X3, g

sY2, Z2, T) and is required to
answer whether T is e(g, g)αs or a random element in GT . B randomly chooses γi

R← ZN for all i ∈ [0, n]
and sets the public key

PK ← (g = g, h = gγ0 , u1 = gγ1 , · · · , un = gγn , X3, e(g, g)α = e(gαX2, g))

When A requests a secret key for an identity vector ID, B chooses random exponents w0, w1, t0, t1
R← ZN

and vj , zj
R← ZN for all j ∈ [1, n]\I, where I = {i : IDi ∈ SID}. It outputs

SKID ←
(
gαX2

(
h ·
∏
i∈I

uIDii

)r
Zt02 X

w0
3 , grZt12 X

w1
3 ,
{
urjZ

zj
2 X

vj
3

}
j∈[1,n]\I

)

Note that this secret key is semi-functional with gγ2 = Zt02 and yk = t1/t0.

In the challenge phase, A outputs two equal-length messages M0,M1 ∈ GT , and a challenge identity
vector set V∗. Denote I∗ = {i : ID∗i ∈ SV∗}. B chooses a random bit b R← {0, 1} and outputs the resulting
semi-functional ciphertext

CT ∗ ← (C∗0 , C
∗
1 , C

∗
2)←

(
gsY2, (g

sY2)
γ0+

∑
i∈I∗

ID∗i ·γi
,Mb · T

)

Eventually, if A guesses that it is in Gameq, B outputs T ← e(g, g)αs. Otherwise, B outputs T R← GT
when A answers that it is in GameFinal.

If T ← e(g, g)αs, then B is simulating Gameq since CT ∗ is a semi-functional ciphertext of the message

Mb. If T R← GT , then CT ∗ is a semi-functional ciphertext of a random message that is independent of Mb.
In this case, B is simulating GameFinal. Hence, if A has advantage εF in distinguishing these two games,
then B has advantage Adv3B(λ) ≥ εF in distinguishing the distribution of T . 2

Finally, since all keys and ciphertexts are semi-functional in Gameq, A can get no information about the
challenge ciphertext since none of the given keys are useful to decrypt it. Therefore, A cannot notice that
the challenge ciphertext has been replaced by a random element. This implies the indistinguishability
between Gameq and GameFinal.

With the above lemmas, these security games are indistinguishable and in the final game the encrypted
message is information-theoretically hidden from A. Therefore, the proof of Theorem 6.1 follows.

Proof: If the three assumptions hold, then for all polynomial time adversaries A, Adv1A(λ), Adv2A(λ),
andAdv3A(λ) are all negligible probability. In GameFinal, the ciphertext has been replaced with a random
element of GT . The value of b chosen by the challenger is information-theoretically hidden from A. By
applying the Lemma 6.2, Lemma 6.3, Lemma 6.4 and Lemma 6.5, we have that∣∣AdvCPA

Real (λ)
∣∣ ≤ ∣∣AdvCPA

Real (λ)−AdvCPA
Restricted(λ) +AdvCPA

Restricted(λ)− · · · −AdvCPA
Final(λ) +AdvCPA

Final(λ)
∣∣

≤
∣∣AdvCPA

Real (λ)−AdvCPA
Restricted(λ)

∣∣+ · · ·+
∣∣AdvCPA

q (λ)−AdvCPA
Final(λ)

∣∣+
∣∣AdvCPA

Final(λ)
∣∣

≤ εR + ε0 + · · ·+ εq + εF ≤ Adv1A(λ) + (q + 2) ·Adv2A(λ) +Adv3A(λ)

150 Designing Confidentiality Building-Blocks 6.3
Therefore, there is no polynomial time adversary that can break our HIBBES with non-negligible advan-
tage. This completes the proof of Theorem 6.1. 2

6.3.5 Compact IND-CIVS-CCA2 HIBBE with Short Ciphertexts

6.3.5.1 Basic Ideas

In this section, we construct an IND-CIVS-CCA2 secure (D,n)-HIBBES from our IND-CIVS-CPA secure
(D,n+ 1)-HIBBES. We first provide an overview of the conversion. We add one “dummy user” with
an on-the-fly “identity” to the system. This dummy user is at depth 1, i.e., a child of the PKG. No one
is allowed to obtain the secret key for the dummy user. It will be used just for the ciphertext validity
test. When encrypting a message M , the encryption algorithm first creates the ciphertext components
C0 and C2, which are independent of the receiver’s identity vector set. Then, the algorithm hashes
these two elements using a collision resistant hash function, and assigns it as the on-the-fly “identity”
of the dummy user. Finally, we compute the ciphertext component C1, as in the encryption algorithm
of CPA-secure scheme. We show that there is an efficient algorithm to verify whether the resulting
ciphertext is valid or not. In one word, the ciphertext validity test can be done publicly, since the test
only involves the ciphertext CT and the public key PK.

This technique is inspired by the Boyen-Mei-Waters technique [BMW05], which applies to Waters’
adaptively secure IBE [Wat05] and Boneh-Boyen selective-ID secure IBE [BB04] to obtain CCA2-secure
public key cryptosystems. Boyen et al. remarked that their technique can be extended to achieve CCA2-
secure HIBES from some CPA-secure HIBES by adding one extra hierarchy to the underlying HIBES.
Instead of introducing one extra hierarchy of users to our HIBBE, we just add one extra dummy user at
the first level by exploiting the broadcasting feature to enforce ciphertext validation test. In this way,
CCA2 security is achieved only at a marginal cost of one extra user.

6.3.5.2 The Resulting Construction

For simple description, we label the previous HIBBES as HIBBECPA with algorithms SetupCPA, KeyGenCPA,
DelegateCPA, EncryptCPA, and DecryptCPA. Our CCA2-secure HIBBES is denoted by HIBBECCA2. Similar
to HIBBECPA, we assume that the identity vectors ID = (ID1, · · · , IDk) at depth k are vector elements in
(ZN)k, and messages to be encrypted are elements in GT . Our resulting scheme works as follows:

Setup(D, n, λ). The system first runs SetupCPA(D, n+ 1, λ) to generate the public key

PK ← (g, h, u1, · · · , un, un+1, X3, e(g, g)α)

and the master key MSK ← gα. A collision resistant hash function H : G×GT → ZN is also included
in the public key. We stress that the dummy user, associated with parameter un+1, is at depth 1 and no
one is allowed to obtain its corresponding secret key.

KeyGen and Delegate. These two algorithms are identical to KeyGenCPA and DelegateCPA.

Encrypt(PK, M , V). For a receiver identity vector set V, denote I = {i : IDi ∈ SV}. The encryption
algorithm first picks a random β

R← ZN and computes

(C0, C2)←
(
gβ , e(g, g)

αβ ·M
)

Then, the algorithm computes IDn+1 ← H(C0, C2) ∈ ZN and constructs C1 as

C1 ←
(
h · uIDn+1

n+1 ·
∏
i∈I

uIDii

)β

6.3 Compact CCA2-Secure Hierarchical ID-Based Broadcast Encryption with Public Ciphertext Test 151
Finally, the algorithm outputs the ciphertext CT ← (C0, C1, C2). Note that this ciphertext is a valid
HIBBECPA ciphertext for the receiver identity vector set V ∪ {(IDn+1)}.

Decrypt(V, CT , SKID). Suppose the secret key for the user associated with identity vector ID is

SKID =
(
a0, a1, {bj}j∈[1,n+1]\I

)
where I = {i : IDi ∈ SID}. Denote I = {i : IDi ∈ SV}. Before decrypting the ciphertext CT =
(C0, C1, C2), the decryption algorithm needs to first verify whether the ciphertext is legitimate. It does
this by randomly choosing elements Z3, Z

′
3
R← Gp3 computing IDn+1 = H(C0, C2) ∈ ZN and testing

whether the following equation holds:

e(g · Z3, C1)
?
= e

(
C0,

(
h · uIDn+1

n+1 ·
∏
i∈I

uIDii · Z ′3

))
(6.1)

If so, the decryption algorithm runs DecryptCPA (V ∪ {(IDn+1)}, CT, SKID) to get message M . Other-
wise, the ciphertext is invalid and the decryption algorithm simply outputs NULL.

Remark Note that the above ciphertext validity test can be done publicly since it only involves public
parameters and ciphertexts. This property is useful for our scheme to build advanced protocols, e.g.,
publicly verifiable HIBBE encryption with CCA2 security. Also, it allows a gateway or firewall to filter
spams (i.e., invalid ciphertexts) without requiring the secret keys of the receivers. Similar functionality
has been applied to identify dishonest transactions in mobile E-commerce scenario [HYH+16].

Soundness. If the ciphertext is legitimate, then the following tupleg, C0 = gβ ,

(
h · uIDn+1

n+1 ·
∏
i∈I

uIDii

)
, C2 =

(
h · uIDn+1

n+1 ·
∏
i∈I

uIDii

)β
is a valid Diffie-Hellman tuple. Note that elements Z3, Z

′
3 ∈ Gp3 can be eliminated in both sides of

Equation (6.1) with the orthogonality property. Accordingly, Equation (6.1) holds. Also, this ciphertext is
a valid HIBBECPA ciphertext for the receiver identity vector set V ∪ {(IDn+1)} with IDn+1 = H(C0, C2).
Since ID ∈ Pref(V) ⊆ V ∪ {(IDn+1)}, the decryption algorithm can decrypt the ciphertext by invoking
the underlying DecryptCPA(V ∪ {(IDn+1)}, CT , SKID).

6.3.5.3 Security Analysis

We now allow decryption queries in all games defined previously in Section 6.3.4.2. Our simulation
works as follows. When receiving a decryption query from the adversary, the simulator first checks
Equation (6.1) to determine whether the ciphertext is valid. If the equality holds, the simulator generates
a secret key for any identity vector ID satisfying that ID ∈ Pref(V), and then uses this key to decrypt the
ciphertext. In the challenge phase, the simulator creates a challenge ciphertext CT ∗ = (C∗0 , C

∗
1 , C

∗
2) for

the challenge identity vector set V∗ ∪ {(ID∗n+1)}, where ID∗n+1 = H(C∗0 , C
∗
2). Since the hash function H

is collision resistant, the adversary is unable to make any valid ciphertext queries that would require
the simulator to use a identity vector set V ∪ {(ID′n+1)}with ID′n+1 = ID∗n+1. Note that the adversary
cannot issue secret key query for the dummy user because the dummy user is not available before
the simulator produces the challenge ciphertext. Hence, the simulation can be done by invoking the
underlying HIBBECPA.

Formally, the CCA2 security of the above scheme is guaranteed by the following Theorem.

Theorem 6.6 Let G be a group (of composite order N) endowed with an efficient bilinear map. Suppose that all
the three assumptions defined in Definition 6.4, Definition 6.5 and Definition 6.6 hold in G. Then our HIBBECCA2
is IND-CIVS-CCA2 secure.

152 Designing Confidentiality Building-Blocks 6.3
Similarly to those in CPA security proofs, we denote these games by GameCCA2Real, GameCCA2Restricted,
GameCCA2k with k ∈ [0, q] and GameCCA2Final respectively. For a security parameter λ, we represent
the advantages of winning in these games byAdvCCA2

Real (λ), AdvCCA2
Restricted(λ), AdvCCA2

k (λ) with k ∈ [0, q], and
AdvCCA2

Final (λ) respectively. The security of our HIBBECCA2 follows from the indistinguishability between
the these games, assuming that the three assumptions defined in Section 6.3.2 hold.

Lemma 6.7 Suppose that Assumption 2 holds. Then there is no polynomial time algorithm that can distinguish
GameCCA2Real from GameCCA2Restricted with non-negligible advantage.

Proof: The proof of this lemma is identical with the proof of lemma 6.2. 2

Lemma 6.8 There is no polynomial time algorithm that can distinguish GameCCA2Restricted from GameCCA20
with non-negligible advantage assuming that Assumption 1 holds.

Proof: Assume that there exists an adversaryA that can distinguish GameCCA2Restricted from GameCCA20
with advantage ε0. We build an algorithm B that can refute Assumption 1 with advantageAdv1B(λ) ≥ ε0.
B takes the challenge tuple (g,X3, T) as inputs. The goal of B is to determine whether T is an element in
Gp1 or an element in Gp1p2 . In the Setup phase, B randomly chooses exponents α R← ZN and γi

R← ZN
for all i ∈ [0, n+ 1]. It sets h← gγ0 and ui ← gγi for all i ∈ [1, n+ 1]. Finally, B gives the public key

PK ← (g, h, u1, · · · , un, un+1, X3, e(g, g)α)

to A. Note that B knows the master key MSK ← gα.

For a secret key query with identity vector ID = (ID1, · · · , IDd) issued by A, B runs the usual key
generation algorithm to return the secret key.

When receiving a decryption query from Awith a ciphertext CT = (C0, C1, C2) and a receiver identity
vector set V, B first computes IDn+1 = H(C0, C2) and determines whether the ciphertext is valid by
checking Equation (6.1) defined in Section 6.3.5.2. If the equality does not hold, then the ciphertext is
invalid and B returns NULL. Otherwise, B generates a normal key for any user whose identity vector is
ID ∈ Pref(V) using the master key gα. Then, B uses this key to decrypt the ciphertext and returns the
extracted message to A.

In the challenge phase, A outputs two equal-length messages M0,M1 ∈ GT , together with a challenge
identity vector set V∗. Denote I∗ = {i : ID∗i ∈ SV∗}. B flips a random coin b R← {0, 1} and returns the
challenge ciphertext

CT ∗ ← (C∗0 , C
∗
1 , C

∗
2)←

(
T, T

γ0+
∑
i∈I∗

ID∗i ·γi+ID∗n+1·γn+1

,Mb · e(gα, T)

)
where ID∗n+1 = H(C∗0 , C

∗
2) = H(T,Mb · e(gα, T)).

Note that the components in the challenge ciphertext do not involve elements in Gp3 . Therefore, for
any randomly chosen elements Z3, Z

′
3
R← Gp3 , the challenge ciphertext is valid due to the following

equalities:

e(g · Z3, C
∗
1)

e

(
C∗0 ,

(
h · uID

∗
n+1

n+1 · ∏
i∈I∗

u
ID∗i
i

)
· Z ′3

) =
e(g · Z3, T

γ0+
∑
i∈I∗

ID∗i ·γi+ID∗n+1·γn+1

)

e

(
T, g

γ0+
∑
i∈I∗

ID∗i ·γi+ID∗n+1·γn+1

· Z ′3
) = 1

Finally, A outputs a guess of whether A is in GameCCA2Restricted or in GameCCA20. If A guesses that
A is in GameCCA2Restricted, B outputs T ∈ Gp1 . Otherwise, B concludes T ∈ Gp1p2 .

The decryption query can be responded to perfectly, since B can generate normal keys for arbitrary
identity vectors using the master key gα. With the identical analysis showed in the proof of Lemma 6.2,

6.3 Compact CCA2-Secure Hierarchical ID-Based Broadcast Encryption with Public Ciphertext Test 153
if A has advantage ε0 in distinguishing GameCCA2Restricted and GameCCA20, then B can determine the
distribution of T with advantage Adv1B(λ) ≥ ε0. 2

Lemma 6.9 If Assumption 2 holds, then there is no polynomial time algorithm that can distinguish GameCCA2k-1
from GameCCA2k with non-negligible advantage.

Proof: Assume an adversary A that can distinguish GameCCA2k-1 from GameCCA2k with advantage
εk. Then, by invoking A as a blackbox, we can construct an algorithm B that refutes Assumption 2
with advantage Adv2B(λ) ≥ εk. The input of B is an instance (g,X1X2, X3, Y2Y3, T) from the second
assumption. B has to decide whether T is an element in GN or an element in Gp1p3 . B randomly chooses
α

R← ZN and γi
R← ZN for all i ∈ [1, n+ 1]. It sends A the public key

PK ← (g, h, u1, · · · , un, un+1, X3, e(g, g)α)

with h← gγ0 and ui ← gγi for all i ∈ [1, n+ 1]. The master key is MSK ← gα and is kept by B.

When receiving the secret key query with an identity vector ID = (ID1, · · · , IDd), B runs the same as
Phase 1 in Lemma 6.4 to generate the secret key and returns it to A.

When A issues a decryption query for a ciphertext CT = (C0, C1, C2) with a receiver identity vector set
V, B sets IDn+1 = H(C0, C2) and checks Equation (6.1) described in Section 6.3.5.2. If the equality holds,
B creates a normal key for any identity vector ID ∈ Pref(V) and returns the message decrypted from the
ciphertext CT . Otherwise it returns NULL since the ciphertext is invalid.

In the Challenge phase, A outputs two equal-length messages M0,M1 ∈ GT , together with an identity
vector set V∗ as the challenge identity vector set. Denote I∗ = {i : ID∗i ∈ SV∗}. B chooses a random bit
b
R← {0, 1} and outputs the resulting ciphertext

CT ∗ ← (C∗0 , C
∗
1 , C

∗
2)←

(
X1X2, (X1X2)

γ0+
∑
i∈I∗

ID∗i ·γi+ID∗n+1·γn+1

,Mb · e(g,X1X2)
α

)
where ID∗n+1 = H(C∗0 , C

∗
2) = H (X1X2, e(g,X1X2)

α
). Equation (6.1) holds for this ciphertext since for

any Z3, Z
′
3
R← Gp3 ,

e(g · Z3, C
∗
1)

e

(
C∗0 ,

(
h · uID

∗
n+1

n+1 · ∏
i∈I∗

u
ID∗i
i

)
· Z ′3

) =

e

(
g · Z3, (X1X2)

γ0+
∑
i∈I∗

ID∗i ·γi+ID∗n+1·γn+1
)

e

(
X1X2, g

γ0+
∑
i∈I∗

ID∗i ·γi+ID∗n+1·γn+1

· Z ′3
) = 1

Therefore, this ciphertext is valid.

Note that this ciphertext is semi-functional by implicitly setting

yc = γ0 +
∑
i∈I∗

ID∗i · γi + ID∗n+1 · γn+1

Since from GameCCA2Restricted, A cannot issue a secret key query with the identity vector that is a prefix
of the challenge receiver identity vector set module p2, yc and yk will seem randomly distribute to A.
Therefore, the relationship between yc and yk does not give any advantage to A for distinguishing
between the two games.

Though the relationship between yc and yk is hidden from A, this special setting disallows B itself to test
whether the kth key for identity vector ID is semi-functional. The method is to generate a semi-functional
ciphertext for any identity vector set V such that ID ∈ Pref(V) and to decrypt it using the kth key. If
the kth key is normal, the decryption is correct. However, if the kth key is semi-functional, then by the
definition of semi-functional secret key, the kth key cannot decrypt the semi-functional ciphertext. In this
way, B may have advantage 1 to answer T ∈ GN or T ∈ Gp1p2p3 without A’s help.

154 Designing Confidentiality Building-Blocks 6.3
In fact, this well-designed secret key generated in the kth key query disallows B to use this method. If B
tries to do that, then no matter whether the kth key is normal or semi-functional, decryption will always
work, because yk +

∑
i∈I\I

IDi · γi + IDn+1 · γn+1 = yc, where I = {i : IDi ∈ SID} and I = {i : IDi ∈ SV}.

In other words, for the kth secret key query, B can only generate a nominally semi-functional key. Hence
decryption is always correct by the definition of nominally semi-functional key given in Section 6.3.4.2.

Finally, if A outputs the guess that it is in GameCCA2k-1, B answers T ∈ Gp1p3 . Otherwise, A outputs
that it is in GameCCA2k, and B decides T ∈ GN .

With the similar reason in the proof of Lemma 6.4, ifA has advantage εk in distinguishing GameCCA2k-1
from GameCCA2k, B can distinguish T ∈ Gp1p3 from T ∈ GN with advantage Adv2B(λ) ≥ εk. 2

Lemma 6.10 Suppose that Assumption 3 holds. Then there is no polynomial time algorithm that can distinguish
GameCCA2q from GameCCA2Final with non-negligible advantage.

Proof: Let A be an algorithm that can distinguish GameCCA2q from GameCCA2Final with advantage
εF . By invoking A as a blackbox, we build an algorithm B refuting Assumption 3 with advantage
Adv3B(λ) ≥ εF . The input of B is the challenge tuple (g, gαX2, X3, g

sY2, Z2, T) of Assumption 3. B
has to answer whether T is e(g, g)αs or a random element in GT . B randomly chooses γi

R← ZN for all
i ∈ [0, n+ 1] and sets the public key

PK ← (g = g, h = gγ0 , u1 = gγ1 , · · · , un = gγn , un+1 = gγn+1 , X3, e(g, g)α = e(gαX2, g))

When A requests a secret key for an identity vector ID, B chooses random exponents w0, w1, t0, t1
R← ZN

and vj , zj
R← ZN for all j ∈ [1, n]\I, where I = {i : IDi ∈ SID}. Then, B outputs the secret key

SKID ←
(
gαX2

(
h ·
∏
i∈I

uIDii

)r
Zt02 X

w0
3 , grZt12 X

w1
3 ,
{
urjZ

zj
2 X

vj
3

}
j∈[1,n]\I

)

Note that the resulting key is semi-functional.

When B receives a decryption query for a ciphertext CT = (C0, C1, C2) associated with a receiver identity
vector set V, it first sets IDn+1 = H(C0, C2). Then, B checks Equation (6.1) of Section 6.3.5.2 to verify
the validity of CT . If the equality does not hold, B simply returns NULL. Otherwise, since B knows a
random generator g of Gp1 and a random element X3 ∈ Gp3 , it can run the same algorithm described in
Phase 1 to generate a semi-functional secret key for ID ∈ Pref(V) and use it to decrypt CT .

Although the generated secret keys are all semi-functional, B can use them to correctly respond the
decryption queries. The reason is that A can only issue valid normal ciphertexts for decryption queries.
One one hand, A cannot generate semi-functional ciphertexts for any identity vector sets V without the
knowledge of the subgroup Gp2 , except for the challenge identity vector set. OtherwiseA can distinguish
the preceding security games by issuing a secret key query for an identity vector ID ∈ Pref(V) and
try to decrypt by itself. This has been prevented in the CPA security proof. On the other hand, only
semi-functional ciphertexts that can be obtained byA are the ones modified from the challenge ciphertext.
However, any modifications done by Awithout the knowledge of the subgroup Gp2 for the challenge
ciphertext can be detected by Equation (6.1). Therefore, any decryption queries for semi-functional
ciphertexts would be prevented. The secret keys would only be used to decrypt normal ciphertexts and
the decryption queries can be responded correctly.

When suitable, A outputs two equal-length messages M0,M1 ∈ GT , and a challenge identity vector set
V∗. Denote I∗ = {i : IDi ∈ SV∗}. B chooses a random bit b R← {0, 1} and outputs the challenge ciphertext

CT ∗ ← (C∗0 , C
∗
1 , C

∗
2)←

(
gsY2, (g

sY2)
γ0+

∑
i∈I∗

ID∗i ·γi+ID∗n+1·γn+1

,Mb · T
)

6.3 Compact CCA2-Secure Hierarchical ID-Based Broadcast Encryption with Public Ciphertext Test 155
where ID∗n+1 = H(C∗0 , C

∗
2) = H (gsY2,Mb · T). Note that for any Z3, Z

′
3
R← Gp3 ,

e(g · Z3, C
∗
1)

e

(
C∗0 ,

(
h · uID

∗
n+1

n+1 · ∏
i∈I∗

u
ID∗i
i · Z ′3

)) =

e

(
g · Z3, (g

sY2)
γ0+

∑
i∈I∗

ID∗i ·γi+ID∗n+1·γn+1
)

e

(
gsY2, g

γ0+
∑
i∈I∗

ID∗i ·γi+ID∗n+1·γn+1

· Z ′3
) = 1

Hence CT ∗ is a valid ciphertext.

Finally, B answers T ← e(g, g)αs if A outputs the guess that it is in GameCCA2q. Otherwise, B
determines T R← GT if A guesses that it is in GameCCA2Final.

Similar to the analysis of Lemma 6.5, B can distinguish T ← e(g, g)αs from a random element in GT with
advantage Adv3B(λ) ≥ εF if A has advantage εF in distinguishing GameCCA2q from GameCCA2Final.
2

With the four lemmas described above, the security proof of Theorem 6.6 follows.

Proof: Since in GameCCA2Final, the ciphertext has been replaced with a random element in GT , the
value of b chosen by the challenger is information-theoretically hidden from A. Hence A can obtain no
advantage in breaking our HIBBES. By combining the four lemmas shown previously, we have that∣∣AdvCCA2

Real (λ)
∣∣ ≤ ∣∣AdvCCA2

Real (λ)−AdvCCA2
Restricted(λ) +AdvCCA2

Restricted(λ)− · · · −AdvCCA2
Final (λ) +AdvCCA2

Final (λ)
∣∣

≤
∣∣AdvCCA2

Real (λ)−AdvCCA2
Restricted(λ)

∣∣+ · · ·+
∣∣AdvCCA2

q (λ)−AdvCCA2
Final (λ)

∣∣+
∣∣AdvCCA2

Final (λ)
∣∣

≤ εR + ε0 + · · ·+ εq + εF ≤ Adv1A(λ) + (q + 2) ·Adv2A(λ) +Adv3A(λ)

If the three assumptions hold, then for all polynomial time A, Adv1A(λ), Adv2A(λ), and Adv3A(λ) are
all negligible probability. Hence for all polynomial time algorithms, the advantage of breaking our
HIBBECCA2 is negligible. 2

6.3.5.4 Efficient Tradeoff Between Ciphertext Size and Key Size

The public/secret key size and ciphertext size in (D,n)-HIBBECCA2 remain the same as those of the
underlying (D,n+ 1)-HIBBECPA system. The encryption algorithm needs only one more hash operation.
The decryption algorithm does one more hash operation and one more extra test of Equation (6.1) in
which a two-base pairing is required and uIDii can be pre-computed for i ∈ [1, n]. Table 6.3 shows
comparisons between our CPA-secure (D,n+ 1)-HIBBE and our CCA2-secure (D,n)-HIBBE in detail.
In Table 6.3, the secret key SKID is associated with the identity vector ID, and the ciphertext CT is
associated with the receiver identity vector set V. We denote τe as one exponent operation time in G,
τm as one multiplication operation time in G, τp as one pairing operation time in G, and τh as one hash
operation time for the hash function H . From Table 6.3, it can be seen that the additional overheads are
marginal.

Table 6.3 – Comparison Between CPA-secure (D,n+ 1)-HIBBE and CCA2-secure (D,n)-HIBBE
(D,n+ 1)-HIBBECPA (D,n)-HIBBECCA2

Active Users n+ 1 n
PK Size n+ 5 n+ 5
SKID Size n− ‖ID‖+ 2 n− ‖ID‖+ 2
CT Size 3 3
Encryption Time (2 + |SV|) · (τe + τm) (2 + |SV|) · (τe + τm) + τh
Decryption Time ≤ (1 + |SV|) · (τe + τm) + 2τp ≤ (1 + |SV|) · (τe + τm) + 4τp + τh

156 Designing Confidentiality Building-Blocks 6.3
HIBBE with Shorter Secret Keys. In our HIBBES, while the ciphertext contains only three group
elements, the secret key for user at depth d contains n− d+ 2 elements. In some scenarios, e.g., when the
storage capacities of the receivers are limited, one may expect an efficient tradeoff between key size and
ciphertext size. Note that users in an HIBBES are organized as a tree T with n nodes (PKG as the sink is
not countered). We divide T into T subtrees with ni nodes, where i ∈ [1, T]. To achieve better balance,
as shown in Figure 6.19, all the subtrees may be obtained in a way satisfying:

1. The number of nodes for each subtree is approximately equal. That is, for the ith subtree with
i ∈ [1, T], we have ni ≈ n/T ;

2. If possible, all subtrees share minimum number of higher-level nodes.
We then implement independent HIBBE instances in each subtree. When broadcasting, one encrypts the
messages with each instance where the broadcast subsets are the intersection of the original broadcast
set and the subtrees. Each receiver can decrypt the ciphertext component corresponding to its subtree.
It is clear that, by using this subtree method, the key size is O(nT) and the ciphertext size is O(T). By
setting T =

√
n, both the key size and the ciphertext size are O(

√
n).

Figure 6.18 – Constant Size Ciphertext HIBBE.

Figure 6.19 – Shorter Secret keys HIBBE.

6.3.6 Conclusion

This paper extended the functionality of HIBE to HIBBE, allowing users to encrypt to multiple receivers
organized in hierarchy. The new cryptographic primitive offers a novel avenue to establish secure
broadcast systems for distributed computation and communication applications. We constructed a
chosen-plaintext secure HIBBES with short ciphertexts. We then proposed a transformation technique to
convert our basic scheme to obtain chosen-ciphertext security. An interesting line of future research is to
apply the conversion technologies to more general cryptosystems such as attribute based encryption,
predicate encryption and functional encryption.

6.4 Improved Delayed Decryption for Software Patching 157

6.4 Improved Delayed Decryption for Software Patching

6.4.1 Introduction

In a little noticed yet ingenious patent [TW06], Thomlinson and Walker describe a very original software
patching system. Thomlinson and Walker describe their invention as follows:

". . . Computer programs are complex systems, and they typically have vulnerabilities that are not
discovered until after the software is released. These vulnerabilities can be addressed after the initial
software is released by distributing and installing an update to the software, which is designed to
remedy, or protect against, the vulnerability. Typically, the vulnerability is discovered by the program’s
manufacturer, support entity, or partner before the vulnerability is generally known to the public.

One problem with an update is that the update can normally be reverse engineered to reveal the existence
of the vulnerability that the update is attempting to fix, which can be an invitation to attackers to try
to exploit the vulnerability on machines without the fix applied. If updates could be delivered to
every machine at the same time, then the fact that the updates reveals the vulnerability would not be a
significant problem, since all machines would be protected against the vulnerability at the same time that
attackers learned of the vulnerability’s existence. However, updates often take the form of large files, and
there is not sufficient bandwidth, or other physical resources, to distribute the update to every machine
at the same time. Thus, there is a window of time during which the update (and the vulnerability that it
both fixes and reveals) is known to the public, but a significant number of machines are unprotected. It
is desirable to update programs in such a manner that all, or a large number, of machines are protected
very soon after the update is first made known to the public.

Updates can be provided in an encrypted form, such that being able to use the update (or to read it for
reverse engineering purposes) requires a decryption key. The key can then be delivered after certain
conditions have been met – e.g., only after the encrypted update has been delivered to a sufficient
number of machines to ensure widespread protection, and/or after the update has undergone sufficient
testing to ensure that it effectively remedies the vulnerability that it is designed to address. Since the key
is small the key can be delivered to a large number of machines in a relatively short amount of time, as
compared with how long it takes to distribute the update itself. Once the key is received by the machines
on which the update is to be installed, the update, which has already been delivered in encrypted form,
can be decrypted and installed. Since the update is encrypted, the update can be presumed not to be
known to the world until the key is delivered. And, since the widespread distribution of the key takes a
relatively short amount of time, the amount of time between when the update is first known, and the
time at which a large number of machines are protected, is reduced, as compared with the time period
that would exist if updates were distributed in unencrypted form . . . "

While perfectly functional and useful, Thomlinson-Walker’s original proposal suffers from two short-
comings:

Single Editor Support: Each software editor must manage his own keys. i.e. two editors cannot share
keys without compromising the confidentiality of their respective patches.

Memory Increase: The list of published keys grows linearly with the number of updates. This is not a
real-life problem because the number of software updates is usually small. However, it would be nice to
come up with a system requiring only O(1) or O(logc n) memory for managing n updates 24.

The following sections will show how to improve Thomlinson-Walker’s original proposal using standard
cryptographic building-blocks such as one-way trapdoor functions, identity based encryption and tree-
based hashing. The contribution of this invited talk is therefore the illustration of known techniques (e.g.
[PQ10; RW96]) using a new problem rather than the design of new protocols. Throughout this section τ
denotes the moment at which the key is disclosed.

24. Note that throughout this section complexities are expressed as a function of the number of updates and not as a function of
the system’s security parameter as is customary in cryptography. This is why, for instance, in Section 6.4.5, an IBE decryption
operation is considered to require constant-time.

158 Designing Confidentiality Building-Blocks 6.4

on day reveal keys
1 r000

2 r000, r001

3 r00

4 r00, r010

5 r00, r010, r011

6 r00, r01

7 r0

8 r0, r100

9 r0, r100, r101

10 r0, r10

11 r0, r10, r110

12 r0, r10, r110, r111

13 r0, r10, r11

14 r0, r1

15 r

r

r0 = h(r, 0)

r00 = h(r0, 0)

r000 = h(r00, 0)

r001 = h(r00, 1)

r01 = h(r0, 1)

r010 = h(r01, 0)

r011 = h(r01, 1)

r1 = h(r, 1)

r10 = h(r1, 0)

r100 = h(r10, 0)

r101 = h(r10, 1)

r11 = h(r1, 1)

r110 = h(r11, 0)

r111 = h(r11, 1)

Figure 6.20 – Key tree example for 15 days.

6.4.1.1 Related Work:

The timed release of information is a widely researched area with an abundant bibliography. We do not
overview these reference here but refer the reader to the excellent introduction found in [PQ10].

6.4.2 Single Editor, Constant Memory, Linear Time

We first present a single-editor patch management method that requires constant storage from the editor
but claims from the client O(n) time.

Let N be an RSA modulus [RSA78] generated by the editor. Let 3d = 1 mod φ(N). The editor picks a
random integer r0 ∈ Z∗N . Everyday the editor computes ri = rdi−1 mod N and updates the information
on his website to (only) {N, ri}. To retrieve the key of day t < i the client (who knows the current date i)
simply cubes ri modulo N i− t times to reach rt. Note that exactly for the reasons described in [RW96],
the client cannot speed-up computations and must spend O(i− t) time to compute rt from ri.

This idea is also similar in concept to the reverse Canetti-Halevi-Katz [CHK03] scheme suggested in
section 5.4 of [BBG05].

6.4.3 Single Editor, Polylogarithmic Memory, Polylogarithmic Time

We now use a hashing tree to achieve O(logc n) time and storage. Instead of formally describing the
algorithm, we illustrate the scheme’s operation during 15 days. Pick a random r and derive a key tree
by successive hashes as shown in Figure 6.20. The algorithm governing the management of this tree is
straightforward.

6.4 Improved Delayed Decryption for Software Patching 159
6.4.4 Multiple Editors, Linear Memory, Constant Time

We will now extend Thomlinson-Walker’s concept to multiple editors. As a typical example Microsoft,
Google and Apple may want to use the same key distribution server for deploying patches for Windows,
Chrome and iTunes without sharing any secret material. A technique for doing so was published by
Mont et alii in [MHS03]. [MHS03] uses Identity Based Encryption (IBE). The concept of IBE was invented
by Shamir in 1984 [Sha84]. It allows a party to encrypt a message using the recipient’s identity as a
public key. The corresponding private-key is provided by a central authority. The advantage of IBE over
conventional public-key encryption is that it avoids certificate management, which greatly simplifies the
implementation of secure communications between users. With an IBE scheme, users can simply use
their email addresses as their identities. Moreover, the recipient does not need to be online to present a
public-key certificate before the sender encrypts a message, and the sender does not have to be online to
check the validity of the certificate.

More formally, an IBE scheme consists of four algorithms :

Setup generates the system’s public parameters π and a private master key µ.

KeyGeneration takes as input an identity v and computes v’s private key dv using µ.

Encrypt encrypts messages for an identity v using π.

Decrypt decrypts ciphertexts for identity v using π and the private-key dv .

[MHS03] considers time information as strings (e.g. [860]) and treats them as identities. A Trusted Third
Party (TTP) generates π and maintains public list to which a new di is added every day. In other words,
on day i the TTP reveals the keys d1, . . . , di. This allows different patch editors to encrypt patches into
the future. The TTP also allows to preserve the editor’s anonymity until τ . Indeed, an editor can post a
patch on the TTP’s website without indicating to which specific software the patch will be applied. This
method forces all users to consult the list at date τ but increases operational security because it prevents
the opponent from knowing in which software he has to look for flaws.

6.4.5 Multiple Editors, Polylogarithmic Memory, Polylogarithmic Time

Finally, it would be nice to combine all the previous desirable system features and provide memory-
efficient and time-efficient multi-editor support. This can be achieved using Hierarchical IBE (HIBE)
[HL02; GS02; BBG05]. HIBE generalizes IBE and allows to structure entities in a hierarchy. A level-i
entity can distribute keys to its descendants but is unable to decrypt messages intended to ancestors and
collaterals.

Just as an IBE, a HIBE comprises the algorithms Setup, KeyGeneration, Encrypt and Decrypt. However,
while in IBE identities are binary strings, in a HIBE identities are ordered lists. As in IBE, Setup outputs
{π, µ}.

KeyGeneration takes as input an identity (I1, ..., Ik) and the private key d[(I1, ..., Ik−1)] of the parent
identity (I1, ..., Ik−1) and outputs the private key d[(I1, ..., Ik)] for identity (I1, ..., Ik).

Encrypt encrypts messages for an identity (I1, ..., Ik) using π and Decrypt decrypts ciphertexts using the
corresponding private key d[(I1, ..., Ik)].

We can hence adapt the tree construction of Section 6.4.3 as shown in Figure 6.21. We conveniently
illustrate this idea for a week starting on Sunday and ending on Saturday.

160 Designing Confidentiality Building-Blocks 6.4
on day reveal keys

Sunday d00

Monday d00, d01

Tuesday d0

Wednesday d0, d10

Thursday d0, d10, d11

Friday d0, d1

Saturday µ

Saturday

ID0 =
Saturday|Tuesday

ID00 =
Saturday|Tuesday|Sunday

ID01 =
Saturday|Tuesday|Monday

ID1 =
Saturday|Friday

ID10 =
Saturday|Friday|Wednesday

ID11 =
Saturday|Friday|Thursday

Figure 6.21 – HIBE tree example for 7 days. dX denotes the secret key of identity IDX .

Device
connectivity

low exploit
complexity
q = 0.1

average exploit
complexity
q = 0.01

high exploit
complexity
q = 0.001

permanent p = 0.8 5 14 24
usual p = 0.6 3 8 12

intermittent p = 0.2 2 3 5

Table 6.4 – Optimal τ values solved for various p, q probabilities.

6.4.6 How Long Should We Wait?

A last interesting question, totally unrelated to the above cryptographic discussion, is the determination
of the optimal key release date τ . A plausible model can be the following: As an encrypted patch is
announced, the opponent starts looking for the flaw. Let ρ(t) be the probability that the vulnerability
will be discovered by the opponent before t. Let v(t) denote the proportion of users who downloaded
the patch at time t. Here ρ(0) = v(t) = 0 and ρ(∞) = v(∞) = 1. It is easy to see that the optimal τ
is the value that maximizes (1 − ρ(t))v(t). It may be reasonable to assume that v(t) ' 1 − pt where p
is the probability that a computer is not turned on by its owner during a day and ρ(t) ' 1 − (1 − q)t
where q is the probability to independently discover the flaw after a one day’s work. Resolution for this
simplified model reveals that for most "reasonable" values (e.g. 1/6 ≤ p ≤ 2/3 and 10−4 ≤ q ≤ 0.1) τ
would typically range somewhere between 1 and 20 days (Figure 6.22).

To see what this model imply in practice, we consider three typical device categories: permanently con-
nected devices (e.g. mobile telephones), usually connected devices (e.g. PCs, tablets) and intermittently
connected devices (e.g. smart-cards). Exploits of different technical difficulties were assigned the q
values given in Table 6.4.

Table 6.4 confirms the intuition that (for a fixed p) τ increases with the exploit’s complexity, i.e. the model
takes advantage of the exploit’s non-obviousness to spread the patch to more devices. In addition, (for a
fixed q) τ increases with the device’s connectivity as it appears better to patch only some devices rather

6.4 Improved Delayed Decryption for Software Patching 161

Figure 6.22 – Optimal τ for ρ(t) = 1 − (1 − q)t and v(t) ' 1 − pt. Solved for 1/6 ≤ p ≤ 2/3 and
10−4 ≤ q ≤ 0.1.

than let v(t) slowly grow and maintain the entire device community at risk. We do not claim that this
very simplified model accurately reflects reality.

162 Designing Confidentiality Building-Blocks 6.4

CHAPTER 7

CONCLUSION AND FURTHER
DEVELOPMENTS

7.1 Thesis Results & Contributions

This thesis addressed the three cornerstones of public-key cryptology: integrity, authentication and
confidentiality.

The manuscript starts by an overview of the history of cryptography and by a summary of the mathe-
matical preliminaries necessary for the presentation of our results.

We then present our results in three chapters, dealing respectively with integrity, authentication and
confidentiality:

The chapter 4 presents our research results in the area of integrity.

The core result of the first chapter, detailed in Section 4.1, is a new attestation primitive allowing to
prove the proper generation of RSA public keys. RSA public keys are central to many cryptographic
applications; hence their validity is of primary concern to the scrupulous cryptographer. The most
relevant properties of an RSA public key (n, e) depend on the factors of n: are they properly generated
primes? are they large enough? is e co-prime with φ(n)? etc. And of course, it is out of question to reveal
n’s factors.

Generic non-interactive zero-knowledge (NIZK) proofs can be used to prove such properties. However,
NIZK proofs are not practical at all. Typically, such protocols turn out to be very specialized, and may
not always be applicable (e.g., for some small values of e). For some very specific properties, specialized
proofs exist but such ad hoc proofs are naturally hard to generalize.

Section 4.1 proposes a new type of general-purpose compact non-interactive proofs, called attestations,
allowing the key generator to convince any third party that n was properly generated. The proposed
construction applies to any prime generation algorithm, and is provably secure in the Random Oracle
Model.

As a typical implementation instance, for a 138-bit security, verifying or generating an attestation requires
k = 1024 prime generations. For this instance, each processed message will later need to be signed or
encrypted 14 times by the final users of the attested moduli.

The second result in the first chapter, detailed in Section 4.2, is a new form of contract co-signature, called
legal fairness, that does not rely on third parties or arbitrators. The proposed protocol is efficient, compact,
fully distributed, fully dynamic, and provably secure in the Random Oracle Model. The protocol is
illustrated for two parties using Schnorr’s signature scheme.

163

164 Conclusion and Further Developments 7.1
In two-party computation, achieving both fairness and guaranteed output delivery is well known to be
impossible. Despite this limitation, many approaches provide solutions of practical interest by weakening
somewhat the fairness requirement. Such approaches fall roughly in three categories: “gradual release”
schemes assume that the aggrieved party can eventually reconstruct the missing information; “optimistic
schemes” assume a trusted third party arbitrator that can restore fairness in case of litigation; and
“concurrent” or “legally fair” schemes in which a breach of fairness is compensated by the aggrieved
party having a digitally signed cheque from the other party (called the keystone). Section 4.2 describes
and analyses a new contract signing paradigm that doesn’t require keystones to achieve legal fairness,
and give a concrete construction based on Schnorr signatures which is compatible with standard Schnorr
signatures and provably secure.

In a way these two results complement each other: attestation certifies the integrity of computation
whereas legal fairness certifies the integrity of interaction.

Chapter 5 presents our research results in the area of authentication.

Discrete-logarithm authentication protocols are known to present two interesting features: The first is
that the prover’s commitment, x = gr, claims most of the prover’s computational effort. The second is
that x does not depend on the challenge and can hence be computed in advance. Provers exploit this
feature by pre-loading (or pre-computing) ready to use commitment pairs ri, xi. The ri can be derived
from a common seed but storing each xi still requires 160 to 256 bits when implementing DSA or Schnorr.

Section 5.1 proposes a new concept called slow motion zero-knowledge (SM-ZK). SM-ZK allows the prover
to slash commitment size (by a factor of 4 to 6) by combining classical zero-knowledge and a timing
channel. We pay the conceptual price of requiring the ability to measure time but, in exchange, obtain
communication-efficient protocols.

Section 5.2 introduces “thrifty” zero-knowledge protocols, or TZK. These protocols are constructed by
introducing a bias in the challenge send by the prover. This bias is chosen so as to maximize the security
versus effort trade-off. We illustrate the benefits of this approach on several well-known zero-knowledge
protocols.

Section 5.3 presents a lightweight algorithm allowing a verifier to collectively identify a community of
provers. This protocol is more efficient than one-to-one node authentication, resulting in less commu-
nication, less computation, and hence a smaller overall energy consumption. The protocol is provably
secure, and achieves zero-knowledge authentication of a time linear in the degree of the spanning tree.

The proposed authentication protocol may be adapted to better fit constraints: in the context of Internet
of Things (IoT), communication is a very costly operation. We describe versions that reduce the amount
of data sent by individual nodes, while maintaining security.

Section 5.4 describes the forensic analysis of what the authors believe to be the most sophisticated smart
card fraud encountered to date. In a way, this section illustrates what can happen when authentication
protocols are wrongly designed. In 2010, Murdoch et al. [MDAB10] described a man-in-the-middle
attack against EMV cards. [MDAB10] demonstrated the attack using a general purpose FPGA board,
noting that “miniaturization is mostly a mechanical challenge, and well within the expertise of criminal gangs”.
This indeed happened in 2011, when about 40 sophisticated card forgeries surfaced in the field. These
forgeries are remarkable in that they embed two chips wired top-to-tail. The first chip is clipped from a
genuine stolen card. The second chip plays the role of the man-in-the-middle and communicates directly
with the point of sale (PoS) terminal. The entire assembly is embedded in the plastic body of yet another
stolen card. The forensic analysis relied on X-ray chip imaging, side-channel analysis, protocol analysis,
and microscopic optical inspections.

Chapter 6 presents our research results in the area of confidentiality.

The research work presented in Section 6.1 proposes a public-key cryptosystem and a short password
encryption mode, where traditional hardness assumptions are replaced by specific refinements of the
CAPTCHA concept called Decisional and Existential CAPTCHAs.

7.1 Thesis Results & Contributions 165
The public-key encryption method, achieving 128-bit security, typically requires from the sender to solve
one CAPTCHA. The receiver does not need to resort to any human aid.

A second symmetric encryption method allows to encrypt messages using very short passwords shared
between the sender and the receiver. Here, a simple 5-character alphanumeric password provides
sufficient security for all practical purposes.

We conjecture that the automatic construction of Decisional and Existential CAPTCHAs is possible and
provide candidate ideas for their implementation.

Honey Encryption (HE), introduced by Juels and Ristenpart (Eurocrypt 2014, [JR14]), is an encryption
paradigm designed to produce ciphertexts yielding plausible-looking but bogus plaintexts upon de-
cryption with wrong keys. Thus brute-force attackers need to use additional information to determine
whether they indeed found the correct key.

At the end of their paper, Juels and Ristenpart leave as an open question the adaptation of honey
encryption to natural language messages. A recent paper by Chatterjee et al. [CBJR15] takes a mild
attempt at the challenge and constructs a natural language honey encryption scheme relying on simple
models for passwords.

Section 6.2 explains why this approach cannot be extended to reasonable-size human-written documents
e.g. e-mails. We propose an alternative solution and evaluate its security.

Section 6.3 generalizes the concept of Hierarchical Identity-Based Encryption (HIBE) by proposing
a new primitive called Hierarchical Identity-Based Broadcast Encryption (HIBBE). Similar to HIBE,
HIBBE organizes users in a tree-like structure and users can delegate their decryption capability to their
subordinates, which mirrors real-world hierarchical social organizations. Unlike HIBE merely allowing a
single decryption path, HIBBE enables encryption to any subset of the users and only the intended users
(and their supervisors) can decrypt.

We define Ciphertext Indistinguishability against Adaptively Chosen-Identity-Vector-Set and Chosen-
Ciphertext Attack (IND-CIVS-CCA2) which capture the most powerful attacks on HIBBE in the real
world. We achieve this goal in the standard model in two steps. We first construct an efficient HIBBE
Scheme (HIBBES) against Adaptively Chosen-Identity-Vector-Set and Chosen-Plaintext Attack (IND-
CIVS-CPA) in which the attacker is not allowed to query the decryption oracle. Then we convert it into
an IND-CIVS-CCA2 scheme at only a marginal cost, i.e., merely adding one on-the-fly dummy user at
the first depth of hierarchy in the basic scheme without requiring any other cryptographic primitives.
Furthermore, our CCA2-secure scheme natively allows public ciphertext validity test, which is a useful
property when a CCA2-secure HIBBES is used to design advanced protocols.

The last research work of the third chapter illustrates how standard cryptographic techniques can be
applied to real-life security products and services. Section 6.4 improves a little noticed yet ingenious
Microsoft patent by Thomlinson and Walker. The Thomlinson-Walker system distributes encrypted
patches to avoid reverse engineering by opponents (who would then be able to launch attacks on
unpatched users). When the proportion of users who downloaded the encrypted patch becomes big
enough, the decryption key is disclosed and all users install the patch.

166 Conclusion and Further Developments 7.2

7.2 Personal Perspectives

Our results highlight the richness, the complexity but also the difficulty of modern cryptography. Cryp-
tography is a hybrid discipline, blending mathematics, theoretical computer science, statistics, hardware
and software. These ingredients are interwoven to construct increasingly complex primitives, protocols
and real-life products. This complexity forces the practitioner to precisely formulate assumptions and to
carefully implement building-blocks.

Our thesis illustrates the pace at which the field is rushing ahead: despite the fact that integrity, authenti-
cation and confidentiality are very basic functions researched since decades, there is still a lot of room for
innovation and invention in cryptology.

Several eras can be distinguished in the evolution of modern cryptography:

The first two decades (1970s-1980s) were the exploratory era during which new primitives were discovered
or designed at a fast pace. While many fundamental results were invented during this fertile exploratory
era, the proposed advances were usually "big ideas" that, while frequently secure, lacked theoretical
models.

The 1990s were the modeling era of modern cryptography. During the 1990s fundamental models and
definitions were rigorously formalized and researchers got to agree about the meaning of common
concepts such as security, adversaries or proofs.

The 2000s can be regarded as the technical and industrial adoption era where the formalization effort
continued along with the sophistication of new groundbreaking concepts. In the 2000s the number of
cryptographic commercial products and standards reached unprecedented records. It is easy to see that
from the 2000s and on nearly no "low hanging fruit" results were discovered and most new advances
required substantial mathematical theoretical imports (e.g. lattice theory).

The 2010s seem to be boundary exploration era, a decade during which the research community endeavors
to push the boundaries of cryptographic functionalities, attempting to build features such as fully
homomorphic encryption, multi-linear maps, indistinguishability obfuscation or functional encryption.

While it is difficult to glimpse into the future to predict where the field is heading and what a typical
Eurocrypt 2076 program will look, the author would still like to formulate a number of hypotheses:

1. An era of cryptographic thinking machines? An important part of the cryptographer’s future
work will be to design and train machines that will design, prove and break new cryptographic
protocols. Such machines will eventually be able to translate natural language security requirements
into cryptographic protocols. Automated proofs and automated theorem proving will become a
standard tool used by cryptographers.

2. Beyond Turing machines? Alternative computation paradigms (e.g. DNA, quantum, wetware,
molecular scale electronics) will gain importance and, by ricochet, encourage cryptographic cre-
ativity.

3. Integrating cryptography and biology? Human DNA will replace passwords and noninvasive
DNA readers will become pervasive. DNA will become an inexhaustible source of passwords
during a human’s lifetime. Organisms engineered to recognize human DNA and compute with it
will allow access to information. In-brain artificial decryption organs 1 will become the ultimate
end-to-end encryption means.

4. An era of abstraction? Some sub-areas of cryptography will evolve into purely theoretical proofs
of existence disconnected from any practical implementability. The divide between practitioners
and theorists will increase. It is likely that at some point cryptographers will undertake a systematic
exploration of humanity’s mathematical knowledge and evaluate, in each mathematical sub-area,
what its cryptographic applications might be.

1. e.g. capable of sensing external physical stimuli carrying information, inserting the information directly into the human
cranial nerves and vestibulocochlear nerve or even directly committing the decrypted information into the brain’s memory.

7.2 Personal Perspectives 167
5. A post modular-multiplication era? The advent of major advances in DLP and factorization will

weaken the traditional links between number-theory and cryptology and favor the progressive
reliance on other hard problems. It is also probable that radical advances will make all FACT-based
and DLP-based cryptography disappear at once.

6. Redefining the adversary? As cryptographic protocols will get increasingly complex, so will
the cheating scenarios and adversarial goals. Consequently, the importance of game theory in
cryptography will increase. As we write these lines, proof methodologies define what is harmful
and demonstrate its successful avoidance. In the future machines will infer alone what harmful is
before harm is actually done.

7. An era of cryptographic sufficiency? A century of cryptographic research will mature and stabilize
the field to a point where advances and discoveries will go past actual human needs. By 2040,
standard cryptographic tools will suffice for satisfying 95% of human commercial (real-life) needs.
Consequently the practical battle between the cryptographer and the cryptanalyst will be won by
the cryptographer.

8. An era of cryptographic bottlenecks? The increasing pace at which information will be transmitted
will become incompatible with digital-only cryptography. Hence physical channel security and
analog cryptographic primitives (neuromorphic cryptoprocessors) are likely to gain in importance
and emerge. Because these are based on physics, algorithms will be designed to take advantage of
existing physical phenomena (rather than forcing physics to mimic mathematical behavior as is the
case today).

9. A shift in the demographics of cryptographic research? The scientific impact of emerging coun-
tries in the community will certainly increase, while the relative percentage of major results
discovered in Europe and north America will probably tend to decrease. More female researchers
will enter the field and author more major results.

10. An era of fast-following agencies? The academic community’s knowledge will surpass that of
state agencies (such as the NSA) if that is not already the case. Intelligence agencies will devote
a major part of their resources to software attacks, exploits and key theft methods rather than
cryptography.

168 Conclusion and Further Developments .0

APPENDIX A

COMPUTING THRIFTY PARAMETERS

The following implementation uses Python 2.7 and the CVXOPT library 1 to solve the constrained
optimization problem of Equation (5.1). Here the γj are computed for Fiat-Shamir, but could easily be
adapted to other settings.

from cvxopt import matrix, solvers
from fractions import Fraction
import math

mul = lambda x,y: x*y

Binomial coefficient \binom{n}{k}
def binom(n,k):

return int(reduce(mul,(Fraction(n-i,i+1) for i in range(k)),1))

Populations \gamma_k (for Fiat-Shamir)
def get_coeffsp(n):

return [binom(n,k+1) for k in range(n)]

Work coefficients k * \gamma_k (for Fiat-Shamir)
def get_coeffsw(n):

r = get_coeffsp(n)
return [(i+1)*c for i,c in enumerate(r)]

Solve optimization problem for given n and epsilon
def solve_lp(epsilon, n):

coeffsp = map(float, get_coeffsp(n))
coeffsw = map(float, get_coeffsw(n))

Put the problem in canonical form, i.e.
construct matrix A and vectors b, c
such that the problem is in the form Ax + b <= c
A = []
for i in range(n):
A += [[0.]*i + [1.] + [0.]*(n-i-1)]

A += [map(lambda y:-y, coeffsp)]
for i in range(n):
A += [[0.]*i + [-1.] + [0.]*(n-i-1)]

A += [coeffsp]
A = matrix(A).trans()
b = matrix([epsilon] * n + [epsilon-1.] + [0.] * n + [1.])
c = matrix(coeffsw)

Solve the linear programming problem
sol = solvers.lp(c, A, b)

Extract solution and append p0
p0 = 1 - sum(i*w for i, w in zip(sol[’x’], coeffsp))
pi = [p0] + [i for i in sol[’x’]]

Compute total work (for Fiat-Shamir)
w = sum(i * w for i, w in zip(sol[’x’], coeffsw))

Compute total security
sec = -math.log(epsilon, 2)

1. http://cvxopt.org/

169

http://cvxopt.org/

170 Computing Thrifty Parameters A.0

Return security, work, efficiency, and optimal probabilities
return (sec, w, sec/w, xi)

Challenge bits
n = 16

Number of sampling points
N = 500

Smallest possible value of epsilon
mineps = 2**(-n)

Save data to a file by uniformly sampling values of epsilon
f = open(’output%s.txt’%n, ’w’)
plabel = ’\t’.join([’p%s’%(i) for i in range(n+1)])
f.write(’i\teps\ts\tw\tse\t%s\n’%plabel)

for i in range(N):
s = float(i)/N * n
e = 2**(-s)
s, w, se, xi = solve_lp(e, n)
xi = ’\t’.join(map(str, xi))
f.write(’%s\t%s\t%s\t%s\t%s\t%s\n’%(i,e,s,w,se,xi))

f.close()

Bibliography

[860] ISO 8601:2004. Data elements and interchange formats Information interchange Representation
of dates and times. Tech. rep. URL: https://www.iso.org/obp/ui/#iso:std:iso:
8601:ed-3:v1:en (cit. on p. 159).

[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. « From Identifi-
cation to Signatures via the Fiat-Shamir Transform: Minimizing Assumptions for Security
and Forward-Security ». In: Advances in Cryptology – EUROCRYPT 2002. Ed. by Lars R.
Knudsen. Vol. 2332. Lecture Notes in Computer Science. Amsterdam, The Netherlands:
Springer, Heidelberg, Germany, Apr. 2002, pp. 418–433 (cit. on p. 56).

[AAF+15] Ehsan Aerabi, A. Elhadi Amirouche, Houda Ferradi, Rémi Géraud, David Naccache, and
Jean Vuillemin. The Conjoined Microprocessor. Cryptology ePrint Archive, Report 2015/974.
http://eprint.iacr.org/2015/974. 2015 (cit. on pp. 33, 35).

[AAF+16] Ehsan Aerabi, A. Elhadi Amirouche, Houda Ferradi, Rémi Géraud, David Naccache, and
Jean Vuillemin. « The Conjoined Microprocessor ». In: 2016 IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2016, McLean, VA, USA, May 3-5, 2016. Ed. by
Ryan A. Peter Y., Naccache David, and Quisquater Jean-Jacques. IEEE, 2016, pp. 67–70.
ISBN: 978-3-662-49301-4. DOI: 10.1109/HST.2016.7495558. URL: http://dx.doi.
org/10.1109/HST.2016.7495558 (cit. on pp. 33, 35).

[Abd11] Michel Abdalla. « Reducing The Need For Trusted Parties In Cryptography ». PhD thesis.
École normale supérieure, 2011, pp. 7–11 (cit. on p. 17).

[ABHL03] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford. « CAPTCHA: Using
Hard AI Problems for Security ». In: Advances in Cryptology - EUROCRYPT 2003, Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland,
May 4-8, 2003, Proceedings. Ed. by Eli Biham. Vol. 2656. Lecture Notes in Computer Science.
Springer, 2003, pp. 294–311. ISBN: 3-540-14039-5. DOI: 10.1007/3-540-39200-9_18
(cit. on p. 117).

[ABMW05] Martín Abadi, Michael Burrows, Mark S. Manasse, and Ted Wobber. « Moderately hard,
memory-bound functions ». In: ACM Trans. Internet Techn. 5.2 (2005), pp. 299–327. DOI:
10.1145/1064340.1064341 (cit. on p. 72).

[And93] RJ Anderson. « Practical RSA trapdoor ». In: Electronics Letters 29.11 (1993), pp. 995–995
(cit. on p. 43).

[AOS02] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. « 1-out-of-n Signatures from a
Variety of Keys ». In: Advances in Cryptology – ASIACRYPT 2002. Ed. by Yuliang Zheng.
Vol. 2501. Lecture Notes in Computer Science. Queenstown, New Zealand: Springer,
Heidelberg, Germany, Dec. 2002, pp. 415–432 (cit. on pp. 55, 58).

[AR05] D. Anshul and S. Roy. « A ZKP-Based Identification Scheme for Base Nodes in Wireless
Sensor Networks ». In: Proceedings of the 20th ACM Symposium on Applied Computing -
SAC’05. ACM, 2005, pp. 319–323 (cit. on p. 89).

[ASW02] N. Asokan, V. Shoup, and M. Waidner. « Optimistic Fair Exchange of Digital Signatures ».
In: Advances in Cryptology - EUROCRYPT’98. Vol. 1403. Lecture Notes in Computer Science.
Springer, 2002, pp. 591–606 (cit. on p. 9).

[ASW97] N. Asokan, Matthias Schunter, and Michael Waidner. « Optimistic Protocols for Fair
Exchange ». In: ACM CCS 97: 4th Conference on Computer and Communications Security.
Zurich, Switzerland: ACM Press, Apr. 1997, pp. 7–17 (cit. on pp. 9, 55).

[Bab86] László Babai. « On Lovász’ lattice reduction and the nearest lattice point problem ». In:
Combinatorica 6.1 (1986), pp. 1–13 (cit. on p. 27).

[BB04] Dan Boneh and Xavier Boyen. « Efficient selective-ID secure identity-based encryption
without random oracles ». In: EUROCRYPT ’04. Vol. 3027. LNCS. Springer Berlin Heidel-
berg, 2004, pp. 223–238 (cit. on pp. 139, 143, 150).

[BBBB10] Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan Boneh. « Kamouflage: Loss-resistant
password management ». In: Computer Security–ESORICS 2010. Springer, 2010, pp. 286–302
(cit. on p. 130).

https://www.iso.org/obp/ui/#iso:std:iso:8601:ed-3:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:8601:ed-3:v1:en
http://eprint.iacr.org/2015/974
http://dx.doi.org/10.1109/HST.2016.7495558
http://dx.doi.org/10.1109/HST.2016.7495558
http://dx.doi.org/10.1109/HST.2016.7495558
http://dx.doi.org/10.1007/3-540-39200-9_18
http://dx.doi.org/10.1145/1064340.1064341

[BBC+14a] Thomas Bourgeat, Julien Bringer, Hervé Chabanne, Robin Champenois, Jérémie Clément,
Houda Ferradi, Marc Heinrich, Paul Melotti, David Naccache, and Antoine Voizard. « New
Algorithmic Approaches to Point Constellation Recognition ». In: ICT Systems Security and
Privacy Protection: 29th IFIP TC 11 International Conference, SEC 2014, Marrakech, Morocco,
June 2-4, 2014. Proceedings. Ed. by Nora Cuppens-Boulahia, Frédéric Cuppens, Sushil Jajodia,
Anas Abou El Kalam, and Thierry Sans. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 80–90. ISBN: 978-3-642-55415-5. DOI: 10.1007/978-3-642-55415-5_7. URL:
http://dx.doi.org/10.1007/978-3-642-55415-5_7 (cit. on pp. 33, 36).

[BBC+14b] Thomas Bourgeat, Julien Bringer, Hervé Chabanne, Robin Champenois, Jérémie Clément,
Houda Ferradi, Marc Heinrich, Paul Melotti, David Naccache, and Antoine Voizard. New
Algorithmic Approaches to Point Constellation Recognition. CoRR, abs/1405.1402. http://
arxiv.org/abs/1405.1402. 2014 (cit. on pp. 33, 36).

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. « Hierarchical identity based encryption with
constant size ciphertext ». In: EUROCRYPT ’05. Vol. 3494. LNCS. Springer Berlin Heidel-
berg, 2005, pp. 440–456 (cit. on pp. 139, 143, 144, 158, 159).

[BCC88] G. Brassard, D. Chaum, and C. Crépeau. « Minimum disclosure proofs of knowledge ». In:
Journal of Computer and System Sciences 37.2 (1988), pp. 156–189 (cit. on pp. 43, 82).

[BDH99] D. Boneh, G. Durfee, and N. Howgrave-Graham. « Factoring N = prq for large r ». In:
Advances in Cryptology – CRYPTO’99. Springer Berlin Heidelberg, 1999, pp. 326–337 (cit. on
p. 14).

[BDJR97] M. Bellare, A. Desai, E. Jokipii, and Ph. Rogaway. « A Concrete Security Treatment of Sym-
metric Encryption ». In: Proceedings of the 38th International IEEE Symposium on Foundations
of Computer Science - FOCS’97. 1997, pp. 394–403 (cit. on p. 25).

[BDPR98] M. Bellare, A. Desai, D. Pointcheval, and Ph. Rogaway. « Relations Among Notions of
Security for Public-Key Encryption Schemes ». In: Advances in Cryptology - CRYPTO’98.
Vol. 1462. Lecture Notes in Computer Science. Springer-Verlag, 1998, pp. 26–45 (cit. on
pp. 25, 26).

[Ber86] Robert L. Bernstein. « Multiplication by Integer Constants ». In: Softw., Pract. Exper. 16.7
(1986), pp. 641–652. DOI: 10.1002/spe.4380160704 (cit. on p. 76).

[BF01] Dan Boneh and Matt Franklin. « Identity-based encryption from the Weil pairing ». In:
CRYPTO ’01. Vol. 2139. LNCS. Springer Berlin Heidelberg, 2001, pp. 213–229 (cit. on p. 139).

[BF03] Dan Boneh and Matthew Franklin. « Identity-based encryption from the Weil pairing ». In:
SIAM Journal on Computing 32.3 (2003), pp. 586–615 (cit. on p. 139).

[BF97] Dan Boneh and M. Franklin. « Efficient generation of shared RSA keys ». In: Advances in
Cryptology – CRYPTO’97. Springer Verlag, 1997, pp. 425–439 (cit. on p. 44).

[BFG+14] Hadrien Barral, Houda Ferradi, Rémi Géraud, Georges-Axel Jaloyan, and David Naccache.
ARMv8 Shellcodes from ‘A’ to ‘Z’. CoRR, abs/1608.03415. http://arxiv.org/abs/1608.
03415. 2014 (cit. on pp. 33, 34).

[BFG+16] Hadrien Barral, Houda Ferradi, Rémi Géraud, Georges-Axel Jaloyan, and David Naccache.
« ARMv8 Shellcodes from ‘A’ to ‘Z’ ». In: The 12th International Conference on Information
Security Practice and Experience (ISPEC 2016) Zhangjiajie, China, November 16-18, 2016. Pro-
ceedings. Ed. by Chen Liqun and H. Robert Deng. Cham: Springer International Publishing,
2016 (cit. on pp. 33, 34).

[BFL90] J. Boyar, K. Friedl, and C. Lund. « Practical zero-knowledge proofs: Giving hints and using
deficiencies ». In: Advances in Cryptology – EUROCRYPT’89. Springer Berlin Heidelberg,
1990, pp. 155–172 (cit. on p. 43).

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. « Non-Interactive Zero-Knowledge and Its
Applications (Extended Abstract) ». In: 20th Annual ACM Symposium on Theory of Computing.
Chicago, Illinois, USA: ACM Press, May 1988, pp. 103–112 (cit. on p. 28).

[BGG+90] M. Ben-Or, O. Goldreich, Sh. Goldwasser, J. Håstad, J. Kilian, S. Micali, and Ph. Rog-
away. « Everything Provable is Provable in Zero-Knowledge ». In: Advances in Cryptology –
CRYPTO’88. Springer New York, 1990, pp. 37–56 (cit. on p. 43).

[BGLS03] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. « Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps ». In: Advances in Cryptology — EUROCRYPT’03. Vol. 2656.
Lecture Notes in Computer Science. Springer, 2003, pp. 416–432 (cit. on p. 89).

http://dx.doi.org/10.1007/978-3-642-55415-5_7
http://dx.doi.org/10.1007/978-3-642-55415-5_7
http://arxiv.org/abs/1405.1402
http://arxiv.org/abs/1405.1402
http://dx.doi.org/10.1002/spe.4380160704
http://arxiv.org/abs/1608.03415
http://arxiv.org/abs/1608.03415

[BGMR90] M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. « A Fair Protocol for Signing Contracts ».
In: IEEE Transactions on Information Theory 36.1 (1990), pp. 40–46 (cit. on p. 9).

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. « Evaluating 2-DNF formulas on ciphertexts ».
In: TCC ’05. Vol. 3378. LNCS. Springer Berlin Heidelberg, 2005, pp. 325–341 (cit. on p. 140).

[BGR98] M. Bellare, J. A. Garay, and T. Rabin. « Fast Batch Verification for Modular Exponentiation
and Digital Signatures ». In: Advances in Cryptology - EUROCRYPT’98. Vol. 1403. Lecture
Notes in Computer Science. Springer, 1998, pp. 236–250 (cit. on p. 95).

[BGS94] Jürgen Bierbrauer, K. Gopalakrishnan, and Douglas R. Stinson. « Bounds for Resilient
Functions and Orthogonal Arrays ». In: Advances in Cryptology – CRYPTO’94. Ed. by Yvo
Desmedt. Vol. 839. Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 1994, pp. 247–256 (cit. on p. 84).

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. « Collusion resistant broadcast encryption
with short ciphertexts and private keys ». In: CRYPTO ’05. Vol. 3621. LNCS. Springer Berlin
Heidelberg, 2005, pp. 258–275 (cit. on p. 139).

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. « Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract) ». In:
20th Annual ACM Symposium on Theory of Computing. Chicago, Illinois, USA: ACM Press,
May 1988, pp. 1–10 (cit. on pp. 9, 55).

[BH08] Dan Boneh and Michael Hamburg. « Generalized identity based and broadcast encryption
schemes ». In: ASIACRYPT ’08. Vol. 5350. LNCS. Springer Berlin Heidelberg, 2008, pp. 455–
470 (cit. on p. 140).

[BK05] Dan Boneh and Jonathan Katz. « Improved efficiency for CCA-secure cryptosystems
built using identity-based encryption ». In: CT-RSA ’05. Vol. 3376. LNCS. Springer Berlin
Heidelberg, 2005, pp. 87–103 (cit. on pp. 139, 140).

[BL05] Henry S. Baird and Daniel P. Lopresti, eds. Human Interactive Proofs, Second International
Workshop, HIP 2005, Bethlehem, PA, USA, May 19-20, 2005, Proceedings. Vol. 3517. Lecture
Notes in Computer Science. Springer, 2005. ISBN: 3-540-26001-3 (cit. on p. 117).

[Ble96] D. Bleichenbacher. « Generating EIGamal Signatures Without Knowing the Secret Key ». In:
Advances in Cryptology — EUROCRYPT′96. Vol. 1070. Lecture Notes in Computer Science.
Springer, 1996, pp. 10–18 (cit. on p. 21).

[Blu83] Manuel Blum. « Coin flipping by telephone a protocol for solving impossible problems ».
In: ACM SIGACT News 15.1 (1983), pp. 23–27 (cit. on p. 9).

[BMW05] Xavier Boyen, Qixiang Mei, and Brent Waters. « Direct chosen ciphertext security from
identity-based techniques ». In: CCS ’05. ACM, 2005, pp. 320–329 (cit. on pp. 139, 140, 150).

[BN00] Dan Boneh and Moni Naor. « Timed Commitments ». In: Advances in Cryptology - CRYPTO
2000, 20th Annual International Cryptology Conference, Santa Barbara, California, USA, August
20-24, 2000, Proceedings. Ed. by Mihir Bellare. Vol. 1880. Lecture Notes in Computer Science.
Springer, 2000, pp. 236–254. ISBN: 3-540-67907-3. DOI: 10.1007/3-540-44598-6_15
(cit. on p. 73).

[Bon12] Joseph Bonneau. « The Science of Guessing: Analyzing an Anonymized Corpus of 70
Million Passwords ». In: 2012 IEEE Symposium on Security and Privacy. San Francisco,
California, USA: IEEE Computer Society Press, May 2012, pp. 538–552 (cit. on p. 125).

[Bor41] Jorge Luis Borges. El Jardín de senderos que se bifurcan. Editorial Sur, 1941 (cit. on p. 131).
[Bor44] Jorge Luis Borges. Ficcione. Editorial Sur, 1944 (cit. on p. 131).
[Bou00] F. Boudot. « Efficient proofs that a committed number lies in an interval ». In: Advances in

Cryptology – EUROCRYPT’00. 2000, pp. 431–444 (cit. on p. 44).
[BR93] Mihir Bellare and Phillip Rogaway. « Random oracles are practical: A paradigm for design-

ing efficient protocols ». In: CCS ’93. ACM, 1993, pp. 62–73 (cit. on pp. 18, 19, 22).
[BR94] M. Bellare and Ph. Rogaway. « Entity Authentication and Key Distribution ». In: Advances

in Cryptology - CRYPTO’93. Vol. 773. Lecture Notes in Computer Science. Springer-Verlag,
1994, pp. 232–249 (cit. on pp. 22, 76).

[BR95] Mihir Bellare and Phillip Rogaway. « Optimal Asymmetric Encryption ». In: Advances
in Cryptology – EUROCRYPT’94. Ed. by Alfredo De Santis. Vol. 950. Lecture Notes in
Computer Science. Perugia, Italy: Springer, Heidelberg, Germany, May 1995, pp. 92–111
(cit. on p. 19).

http://dx.doi.org/10.1007/3-540-44598-6_15

[BR96] Mihir Bellare and Phillip Rogaway. « The Exact Security of Digital Signatures: How to Sign
with RSA and Rabin ». In: Advances in Cryptology – EUROCRYPT’96. Ed. by Ueli M. Maurer.
Vol. 1070. Lecture Notes in Computer Science. Saragossa, Spain: Springer, Heidelberg,
Germany, May 1996, pp. 399–416 (cit. on p. 19).

[BRW03] M. Bellare, Ph. Rogaway, and D. Wagner. « EAX: A Conventional Authenticated-Encryption
Mode ». In: IACR Cryptology ePrint Archive 2003 (2003), p. 69 (cit. on p. 11).

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004 (cit. on p. 84).

[BW00] Birgit Baum-Waidner and Michael Waidner. « Round-Optimal and Abuse Free Optimistic
Multi-party Contract Signing ». In: Automata, Languages and Programming, 27th International
Colloquium, ICALP 2000, Geneva, Switzerland, July 9-15, 2000, Proceedings. Ed. by Ugo Mon-
tanari, José D. P. Rolim, and Emo Welzl. Vol. 1853. Lecture Notes in Computer Science.
Springer, 2000, pp. 524–535. ISBN: 3-540-67715-1. DOI: 10.1007/3-540-45022-X_44
(cit. on pp. 56, 58).

[BY93] Mihir Bellare and Moti Yung. « Certifying cryptographic tools: The case of trapdoor per-
mutations ». In: Advances in Cryptology – CRYPTO’92. Springer. 1993, pp. 442–460 (cit. on
p. 43).

[BY96] Mihir Bellare and Moti Yung. « Certifying permutations: Noninteractive zero-knowledge
based on any trapdoor permutation ». In: Journal of Cryptology 9.3 (1996), pp. 149–166
(cit. on p. 43).

[Cas03] Michael Case. « A Beginner′s Guide To The General Number ». In: ECE 575 Data Security
and Cryptography Project (2003) (cit. on p. 14).

[CB03] Monica Chew and Henry S. Baird. « BaffleText: a human interactive proof ». In: Document
Recognition and Retrieval X, 22-23 January 2003, Santa Clara, California, USA, Proceedings.
Ed. by Tapas Kanungo, Elisa H. Barney Smith, Jianying Hu, and Paul B. Kantor. Vol. 5010.
SPIE Proceedings. SPIE, 2003, pp. 305–316. ISBN: 0-8194-4810-9 (cit. on p. 117).

[CBJR15] Rahul Chatterjee, Joseph Bonneau, Ari Juels, and Thomas Ristenpart. « Cracking-Resistant
Password Vaults Using Natural Language Encoders ». In: 2015 IEEE Symposium on Security
and Privacy. San Jose, California, USA: IEEE Computer Society Press, May 2015, pp. 481–498.
DOI: 10.1109/SP.2015.36 (cit. on pp. 32, 115, 126, 128, 131, 165).

[CC00] Christian Cachin and Jan Camenisch. « Optimistic Fair Secure Computation ». In: Advances
in Cryptology – CRYPTO 2000. Ed. by Mihir Bellare. Vol. 1880. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2000, pp. 93–111
(cit. on p. 55).

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. « Multiparty Unconditionally Secure
Protocols (Extended Abstract) ». In: 20th Annual ACM Symposium on Theory of Computing.
Chicago, Illinois, USA: ACM Press, May 1988, pp. 11–19 (cit. on pp. 9, 55).

[CD98] R. Cramer and I. Damgård. « Zero-knowledge proof for finite field arithmetic, or: Can
zero-knowledge be for free? » In: Advances in Cryptology – CRYPTO’98. Springer-Verlag,
1998, pp. 424–441 (cit. on p. 43).

[CFGN16a] Jean-Michel Cioranesco, Houda Ferradi, Rémi Géraud, and David Naccache. Process Ta-
ble Covert Channels: Exploitation and Countermeasures. Cryptology ePrint Archive, Report
2016/227. http://eprint.iacr.org/2016/227. 2016 (cit. on pp. 33, 35).

[CFGN16b] Simon Cogliani, Houda Ferradi, Rémi Géraud, and David Naccache. « Thrifty Zero-
Knowledge - When Linear Programming Meets Cryptography ». In: The 12th International
Conference on Information Security Practice and Experience (ISPEC 2016) Zhangjiajie, China,
November 16-18, 2016. Proceedings. Ed. by Chen Liqun and H. Robert Deng. Cham: Springer
International Publishing, 2016 (cit. on p. 30).

[CFGN16c] Simon Cogliani, Houda Ferradi, Rémi Géraud, and David Naccache. Thrifty Zero-Knowledge
- When Linear Programming Meets Cryptography. Cryptology ePrint Archive, Report 2016/443.
http://eprint.iacr.org/2016/443. 2016 (cit. on p. 30).

[CFH+16] Simon Cogliani, Bao Feng, Ferradi Houda, Rémi Géraud, Diana Maimuţ, David Naccache,
Rodrigo Portella do Canto, and Guilin Wang. Public-Key Based Lightweight Swarm Authenti-
cation. Cryptology ePrint Archive, Report 2016/750. http://eprint.iacr.org/2016/
750. 2016 (cit. on p. 31).

http://dx.doi.org/10.1007/3-540-45022-X_44
http://dx.doi.org/10.1109/SP.2015.36
http://eprint.iacr.org/2016/227
http://eprint.iacr.org/2016/443
http://eprint.iacr.org/2016/750
http://eprint.iacr.org/2016/750

[CFN13] Jean-Michel Cioranesco, Houda Ferradi, and David Naccache. « Communicating Covertly
through CPU Monitoring ». In: IEEE Security and Privacy 11.6 (2013), pp. 71–73 (cit. on
pp. 33, 34).

[CFT98] A. Chan, Y. Frankel, and Y. Tsiounis. « Easy come - easy go divisible cash ». In: Advances in
Cryptology – EUROCRYPT’98. Springer-Verlag, 1998, pp. 561–575 (cit. on p. 44).

[CGJ+08] Richard Chow, Philippe Golle, Markus Jakobsson, Lusha Wang, and XiaoFeng Wang.
« Making CAPTCHAs clickable ». In: Proceedings of the 9th Workshop on Mobile Computing
Systems and Applications, HotMobile 2008, Napa Valley, California, USA, February 25-26, 2008.
Ed. by Mirjana Spasojevic and Mark D. Corner. ACM, 2008, pp. 91–94. ISBN: 978-1-60558-
118-7. DOI: 10.1145/1411759.1411783 (cit. on p. 117).

[CGMW97] Liqun Chen, Dieter Gollmann, Chris J. Mitchell, and Peter R. Wild. « Secret Sharing with
Reusable Polynomials ». In: ACISP 97: 2nd Australasian Conference on Information Security
and Privacy. Ed. by Vijay Varadharajan, Josef Pieprzyk, and Yi Mu. Vol. 1270. Lecture Notes
in Computer Science. Sydney, NSW, Australia: Springer, Heidelberg, Germany, July 1997,
pp. 183–193. DOI: 10.1007/BFb0027925 (cit. on p. 28).

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. « A forward-secure public-key encryption
scheme ». In: EUROCRYPT ’03. Vol. 2656. LNCS. Springer Berlin Heidelberg, 2003, pp. 255–
271 (cit. on pp. 139, 143, 158).

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. « Chosen-ciphertext security from identity-
based encryption ». In: EUROCRYPT ’04. Vol. 3027. LNCS. Springer Berlin Heidelberg,
2004, pp. 207–222 (cit. on pp. 139, 140, 143).

[Cho02] Noam Chomsky. Syntactic structures. Walter de Gruyter, 2002 (cit. on p. 128).
[Cho56] Noam Chomsky. « Three models for the description of language ». In: Information Theory,

IRE Transactions on 2.3 (1956), pp. 113–124 (cit. on pp. 128, 132).
[Cho59] Noam Chomsky. « On certain formal properties of grammars ». In: Information and control

2.2 (1959), pp. 137–167 (cit. on p. 128).
[CHS05] Ran Canetti, Shai Halevi, and Michael Steiner. « Hardness Amplification of Weakly Verifi-

able Puzzles ». In: Theory of Cryptography, Second Theory of Cryptography Conference, TCC
2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings. Ed. by Joe Kilian. Vol. 3378.
Lecture Notes in Computer Science. Springer, 2005, pp. 17–33. ISBN: 3-540-24573-1. DOI:
10.1007/978-3-540-30576-7_2 (cit. on p. 117).

[CHS06] Ran Canetti, Shai Halevi, and Michael Steiner. « Mitigating Dictionary Attacks on
Password-Protected Local Storage ». In: Advances in Cryptology - CRYPTO 2006, 26th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2006, Pro-
ceedings. Ed. by Cynthia Dwork. Vol. 4117. Lecture Notes in Computer Science. Springer,
2006, pp. 160–179. ISBN: 3-540-37432-9. DOI: 10.1007/11818175_10 (cit. on p. 117).

[Cio12] Oana Ciobotaru. « On the (non-) equivalence of UC security notions ». In: Provable Security.
Springer, 2012, pp. 104–124 (cit. on p. 73).

[CKP04] Liqun Chen, Caroline Kudla, and Kenneth G. Paterson. « Concurrent Signatures ». In:
Advances in Cryptology – EUROCRYPT 2004. Ed. by Christian Cachin and Jan Camenisch.
Vol. 3027. Lecture Notes in Computer Science. Interlaken, Switzerland: Springer, Heidel-
berg, Germany, May 2004, pp. 287–305 (cit. on pp. 55, 57, 58, 60).

[Cle86] Richard Cleve. « Limits on the Security of Coin Flips when Half the Processors Are Faulty
(Extended Abstract) ». In: Proceedings of the 18th Annual ACM Symposium on Theory of
Computing, May 28-30, 1986, Berkeley, California, USA. Ed. by Juris Hartmanis. ACM, 1986,
pp. 364–369. ISBN: 0-89791-193-8. DOI: 10.1145/12130.12168 (cit. on pp. 9, 55).

[CLSC05] Kumar Chellapilla, Kevin Larson, Patrice Y. Simard, and Mary Czerwinski. « Designing
human friendly human interaction proofs (HIPs) ». In: Proceedings of the 2005 Conference on
Human Factors in Computing Systems, CHI 2005, Portland, Oregon, USA, April 2-7, 2005. Ed. by
Gerrit C. van der Veer and Carolyn Gale. ACM, 2005, pp. 711–720. ISBN: 1-58113-998-5.
DOI: 10.1145/1054972.1055070 (cit. on p. 121).

[CM99] J. Camenisch and M. Michels. « Proving that a number is the product of two safe primes ».
In: Advances in Cryptology – EUROCRYPT’99. Springer-Verlag, 1999, pp. 107–122 (cit. on
p. 43).

http://dx.doi.org/10.1145/1411759.1411783
http://dx.doi.org/10.1007/BFb0027925
http://dx.doi.org/10.1007/978-3-540-30576-7_2
http://dx.doi.org/10.1007/11818175_10
http://dx.doi.org/10.1145/12130.12168
http://dx.doi.org/10.1145/1054972.1055070

[CND+06] J.-S. Coron, D. Naccache, Y. Desmedt, A. Odlyzko, and J. P. Stern. « Index Calculation
Attacks on RSA Signature and Encryption ». In: Designs, Codes and Cryptography 38.1 (2006),
pp. 41–53 (cit. on p. 20).

[CNS99] J.-S. Coron, D. Naccache, and J. P. Stern. « On the Security of RSA Padding ». In: Advances
in Cryptology - CRYPTO’99. Vol. 1666. Lecture Notes in Computer Science. Springer-Verlag,
1999, pp. 1–18 (cit. on p. 20).

[Coc69] John Cocke. « Programming languages and their compilers: Preliminary notes ». In: (1969)
(cit. on p. 129).

[CS98] R. Cramer and V. Shoup. « A Practical Public Key Cryptosystem Provably Secure Against
Adaptive Chosen Ciphertext Attack ». In: Advances in Cryptology - CRYPTO’98. Vol. 1462.
Lecture Notes in Computer Science. Springer, 1998, pp. 13–25 (cit. on p. 13).

[CSRL01] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms. 2nd.
McGraw-Hill Higher Education, 2001 (cit. on p. 90).

[Dam10] I. Damgård. On Σ Protocols. http://www.cs.au.dk/~ivan/Sigma.pdf. 2010 (cit. on
pp. 71, 82).

[Dan51] George B Dantzig. « Maximization of a Linear Function of Variables Subject to Linear
Inequalities ». In: Activity Analysis of Production and Allocation (1951) (cit. on pp. 84, 85).

[DDN00] D. Dolev, C. Dwork, and M. Naor. « Non-Malleable Cryptography ». In: SIAM Journal
on Computing. Society for Industrial and Applied Mathematics, 2000, pp. 542–552 (cit. on
p. 25).

[Del07] Cécile Delerablée. « Identity-based broadcast encryption with constant size ciphertexts
and private keys ». In: ASIACRYPT ’07. Vol. 4833. LNCS. Springer Berlin Heidelberg, 2007,
pp. 200–215 (cit. on pp. 139, 143).

[DF03] Yevgeniy Dodis and Nelly Fazio. « Public key broadcast encryption for stateless receivers ».
In: Digital Rights Management. Vol. 2696. LNCS. Springer Berlin Heidelberg, 2003, pp. 61–80
(cit. on p. 139).

[DGN03] Cynthia Dwork, Andrew Goldberg, and Moni Naor. « On Memory-Bound Functions for
Fighting Spam ». In: Advances in Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings. Ed. by
Dan Boneh. Vol. 2729. Lecture Notes in Computer Science. Springer, 2003, pp. 426–444.
ISBN: 3-540-40674-3. DOI: 10.1007/978-3-540-45146-4_25 (cit. on p. 72).

[DH76] W. Diffie and M. E. Hellman. « New Directions in Cryptography ». In: IEEE Transactions on
Information Theory 22.6 (Nov. 1976), pp. 644–654 (cit. on pp. 11–13, 19, 24).

[DN92] Cynthia Dwork and Moni Naor. « Pricing via Processing or Combatting Junk Mail ». In:
Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 16-20, 1992, Proceedings. Ed. by Ernest F. Brickell. Vol. 740.
Lecture Notes in Computer Science. Springer, 1992, pp. 139–147. ISBN: 3-540-57340-2. DOI:
10.1007/3-540-48071-4_10 (cit. on p. 72).

[DNW05] Cynthia Dwork, Moni Naor, and Hoeteck Wee. « Pebbling and Proofs of Work ». In:
Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 14-18, 2005, Proceedings. Ed. by Victor Shoup. Vol. 3621.
Lecture Notes in Computer Science. Springer, 2005, pp. 37–54. ISBN: 3-540-28114-2. DOI:
10.1007/11535218_3 (cit. on p. 72).

[DPP07] Cécile Delerablée, Pascal Paillier, and David Pointcheval. « Fully collusion secure dynamic
broadcast encryption with constant-size ciphertexts or decryption keys ». In: Pairing ’07.
Vol. 4575. LNCS. Springer Berlin Heidelberg, 2007, pp. 39–59 (cit. on p. 139).

[DT06a] George B Dantzig and Mukund N Thapa. Linear programming 1: Introduction. Springer
Science & Business Media, 2006 (cit. on pp. 84, 85).

[DT06b] George B Dantzig and Mukund N Thapa. Linear programming 2: Theory and extensions.
Springer Science & Business Media, 2006 (cit. on pp. 84, 85).

[DWQ+14] Hua Deng, Qianhong Wu, Bo Qin, Josep Domingo-Ferrer, Lei Zhang, Jianwei Liu, and
Wenchang Shi. « Ciphertext-policy hierarchical attribute-based encryption with short
ciphertexts ». In: Information Sciences 275 (2014), pp. 370–384 (cit. on p. 138).

[Dzi10] Stefan Dziembowski. « How to Pair with a Human ». In: Security and Cryptography for Net-
works, 7th International Conference, SCN 2010, Amalfi, Italy, September 13-15, 2010. Proceedings.
Ed. by Juan A. Garay and Roberto De Prisco. Vol. 6280. Lecture Notes in Computer Science.

http://www.cs.au.dk/~ivan/Sigma.pdf
http://dx.doi.org/10.1007/978-3-540-45146-4_25
http://dx.doi.org/10.1007/3-540-48071-4_10
http://dx.doi.org/10.1007/11535218_3

Springer, 2010, pp. 200–218. ISBN: 978-3-642-15316-7. DOI: 10.1007/978-3-642-15317-
4_14 (cit. on p. 117).

[Eco11] Umberto Eco. Il pendolo di Foucault. Bompiani, 2011 (cit. on p. 133).
[EDHS07] Jeremy Elson, John R. Douceur, Jon Howell, and Jared Saul. « Asirra: a CAPTCHA that

exploits interest-aligned manual image categorization ». In: Proceedings of the 2007 ACM
Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA,
October 28-31, 2007. Ed. by Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.
Syverson. ACM, 2007, pp. 366–374. ISBN: 978-1-59593-703-2. DOI: 10.1145/1315245.
1315291 (cit. on p. 117).

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. « A randomized protocol for signing
contracts ». In: Communications of the ACM 28.6 (1985), pp. 637–647 (cit. on p. 9).

[El 84] T. El Gamal. « A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms ». In: Advances in Cryptology - CRYPTO’84. Vol. 196. Lecture Notes in Computer
Science. Springer, 1984, pp. 10–18 (cit. on pp. 12, 21).

[ElG84] Taher ElGamal. « A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms ». In: Advances in Cryptology – CRYPTO’84. Ed. by G. R. Blakley and David
Chaum. Vol. 196. Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 1984, pp. 10–18 (cit. on pp. 56, 60).

[EMV] EMVCo. http://www.emvco.com/specifications.aspx (cit. on p. 97).
[EMV08a] EMVCo. EMV Specification (Book 1) – version 4.2. June 2008 (cit. on pp. 97, 102).
[EMV08b] EMVCo. EMV Specification (Book 2) – version 4.2. June 2008 (cit. on pp. 97, 104).
[EMV08c] EMVCo. EMV Specification (Book 3) – version 4.2. June 2008 (cit. on pp. 97, 103, 104).
[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. « Zero-Knowledge Proofs of Identity ». In: J.

Cryptology 1.2 (1988), pp. 77–94. DOI: 10.1007/BF02351717 (cit. on pp. 28, 56, 72, 82, 83,
85, 89).

[FGM+15a] Houda Ferradi, Rémi Géraud, Diana Maimuţ, David Naccache, and Amaury de Wargny.
Regulating the Pace of von Neumann Correctors. Cryptology ePrint Archive, Report 2015/849.
http://eprint.iacr.org/2015/849. 2015 (cit. on pp. 33, 36).

[FGM+15b] Houda Ferradi, Rémi Géraud, Diana Maimuţ, David Naccache, and Hang Zhou.
Backtracking-Assisted Multiplication. Cryptology ePrint Archive, Report 2015/787. http:
//eprint.iacr.org/2015/787. 2015 (cit. on pp. 33, 36).

[FGM+16a] Houda Ferradi, Rémi Géraud, Diana Maimuţ, David Naccache, and David Pointcheval.
« Legally Fair Contract Signing Without Keystones ». In: Applied Cryptography and Network
Security: 14th International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceed-
ings. Ed. by Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider. Cham: Springer
International Publishing, 2016, pp. 175–190. ISBN: 978-3-319-39555-5. DOI: 10.1007/978-
3-319-39555-5_10. URL: http://dx.doi.org/10.1007/978-3-319-39555-
5_10 (cit. on p. 30).

[FGM+16b] Houda Ferradi, Rémi Géraud, Diana Maimuţ, David Naccache, and David Pointcheval.
Legally Fair Contract Signing Without Keystones. Cryptology ePrint Archive, Report 2016/363.
http://eprint.iacr.org/2016/363. 2016 (cit. on p. 30).

[FGN16a] Houda Ferradi, Rémi Géraud, and David Naccache. Slow Motion Zero Knowledge Identi-
fying With Colliding Commitments. Cryptology ePrint Archive, Report 2016/399. http:
//eprint.iacr.org/2016/399. 2016 (cit. on p. 30).

[FGN16b] Houda Ferradi, Rémi Géraud, and David Naccache. « Slow Motion Zero Knowledge
Identifying with Colliding Commitments ». In: Information Security and Cryptology: 11th
International Conference, Inscrypt 2015, Beijing, China, November 1-3, 2015, Revised Selected
Papers. Ed. by Dongdai Lin, XiaoFeng Wang, and Moti Yung. Cham: Springer International
Publishing, 2016, pp. 381–396. ISBN: 978-3-319-38898-4. DOI: 10.1007/978-3-319-
38898-4_22. URL: http://dx.doi.org/10.1007/978-3-319-38898-4_22
(cit. on p. 30).

[FGNT15] Houda Ferradi, Rémi Géraud, David Naccache, and Assia Tria. When Organized Crime
Applies Academic Results - A Forensic Analysis of an In-Card Listening Device. Cryptology
ePrint Archive, Report 2015/963. http://eprint.iacr.org/2015/963. 2015 (cit. on
p. 31).

http://dx.doi.org/10.1007/978-3-642-15317-4_14
http://dx.doi.org/10.1007/978-3-642-15317-4_14
http://dx.doi.org/10.1145/1315245.1315291
http://dx.doi.org/10.1145/1315245.1315291
http://www.emvco.com/specifications.aspx
http://dx.doi.org/10.1007/BF02351717
http://eprint.iacr.org/2015/849
http://eprint.iacr.org/2015/787
http://eprint.iacr.org/2015/787
http://dx.doi.org/10.1007/978-3-319-39555-5_10
http://dx.doi.org/10.1007/978-3-319-39555-5_10
http://dx.doi.org/10.1007/978-3-319-39555-5_10
http://dx.doi.org/10.1007/978-3-319-39555-5_10
http://eprint.iacr.org/2016/363
http://eprint.iacr.org/2016/399
http://eprint.iacr.org/2016/399
http://dx.doi.org/10.1007/978-3-319-38898-4_22
http://dx.doi.org/10.1007/978-3-319-38898-4_22
http://dx.doi.org/10.1007/978-3-319-38898-4_22
http://eprint.iacr.org/2015/963

[FN94] Amos Fiat and Moni Naor. « Broadcast encryption ». In: CRYPTO ’93. Vol. 773. LNCS.
Springer Berlin Heidelberg, 1994, pp. 480–491 (cit. on p. 139).

[FO97] E. Fujisaki and T. Okamoto. « Statistical zero knowledge protocols to prove modular
polynomial relations ». In: Advances in Cryptology – CRYPTO’97. Springer-Verlag, 1997,
pp. 16–30 (cit. on p. 44).

[FO98] E. Fujisaki and T. Okamoto. « A practical and provably secure scheme for publicly verifiable
secret sharing and its applications ». In: Advances in Cryptology – CRYPTO’98. Springer-
Verlag, 1998, pp. 32–46 (cit. on p. 44).

[FS87] A. Fiat and A. Shamir. « How to Prove Yourself: Practical Solutions to Identification and
Signature Problems ». In: Advances in Cryptology - CRYPTO’86. Vol. 263. Lecture Notes in
Computer Science. Springer-Verlag, 1987, pp. 186–194 (cit. on pp. 21, 89, 92).

[GBI+13] Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet. « Multi-
digit Number Recognition from Street View Imagery using Deep Convolutional Neural
Networks ». In: CoRR abs/1312.6082 (2013). URL: http://arxiv.org/abs/1312.6082
(cit. on p. 120).

[GH09] Craig Gentry and Shai Halevi. « Hierarchical identity based encryption with polynomially
many levels ». In: TCC ’09. Vol. 5444. LNCS. Springer Berlin Heidelberg, 2009, pp. 437–456
(cit. on p. 140).

[GHKL08] S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. « Complete fairness in
secure two-party computation ». In: 40th Annual ACM Symposium on Theory of Computing.
Ed. by Richard E. Ladner and Cynthia Dwork. Victoria, British Columbia, Canada: ACM
Press, May 2008, pp. 413–422 (cit. on pp. 9, 55).

[GHNK16] Msgna Mehari G., Ferradi Houda, Akram Raja Naeem, and Markantonakis Konstantinos.
« Secure Application Execution in Mobile Devices ». In: The New Codebreakers: Essays Dedi-
cated to David Kahn on the Occasion of His 85th Birthday. Ed. by Ryan A. Peter Y., Naccache
David, and Quisquater Jean-Jacques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp. 417–438. ISBN: 978-3-662-49301-4. DOI: 10.1007/978-3-662-49301-4_26. URL:
http://dx.doi.org/10.1007/978-3-662-49301-4_26 (cit. on pp. 33, 34).

[Gir00] Marc Girault. « Low-Size Coupons for Low-Cost IC Cards ». In: Smart Card Research and
Advanced Applications: IFIP TC8 / WG8.8 Fourth Working Conference on Smart Card Research
and Advanced Applications September 20–22, 2000, Bristol, United Kingdom. Ed. by Josep
Domingo-Ferrer, David Chan, and Anthony Watson. Boston, MA: Springer US, 2000,
pp. 39–49. ISBN: 978-0-387-35528-3. DOI: 10.1007/978-0-387-35528-3_3. URL:
http://dx.doi.org/10.1007/978-0-387-35528-3_3 (cit. on p. 71).

[Gir90] Marc Girault. « An Identity-based Identification Scheme Based on Discrete Logarithms
Modulo a Composite Number ». In: Advances in Cryptology - EUROCRYPT ’90, Workshop on
the Theory and Application of of Cryptographic Techniques, Aarhus, Denmark, May 21-24, 1990,
Proceedings. Ed. by Ivan Damgård. Vol. 473. Lecture Notes in Computer Science. Springer,
1990, pp. 481–486. ISBN: 3-540-53587-X (cit. on pp. 72, 74, 76).

[GJM99] Juan A. Garay, Markus Jakobsson, and Philip D. MacKenzie. « Abuse-Free Optimistic
Contract Signing ». In: Advances in Cryptology – CRYPTO’99. Ed. by Michael J. Wiener.
Vol. 1666. Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidel-
berg, Germany, Aug. 1999, pp. 449–466 (cit. on pp. 56, 58).

[GK15] Shafi Goldwasser and Yael Tauman Kalai. Cryptographic Assumptions: A Position Paper.
Cryptology ePrint Archive, Report 2015/907. http://eprint.iacr.org/2015/907.
2015 (cit. on p. 24).

[GL91] Shafi Goldwasser and Leonid A. Levin. « Fair Computation of General Functions in Pres-
ence of Immoral Majority ». In: Advances in Cryptology – CRYPTO’90. Ed. by Alfred J.
Menezes and Scott A. Vanstone. Vol. 537. Lecture Notes in Computer Science. Santa Bar-
bara, CA, USA: Springer, Heidelberg, Germany, Aug. 1991, pp. 77–93 (cit. on p. 55).

[GM82] S. Goldwasser and S. Micali. « Probabilistic Encryption & How to Play Mental Poker
Keeping Secret All Partial Information ». In: Proceedings of the 14th Annual ACM Symposium
on Theory of Computing - STOC’82. ACM, 1982, pp. 365–377 (cit. on pp. 14, 18).

[GM84] S. Goldwasser and S. Micali. « Probabilistic Encryption ». In: Journal of Computer and Systems
Sciences 28.2 (1984), pp. 270–299 (cit. on pp. 8, 22, 25).

http://arxiv.org/abs/1312.6082
http://dx.doi.org/10.1007/978-3-662-49301-4_26
http://dx.doi.org/10.1007/978-3-662-49301-4_26
http://dx.doi.org/10.1007/978-0-387-35528-3_3
http://dx.doi.org/10.1007/978-0-387-35528-3_3
http://eprint.iacr.org/2015/907

[GMPY06] Juan A. Garay, Philip D. MacKenzie, Manoj Prabhakaran, and Ke Yang. « Resource Fairness
and Composability of Cryptographic Protocols ». In: TCC 2006: 3rd Theory of Cryptography
Conference. Ed. by Shai Halevi and Tal Rabin. Vol. 3876. Lecture Notes in Computer Science.
New York, NY, USA: Springer, Heidelberg, Germany, Mar. 2006, pp. 404–428 (cit. on p. 55).

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. « The Knowledge Complexity of Interactive
Proof-Systems ». In: Proceedings of the 17th Annual ACM Symposium on Theory of Computing.
STOC’85. Providence, Rhode Island, USA: ACM, 1985, pp. 291–304 (cit. on pp. 18, 27, 28,
71, 82, 89).

[GMR98] R. Gennaro, D. Micciancio, and T. Rabin. « An efficient non-interactive statistical zero-
knowledge proof system for quasi-safe prime products ». In: Proceedings of the 5th ACM
conference on Computer and Communications Security. ACM, 1998, pp. 67–72 (cit. on pp. 43,
44).

[GMW87a] O. Goldreich, S. Micali, and A. Wigderson. « How to prove all NP statements in zero-
knowledge and a methodology of cryptographic protocol design ». In: Advances in Cryptol-
ogy – CRYPTO’86. Springer-Verlag, 1987, pp. 171–185 (cit. on p. 43).

[GMW87b] Oded Goldreich, Silvio Micali, and Avi Wigderson. « How to Play any Mental Game or
A Completeness Theorem for Protocols with Honest Majority ». In: 19th Annual ACM
Symposium on Theory of Computing. Ed. by Alfred Aho. New York City„ New York, USA:
ACM Press, May 1987, pp. 218–229 (cit. on pp. 9, 55).

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. « Proofs that Yield Nothing But Their
Validity for All Languages in NP Have Zero-Knowledge Proof Systems ». In: J. ACM 38.3
(1991), pp. 691–729. DOI: 10.1145/116825.116852 (cit. on pp. 71, 72, 82).

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Vol. 2. Cambridge, UK:
Cambridge University Press, 2004. ISBN: ISBN 0-521-83084-2 (hardback) (cit. on pp. 9, 55).

[Gol83] Oded Goldreich. « A Simple Protocol for Signing Contracts ». In: Advances in Cryptology,
Proceedings of CRYPTO ’83, Santa Barbara, California, USA, August 21-24, 1983. Ed. by David
Chaum. Plenum Press, New York, 1983, pp. 133–136 (cit. on p. 57).

[Goo] Google. Google reCAPTCHA. URL: https://developers.google.com/recaptcha
(cit. on p. 117).

[GOS06] J. Groth, R. Ostrovsky, and A. Sahai. « Perfect non-interactive zero knowledge for NP ». In:
Advances in Cryptology – EUROCRYPT 2006. Springer, 2006, pp. 339–358 (cit. on p. 43).

[GP88] J. Van de Graaf and R. Peralta. « A simple and secure way to show the validity of your
public key ». In: Advances in Cryptology – CRYPTO’87. Springer Berlin Heidelberg, 1988,
pp. 128–134 (cit. on p. 43).

[GPS06] Marc Girault, Guillaume Poupard, and Jacques Stern. « On the Fly Authentication and
Signature Schemes Based on Groups of Unknown Order ». In: J. Cryptology 19.4 (2006),
pp. 463–487. DOI: 10.1007/s00145-006-0224-0 (cit. on pp. 21, 56, 60, 71, 74, 77, 78,
80, 81).

[GPS08] Steven D Galbraith, Kenneth G Paterson, and Nigel P Smart. « Pairings for cryptographers ».
In: Discrete Applied Mathematics 156.16 (2008), pp. 3113–3121 (cit. on p. 13).

[GQ88] L. C. Guillou and J.-J. Quisquater. « A Practical Zero-knowledge Protocol Fitted to Security
Microprocessor Minimizing Both Transmission and Memory ». In: Advances in Cryptology -
EUROCRYPT’88. Vol. 330. Lecture Notes in Computer Science. Springer, 1988, pp. 123–128
(cit. on p. 89).

[GS02] Craig Gentry and Alice Silverberg. « Hierarchical ID-based cryptography ». In: ASIACRYPT
’02. Vol. 2501. LNCS. Springer Berlin Heidelberg, 2002, pp. 548–566 (cit. on pp. 89, 138, 139,
159).

[GS94a] M. Girault and J. Stern. « On the Length of Cryptographic Hash-Values Used in Iden-
tification Schemes ». In: Advances in Cryptology - CRYPTO’94. 1994, pp. 202–215 (cit. on
p. 71).

[GS94b] Marc Girault and Jacques Stern. « On the Length of Cryptographic Hash-Values Used in
Identification Schemes ». In: Advances in Cryptology - CRYPTO ’94, 14th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 21-25, 1994, Proceedings. Ed. by
Yvo Desmedt. Vol. 839. Lecture Notes in Computer Science. Springer, 1994, pp. 202–215.
ISBN: 3-540-58333-5. DOI: 10.1007/3-540-48658-5_21 (cit. on pp. 74, 78).

http://dx.doi.org/10.1145/116825.116852
https://developers.google.com/recaptcha
http://dx.doi.org/10.1007/s00145-006-0224-0
http://dx.doi.org/10.1007/3-540-48658-5_21

[GW09] Craig Gentry and Brent Waters. « Adaptive security in broadcast encryption systems (with
short ciphertexts) ». In: EUROCRYPT ’09. Vol. 5479. LNCS. Springer Berlin Heidelberg,
2009, pp. 171–188 (cit. on pp. 139, 143).

[Hei01] Christopher D. Manning and Heinrich Schütze. Foundations of statistical natural language
processing. MIT Press, 2001. ISBN: 978-0-262-13360-9 (cit. on p. 133).

[HL02] Jeremy Horwitz and Ben Lynn. « Toward Hierarchical Identity-Based Encryption ». In:
Advances in Cryptology — EUROCRYPT 2002: International Conference on the Theory and
Applications of Cryptographic Techniques Amsterdam, The Netherlands, April 28 – May 2, 2002
Proceedings. Ed. by Lars R. Knudsen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
pp. 466–481. ISBN: 978-3-540-46035-0. DOI: 10.1007/3-540-46035-7_31. URL: http:
//dx.doi.org/10.1007/3-540-46035-7_31 (cit. on pp. 82, 139, 159).

[HL10] Carmit Hazay and Yehuda Lindell. Efficient secure two-party protocols: Techniques and con-
structions. Springer Science & Business Media, 2010 (cit. on p. 71).

[HPM94] Patrick Horster, Holger Petersen, and Markus Michels. « Meta-El-Gamal Signature
Schemes ». In: ACM CCS 94: 2nd Conference on Computer and Communications Security.
Fairfax, Virginia, USA: ACM Press, 1994, pp. 96–107 (cit. on pp. 56, 60).

[HRD+16] Ferradi Houda, Géraud Rémi, Maimuţ Diana, Naccache David, and Zhou Hang.
« Backtracking-Assisted Multiplication ». In: Arctic Crypt 2016, July 17-22, Longyearbyen,
Svalbard, Norway. Pre-Proceedings. 2016 (cit. on pp. 33, 36).

[HRDA16] Ferradi Houda, Géraud Rémi, Naccache David, and Tria Assia. « When organized crime
applies academic results: a forensic analysis of an in-card listening device ». In: Journal of
Cryptographic Engineering 6.1 (2016), pp. 49–59. ISSN: 2190-8516. DOI: 10.1007/s13389-
015-0112-3. URL: http://dx.doi.org/10.1007/s13389-015-0112-3 (cit. on
p. 31).

[HRN16] Ferradi Houda, Géraud Rémi, and David Naccache. « Human Public-Key Encryption ».
In: Mycrypt 2016: Paradigm-shifting Crypto Kuala Lumpur, Malaysia, December 1-2, 2016.
Proceedings. Ed. by Phan Raphael C.-W. and Yung Moti. Springer International Publishing,
2016 (cit. on p. 32).

[HS02] Dani Halevy and Adi Shamir. « The LSD broadcast encryption scheme ». In: CRYPTO ’02.
Vol. 2442. LNCS. Springer Berlin Heidelberg, 2002, pp. 47–60 (cit. on p. 139).

[HYH+16] Jinguang Huan, Ye Yang, Xinyi Huang, Tsz Hon Yuen, Jiguo Li, and Jie Cao. « Account-
able mobile E-commerce scheme via identity-based plaintext-checkable encryption ». In:
Information Sciences 345 (2016), pp. 143–155 (cit. on p. 151).

[IBM] IBM. 4764 PCI-X Cryptographic Coprocessor. See http://www-03.ibm.com/security/
cryptocards/pcixcc/overperformance.shtml (cit. on p. 51).

[JD12] Markus Jakobsson and Mayank Dhiman. « The Benefits of Understanding Passwords ».
In: 7th USENIX Workshop on Hot Topics in Security, HotSec’12, Bellevue, WA, USA, August 7,
2012. Ed. by Patrick Traynor. USENIX Association, 2012 (cit. on pp. 125, 128).

[JJ02] A. Juels and J.Guajardo. « RSA key generation with verifiable randomness ». In: Public Key
Cryptography. Springer Berlin Heidelberg, 2002, pp. 357–374 (cit. on pp. 43, 44).

[JR14] Ari Juels and Thomas Ristenpart. « Honey Encryption: Security Beyond the Brute-Force
Bound ». In: Advances in Cryptology – EUROCRYPT 2014. Ed. by Phong Q. Nguyen and
Elisabeth Oswald. Vol. 8441. Lecture Notes in Computer Science. Copenhagen, Denmark:
Springer, Heidelberg, Germany, May 2014, pp. 293–310. DOI: 10.1007/978-3-642-
55220-5_17 (cit. on pp. 32, 115, 122, 125–127, 131, 165).

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. « Designated Verifier Proofs and
Their Applications ». In: Advances in Cryptology – EUROCRYPT’96. Ed. by Ueli M. Maurer.
Vol. 1070. Lecture Notes in Computer Science. Saragossa, Spain: Springer, Heidelberg,
Germany, May 1996, pp. 143–154 (cit. on p. 55).

[Jus] Ministère de la Justice (France). French prosecution case number 1116791060. (Cit. on p. 98).
[Kal13] Burton Kaliski. « PKCS#5: Password-Based Cryptography Specifications Version 2.0. » In:

Request for Comments 2898. 2013 (cit. on p. 125).
[Kar84] Narendra Karmarkar. « A new polynomial-time algorithm for linear programming ». In:

Proceedings of the sixteenth annual ACM symposium on Theory of computing. ACM. 1984,
pp. 302–311 (cit. on p. 84).

http://dx.doi.org/10.1007/3-540-46035-7_31
http://dx.doi.org/10.1007/3-540-46035-7_31
http://dx.doi.org/10.1007/3-540-46035-7_31
http://dx.doi.org/10.1007/s13389-015-0112-3
http://dx.doi.org/10.1007/s13389-015-0112-3
http://dx.doi.org/10.1007/s13389-015-0112-3
http://www-03.ibm.com/security/cryptocards/pcixcc/overperformance.shtml
http://www-03.ibm.com/security/cryptocards/pcixcc/overperformance.shtml
http://dx.doi.org/10.1007/978-3-642-55220-5_17
http://dx.doi.org/10.1007/978-3-642-55220-5_17

[Kas65] Tadao Kasami. An efficient recognition and syntax analysis algorithm for context-free languages.
Tech. rep. DTIC Document, 1965 (cit. on p. 129).

[Ker83] Auguste Kerckhoffs. La cryptographie militaire, ou, Des chiffres usités en temps de guerre: avec
un nouveau procédé de déchiffrement applicable aux systèmes à double clef. Librairie militaire de
L. Baudoin, 1883 (cit. on p. 8).

[KKM+12] Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Richard Shay, Timothy
Vidas, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Julio Lopez. « Guess Again
(and Again and Again): Measuring Password Strength by Simulating Password-Cracking
Algorithms ». In: 2012 IEEE Symposium on Security and Privacy. San Francisco, California,
USA: IEEE Computer Society Press, May 2012, pp. 523–537 (cit. on p. 128).

[KKM12] Saqib A Kakvi, Eike Kiltz, and Alexander May. « Certifying RSA ». In: Advances in
Cryptology–ASIACRYPT 2012. Springer, 2012, pp. 404–414 (cit. on p. 43).

[KM03] Dan Klein and Christopher D Manning. « Accurate unlexicalized parsing ». In: Proceedings
of the 41st Annual Meeting on Association for Computational Linguistics-Volume 1. Association
for Computational Linguistics. 2003, pp. 423–430 (cit. on p. 128).

[Kob87] N. Koblitz. « Elliptic Curve Cryptosystems ». In: Mathematics of Computation 48.177 (1987),
pp. 203–209 (cit. on p. 24).

[KOPW13] Abishek Kumarasubramanian, Rafail Ostrovsky, Omkant Pandey, and Akshay Wadia.
« Cryptography Using Captcha Puzzles ». In: Public-Key Cryptography - PKC 2013 - 16th In-
ternational Conference on Practice and Theory in Public-Key Cryptography, Nara, Japan, February
26 - March 1, 2013. Proceedings. Ed. by Kaoru Kurosawa and Goichiro Hanaoka. Vol. 7778.
Lecture Notes in Computer Science. Springer, 2013, pp. 89–106. ISBN: 978-3-642-36361-0.
DOI: 10.1007/978-3-642-36362-7_7 (cit. on p. 117).

[KSAS15] Jongkil Kim, Willy Susilo, Man Ho Au, and Jennifer Seberry. « Adaptively secure identity-
based broadcast encryption with a constant-sized ciphertext ». In: IEEE Transactions on
Information Forensics and Security 10.3 (2015), pp. 679–693 (cit. on p. 139).

[KY08] Christos Koufogiannakis and Neal E. Young. « Beating Simplex for Fractional Packing and
Covering Linear Programs ». In: CoRR abs/0801.1987 (2008). URL: http://arxiv.org/
abs/0801.1987 (cit. on p. 84).

[KY10] Okamura Keisuke and Oyama Yoshihiro. « Load-based covert channels between Xen
virtual machines ». In: Proceedings of the 2010 ACM Symposium on Applied Computing. SAC
’10. Sierre, Switzerland: ACM, 2010, pp. 173–180. ISBN: 978-1-60558-639-7. DOI: 10.1145/
1774088.1774125. URL: http://doi.acm.org/10.1145/1774088.1774125
(cit. on p. 34).

[Len84] HW Lenstra. « Integer programming and cryptography ». In: The Mathematical Intelligencer
6.3 (1984), pp. 14–21 (cit. on pp. 24, 84).

[LHAS14] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song. « The Emperor’s New Password
Manager: Security Analysis of Web-based Password Managers ». In: Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014. Ed. by Kevin Fu and
Jaeyeon Jung. USENIX Association, 2014, pp. 465–479 (cit. on p. 125).

[Lin08] Andrew Y. Lindell. « Legally-Enforceable Fairness in Secure Two-Party Computation ». In:
Topics in Cryptology – CT-RSA 2008. Ed. by Tal Malkin. Vol. 4964. Lecture Notes in Computer
Science. San Francisco, CA, USA: Springer, Heidelberg, Germany, Apr. 2008, pp. 121–137
(cit. on pp. 9, 55, 57).

[LLW+16a] Weiran Liu, Jianwei Liu, Qianhong Wu, Bo Qin, and Yan Li. « Practical chosen-ciphertext
secure hierarchical identity-based broadcast encryption ». In: International Journal of Infor-
mation Security 15.1 (2016), pp. 35–50 (cit. on p. 143).

[LLW+16b] Weiran Liu, Jianwei Liu, Qianhong Wu, Bo Qin, David Naccache, and Houda Ferradi.
Compact CCA2-secure Hierarchical Identity-Based Broadcast Encryption for Fuzzy-entity Data
Sharing. Cryptology ePrint Archive, Report 2016/634. http://eprint.iacr.org/
2016/634. 2016 (cit. on p. 33).

[LLWQ14] Weiran Liu, Jianwei Liu, Qianhong Wu, and Bo Qin. « Hierarchical Identity-Based Broad-
cast Encryption ». In: ACISP ’14. Vol. 8544. LNCS. Springer Berlin Heidelberg, 2014, pp. 242–
257 (cit. on p. 139).

http://dx.doi.org/10.1007/978-3-642-36362-7_7
http://arxiv.org/abs/0801.1987
http://arxiv.org/abs/0801.1987
http://dx.doi.org/10.1145/1774088.1774125
http://dx.doi.org/10.1145/1774088.1774125
http://doi.acm.org/10.1145/1774088.1774125
http://eprint.iacr.org/2016/634
http://eprint.iacr.org/2016/634

[LPQ12] Benoît Libert, Kenneth G Paterson, and Elizabeth A Quaglia. « Anonymous broadcast
encryption: Adaptive security and efficient constructions in the standard model ». In: PKC
’12. Vol. 7293. LNCS. Springer Berlin Heidelberg, 2012, pp. 206–224 (cit. on p. 139).

[LS98] M. Liskov and B. Silverman. A statistical-limited knowledge proof for secure RSA keys.
Manuscript. 1998 (cit. on p. 44).

[LV08] C. Lavault and M. Valencia-Pabon. « A Distributed Approximation Algorithm for the
Minimum Degree Minimum Weight Spanning Trees ». In: Journal of Parallel and Distributed
Computing 68.2 (2008), pp. 200–208 (cit. on p. 90).

[LW10] Allison Lewko and Brent Waters. « New techniques for dual system encryption and fully
secure HIBE with short ciphertexts ». In: TCC ’10. Vol. 5978. LNCS. Springer Berlin Heidel-
berg, 2010, pp. 455–479 (cit. on pp. 140, 143–145, 147).

[LW12] Allison Lewko and Brent Waters. « New proof methods for attribute-based encryption:
Achieving full security through selective techniques ». In: CRYPTO ’12. Vol. 7417. LNCS.
Springer Berlin Heidelberg, 2012, pp. 180–198 (cit. on pp. 140, 145).

[Mao98] W. Mao. « Verifiable partial sharing of integer factors ». In: Selected Areas in Cryptography –
SAC’98. Springer-Verlag, 1998, pp. 94–105 (cit. on p. 44).

[MDAB10] Steven J Murdoch, Saar Drimer, Ross Anderson, and Mike Bond. « Chip and PIN is
Broken ». In: 2010 IEEE Symposium on Security and Privacy. IEEE. 2010, pp. 433–446 (cit. on
pp. 31, 69, 97, 164).

[Mer78] Ralph C. Merkle. « Secure Communications Over Insecure Channels ». In: Commun. ACM
21.4 (1978), pp. 294–299. DOI: 10.1145/359460.359473 (cit. on pp. 24, 119).

[MGW03] A. J. Mooij, N. Goga, and J. W. Wesselink. A Distributed Spanning Tree Algorithm for Topology-
Aware Networks. Technische Universiteit Eindhoven, Department of Mathematics and
Computer Science, 2003 (cit. on pp. 90, 91).

[MHH+14] Abdalla Michel, Chabanne Hervé, Ferradi Houda, Jainski Julien, and Naccache David. « Im-
proving Thomlinson-Walker’s Software Patching Scheme Using Standard Cryptographic
and Statistical Tools ». In: Information Security Practice and Experience: 10th International Con-
ference, ISPEC 2014, Fuzhou, China, May 5-8, 2014. Proceedings. Ed. by Huang Xinyi and Zhou
Jianying. Cham: Springer International Publishing, 2014, pp. 8–14. ISBN: 978-3-319-06320-1.
DOI: 10.1007/978-3-319-06320-1_2. URL: http://dx.doi.org/10.1007/978-
3-319-06320-1_2 (cit. on p. 33).

[MHS03] Marco Casassa Mont, Keith Harrison, and Martin Sadler. « The HP Time Vault Service:
Exploiting IBE for Timed Release of Confidential Information ». In: Proceedings of the
12th International Conference on World Wide Web. WWW ’03. Budapest, Hungary: ACM,
2003, pp. 160–169. ISBN: 1-58113-680-3. DOI: 10.1145/775152.775175. URL: http:
//doi.acm.org/10.1145/775152.775175 (cit. on p. 159).

[Mic03] Silvio Micali. « Simple and fast optimistic protocols for fair electronic exchange ». In: 22nd
ACM Symposium Annual on Principles of Distributed Computing. Ed. by Elizabeth Borowsky
and Sergio Rajsbaum. Boston, Massachusetts, USA: Association for Computing Machinery,
July 2003, pp. 12–19 (cit. on p. 55).

[Mic93] S. Micali. « Fair Public Key Cryptosystems ». In: Advances in Cryptology – CRYPTO’92.
Springer Berlin Heidelberg, 1993, pp. 113–138 (cit. on p. 44).

[Mil86] V. S. Miller. « Use of Elliptic Curves in Cryptography ». In: Advances in Cryptology - CRYPTO
85. Vol. 218. Lecture Notes in Computer Sciences. Springer-Verlag, 1986, pp. 417–426 (cit. on
p. 24).

[Mis98] J.-F. Misarsky. « How (Not) to Design RSA Signature Schemes ». In: Public-Key Cryptography.
Vol. 1431. Lecture Notes in Computer Science. Springer-Verlag, 1998, pp. 14–28 (cit. on
p. 20).

[MMC06] Keith Mayes, K Markantonakis, and C Chen. « Smart Card Platform Fingerprinting ». In:
The Global Journal of Advanced Card Technology (2006). Ed. by Mark Locke, pp. 78–82 (cit. on
p. 111).

[MMV11] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. « Time-Lock Puzzles in the
Random Oracle Model ». In: Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings. Ed. by Phillip Rogaway.
Vol. 6841. Lecture Notes in Computer Science. Springer, 2011, pp. 39–50. ISBN: 978-3-642-
22791-2. DOI: 10.1007/978-3-642-22792-9_3 (cit. on pp. 72, 73).

http://dx.doi.org/10.1145/359460.359473
http://dx.doi.org/10.1007/978-3-319-06320-1_2
http://dx.doi.org/10.1007/978-3-319-06320-1_2
http://dx.doi.org/10.1007/978-3-319-06320-1_2
http://dx.doi.org/10.1145/775152.775175
http://doi.acm.org/10.1145/775152.775175
http://doi.acm.org/10.1145/775152.775175
http://dx.doi.org/10.1007/978-3-642-22792-9_3

[MN94] David M′Raïhi and David Naccache. « Couponing Scheme Reduces Computational Power
Requirements for DSS Signatures ». In: Proceedings of CardTech/SecurTech. 1994, pp. 99–104
(cit. on pp. 71, 72, 76).

[MN96] D. M’Raïhi and D. Naccache. « Batch Exponentiation: A Fast DLP-Based Signature Genera-
tion Strategy ». In: Proceedings of the 3rd ACM Conference on Computer and Communications
Security - CCS’96. ACM, 1996, pp. 58–61 (cit. on p. 95).

[MP06] Silvio Micali and Rafael Pass. « Local zero knowledge ». In: Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006. Ed. by Jon
M. Kleinberg. ACM, 2006, pp. 306–315. ISBN: 1-59593-134-1. DOI: 10.1145/1132516.
1132561 (cit. on pp. 71, 72).

[MRN16] Ferradi Houda Marc Beunardeau, Géraud Rémi, and David Naccache. « Honey Encryption
for Language: Robbing Shannon to Pay Turing? » In: Mycrypt 2016: Paradigm-shifting Crypto
Kuala Lumpur, Malaysia, December 1-2, 2016. Proceedings. Ed. by Phan Raphael C.-W. and
Yung Moti. Springer International Publishing, 2016 (cit. on p. 32).

[MSA+11] Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser Aiden, Adrian Veres, Matthew K Gray,
Joseph P Pickett, Dale Hoiberg, Dan Clancy, Peter Norvig, and Jon Orwant. « Quantitative
analysis of culture using millions of digitized books ». In: Science 331.6014 (2011), pp. 176–
182 (cit. on pp. 18, 131).

[Mur83] Katta G Murty. « Linear programming ». In: (1983) (cit. on p. 84).
[MYLL14] Jerry Ma, Weining Yang, Min Luo, and Ninghui Li. « A Study of Probabilistic Password

Models ». In: 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May
18-21, 2014. IEEE Computer Society, 2014, pp. 689–704. ISBN: 978-1-4799-4686-0 (cit. on
p. 128).

[NASK14] Mir Tafseer Nayeem, Md. Mamunur Rashid Akand, Nazmus Sakib, and Md. Wasi Ul Kabir.
« Design of a Human Interaction Proof (HIP) using human cognition in contextual natural
conversation ». In: IEEE 13th International Conference on Cognitive Informatics and Cognitive
Computing, ICCI*CC 2014, London, UK, August 18-20, 2014. IEEE, 2014, pp. 146–154. DOI:
10.1109/ICCI-CC.2014.6921454 (cit. on p. 117).

[NES] NESSIE. « List of NESSIE Submissions as Originally Submitted ». In: NESSIE Project. URL:
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions.
html (cit. on p. 21).

[Neu51] J. von Neumann. « Various Techniques used in Connection with Random Digits ». In:
National Bureau of Standards Applied Math Series 12 (1951), pp. 36–38 (cit. on p. 35).

[NM95] David Naccache and David M’Raihi. Electronic Signature Method for Smart Cards. filed April
20, 1995. 1995 (cit. on p. 71).

[NS97] D. Naccache and J. Stern. « A New Public-Key Cryptosystem ». In: Advances in Cryptology -
EUROCRYPT’97. Vol. 1233. Lecture Notes in Computer Science. Springer, 1997, pp. 27–36
(cit. on p. 24).

[NY90] Moni Naor and Moti Yung. « Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks ». In: Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, May 13-17, 1990, Baltimore, Maryland, USA. Ed. by Harriet Ortiz. ACM, 1990,
pp. 427–437. ISBN: 0-89791-361-2. DOI: 10.1145/100216.100273 (cit. on pp. 24, 118).

[Ora] Oracle. Sun Crypto Accelerator SCA 6000. See http://www.oracle.com/us/products/
servers-storage/036080.pdf (cit. on p. 51).

[OW96] P. C. van Oorschot and M. J. Wiener. « On Diffie-Hellman Key Agreement with Short
Exponents ». In: Advances in Cryptology — EUROCRYPT′96. Vol. 1070. Lecture Notes in
Computer Science. Springer, 1996, pp. 332–343 (cit. on p. 22).

[Pai99] P. Paillier. « Public-Key Cryptosystems Based on Composite Degree Residuosity Classes ».
In: Advances in Cryptology - EUROCRYPT’99. Vol. 1592. Lecture Notes in Computer Science.
Springer, 1999, pp. 223–238 (cit. on p. 14).

[Pin03] Benny Pinkas. « Fair Secure Two-Party Computation ». In: Advances in Cryptology – EU-
ROCRYPT 2003. Ed. by Eli Biham. Vol. 2656. Lecture Notes in Computer Science. Warsaw,
Poland: Springer, Heidelberg, Germany, May 2003, pp. 87–105 (cit. on p. 55).

[PLL15] Jong Hwan Park, Kwangsu Lee, and Dong Hoon Lee. « New chosen-ciphertext secure
identity-based encryption with tight security reduction to the bilinear Diffie-Hellman
problem ». In: Information Sciences 325 (2015), pp. 256–270 (cit. on p. 139).

http://dx.doi.org/10.1145/1132516.1132561
http://dx.doi.org/10.1145/1132516.1132561
http://dx.doi.org/10.1109/ICCI-CC.2014.6921454
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions.html
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions.html
http://dx.doi.org/10.1145/100216.100273
http://www.oracle.com/us/products/servers-storage/036080.pdf
http://www.oracle.com/us/products/servers-storage/036080.pdf

[Poi] D. Pointcheval (cit. on p. 67).
[Poi05] D. Pointcheval. « Advanced Course on Contemporary Cryptology ». In: Advanced Courses

CRM Barcelona. Birkhäuser Publishers, Basel, June 2005. Chap. Provable Security for
Public-Key Schemes, pp. 133–189 (cit. on p. 25).

[Poi95] David Pointcheval. « A New Identification Scheme Based on the Perceptrons Problem ».
In: Advances in Cryptology – EUROCRYPT’95. Ed. by Louis C. Guillou and Jean-Jacques
Quisquater. Vol. 921. Lecture Notes in Computer Science. Saint-Malo, France: Springer,
Heidelberg, Germany, May 1995, pp. 319–328 (cit. on pp. 82, 85, 88).

[PQ10] Kenneth G. Paterson and Elizabeth A. Quaglia. « Time-Specific Encryption ». In: Security
and Cryptography for Networks: 7th International Conference, SCN 2010, Amalfi, Italy, September
13-15, 2010. Proceedings. Ed. by Juan A. Garay and Roberto De Prisco. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 1–16. ISBN: 978-3-642-15317-4. DOI: 10.1007/978-
3-642-15317-4_1. URL: http://dx.doi.org/10.1007/978-3-642-15317-4_1
(cit. on pp. 157, 158).

[PS00] David Pointcheval and Jacques Stern. « Security Arguments for Digital Signatures
and Blind Signatures ». In: J. Cryptology 13.3 (2000), pp. 361–396. DOI: 10 . 1007 /
s001450010003 (cit. on pp. 21, 22, 56, 57, 64).

[PS96] D. Pointcheval and J. Stern. « Security Proofs for Signature Schemes ». In: Advances in
Cryptology - EUROCRYPT’96. Vol. 1070. 1996, pp. 387–398 (cit. on pp. 21, 56).

[PS98] Guillaume Poupard and Jacques Stern. « Security Analysis of a Practical "on the fly"
Authentication and Signature Generation ». In: Advances in Cryptology - EUROCRYPT
’98, International Conference on the Theory and Application of Cryptographic Techniques, Espoo,
Finland, May 31 - June 4, 1998, Proceeding. Ed. by Kaisa Nyberg. Vol. 1403. Lecture Notes
in Computer Science. Springer, 1998, pp. 422–436. ISBN: 3-540-64518-7. DOI: 10.1007/
BFb0054143 (cit. on pp. 74, 77).

[PST+02] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler. « SPINS: Security Protocols
for Sensor Networks ». In: Wirel. Netw. 8.5 (Sept. 2002), pp. 521–534. ISSN: 1022-0038 (cit. on
p. 89).

[QWZ+12] Bo Qin, Qianhong Wu, Lei Zhang, Oriol Farràs, and Josep Domingo-Ferrer. « Provably
secure threshold public-key encryption with adaptive security and short ciphertexts ». In:
Information Sciences 210 (2012), pp. 67–80 (cit. on p. 139).

[Rab79] M. O. Rabin. Digitalized Signatures and Public-key Functions as Intractable as Factorization.
Tech. rep. Cambridge, MA, USA, 1979 (cit. on p. 24).

[Rab83] M. O. Rabin. « Transaction Protection by Beacons ». In: Journal of Computer and System
Sciences 27.2 (1983), pp. 256–257 (cit. on p. 9).

[Rav87] Stathis Zachos. Ravi B. Boppana Johan Hastad. « CDoes co-NP have short interactive
proofs? » In: Information Processing Letters Volume 25, Issue 2 (1987), pp. 127–132 (cit. on
p. 28).

[RG09] Yanli Ren and Dawu Gu. « Fully CCA2 secure identity based broadcast encryption without
random oracles ». In: Information Processing Letters 109.11 (2009), pp. 527–533 (cit. on p. 139).

[Roo97] Peter de Rooij. « On Schnorr′s preprocessing for digital signature schemes ». In: Journal of
Cryptology 10.1 (1997), pp. 1–16 (cit. on pp. 71, 72).

[RS82] Ronald L Rivest and Adi Shamir. « How to reuse a “write-once” memory ». In: Information
and control 55.1 (1982), pp. 1–19 (cit. on p. 112).

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. « A Method for Obtaining Digital Signatures
and Public-key Cryptosystems ». In: Commun. ACM 21.2 (Feb. 1978), pp. 120–126. ISSN:
0001-0782. DOI: 10.1145/359340.359342. URL: http://doi.acm.org/10.1145/
359340.359342 (cit. on pp. 24, 158).

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. « How to Leak a Secret ». In: Advances in
Cryptology – ASIACRYPT 2001. Ed. by Colin Boyd. Vol. 2248. Lecture Notes in Computer
Science. Gold Coast, Australia: Springer, Heidelberg, Germany, Dec. 2001, pp. 552–565
(cit. on p. 55).

[RSW96] R Rivest, A Shamir, and D. Wagner. Time-lock puzzles and timed-release crypto. Technical
report, MIT/LCS/TR-684. 1996 (cit. on pp. 72–74).

[RW96] Ronald L. Rivest and David A. Wagner. Time-lock puzzles and timed-release crypto. Tech. rep.
1996 (cit. on pp. 157, 158).

http://dx.doi.org/10.1007/978-3-642-15317-4_1
http://dx.doi.org/10.1007/978-3-642-15317-4_1
http://dx.doi.org/10.1007/978-3-642-15317-4_1
http://dx.doi.org/10.1007/s001450010003
http://dx.doi.org/10.1007/s001450010003
http://dx.doi.org/10.1007/BFb0054143
http://dx.doi.org/10.1007/BFb0054143
http://dx.doi.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342

[RWJL06] Keith Rayner, Sarah J White, Rebecca L Johnson, and Simon P Liversedge. « Raeding wrods
with jubmled lettres there is a cost ». In: Psychological science 17.3 (2006), pp. 192–193 (cit. on
p. 132).

[Sch90] C.-P. Schnorr. « Efficient Identification and Signatures for Smart Cards ». In: Advances in
Cryptology - CRYPTO’89. Vol. 434. Lecture Notes in Computer Science. Springer, 1990,
pp. 239–252 (cit. on pp. 12, 21, 56).

[SD82] Adi Shamir and Whitfield Diffie. « A polynomial-time algorithm for breaking the basic
Merkle-Hellman cryptosystem ». In: In Proceedings of the 23rd IEEE Symposium on Founda-
tions of Computer Science. IEEE, 1982, pp. 145–152 (cit. on p. 24).

[Seu12] Yannick Seurin. « On the Exact Security of Schnorr-Type Signatures in the Random Or-
acle Model ». In: Advances in Cryptology – EUROCRYPT 2012. Ed. by David Pointcheval
and Thomas Johansson. Vol. 7237. Lecture Notes in Computer Science. Cambridge, UK:
Springer, Heidelberg, Germany, Apr. 2012, pp. 554–571 (cit. on p. 57).

[SF13] T Souvignet and J Frinken. « Differential power analysis as a digital forensic tool ». In:
Forensic science international 230.1 (2013), pp. 127–136 (cit. on p. 105).

[Sha48] C. E. Shannon. « A Mathematical Theory of Communication ». In: Bell System Technical
Journal 27.3 (1948), pp. 379–423 (cit. on pp. 15, 18).

[Sha49] C. E. Shannon. « Communication Theory of Secrecy Systems ». In: Bell System Technical
Journal 28.4 (1949), pp. 656–715 (cit. on p. 15).

[Sha84] Adi Shamir. « Identity-Based Cryptosystems and Signature Schemes ». In: Advances in
Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984,
Proceedings. Vol. 196. Lecture Notes in Computer Science. Springer, 1984, pp. 47–53. DOI:
10.1007/3-540-39568-7_5 (cit. on p. 159).

[Sha85] Adi Shamir. « Identity-based cryptosystems and signature schemes ». In: CRYPTO ’84.
Vol. 196. LNCS. Springer Berlin Heidelberg, 1985, pp. 47–53 (cit. on pp. 138, 139).

[Sha90] Adi Shamir. « An Efficient Identification Scheme Based on Permuted Kernels (Extended
Abstract) (Rump Session) ». In: Advances in Cryptology – CRYPTO’89. Ed. by Gilles Brassard.
Vol. 435. Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 1990, pp. 606–609 (cit. on pp. 82, 85, 87).

[SHL+10] Graig Sauer, Jonathan Holman, Jonathan Lazar, Harry Hochheiser, and Jinjuan Feng.
« Accessible privacy and security: a universally usable human-interaction proof tool ». In:
Universal Access in the Information Society 9.3 (2010), pp. 239–248. DOI: 10.1007/s10209-
009-0171-2 (cit. on p. 117).

[Sho97] Peter W. Shor. « Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer ». In: SIAM J. Comput. 26.5 (Oct. 1997), pp. 1484–1509.
ISSN: 0097-5397. DOI: 10.1137/S0097539795293172. URL: http://dx.doi.org/10.
1137/S0097539795293172 (cit. on p. 14).

[SL07] M. Singh and L. C. Lau. « Approximating Minimum Bounded Degree Spanning Trees to
within One of Optimal ». In: Proceedings of the 39th annual ACM symposium on Theory of
computing. ACM. 2007, pp. 661–670 (cit. on p. 90).

[Ste94] Jacques Stern. « A New Identification Scheme Based on Syndrome Decoding ». In: Advances
in Cryptology – CRYPTO’93. Ed. by Douglas R. Stinson. Vol. 773. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 1994, pp. 13–21
(cit. on pp. 82, 85, 87).

[SW86] Dennis Stanton and Dennis White. Constructive combinatorics. Springer-Verlag New York,
Inc., 1986 (cit. on pp. 46, 53).

[Tur36] A. Turing. « On Computable Numbers with an Application to the
Entscheidungsproblem ». In: Proceeding of the London Mathematical Society (1936),
pp. 230–265 (cit. on p. 15).

[TW06] M. Thomlinson and Ch. Walker. Distribution of encrypted software update to reduce attack
winodow. Tech. rep. US Patent 7876902 B2. Department of Computer Science, Michigan State
University, Aug. 2006. URL: https://www.lens.org/lens/patent/US_7876902_
B2 (cit. on p. 157).

[UMS11] S. K. Udgata, A. Mubeen, and S. L. Sabat. « Wireless Sensor Network Security Model Using
Zero Knowledge Protocol ». In: ICC. IEEE, 2011, pp. 1–5 (cit. on p. 89).

http://dx.doi.org/10.1007/3-540-39568-7_5
http://dx.doi.org/10.1007/s10209-009-0171-2
http://dx.doi.org/10.1007/s10209-009-0171-2
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
https://www.lens.org/lens/patent/US_7876902_B2
https://www.lens.org/lens/patent/US_7876902_B2

[VCT14] Rafael Veras, Christopher Collins, and Julie Thorpe. « On Semantic Patterns of Passwords
and their Security Impact ». In: ISOC Network and Distributed System Security Symposium –
NDSS 2014. San Diego, California, USA: The Internet Society, Feb. 2014 (cit. on pp. 125,
128).

[W73] Lampson Butler W. « A note on the confinement problem ». In: Commun. ACM 16.10
(Oct. 1973), pp. 613–615. ISSN: 0001-0782. DOI: 10.1145/362375.362389. URL: http:
//doi.acm.org/10.1145/362375.362389 (cit. on p. 34).

[WAdG09] Matt Weir, Sudhir Aggarwal, Breno de Medeiros, and Bill Glodek. « Password Cracking
Using Probabilistic Context-Free Grammars ». In: 2009 IEEE Symposium on Security and
Privacy. Oakland, California, USA: IEEE Computer Society Press, May 2009, pp. 391–405
(cit. on pp. 125, 128).

[Wat05] Brent Waters. « Efficient identity-based encryption without random oracles ». In: EURO-
CRYPT ’05. Vol. 3494. LNCS. Springer Berlin Heidelberg, 2005, pp. 114–127 (cit. on pp. 139,
150).

[Wat09] Brent Waters. « Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions ». In: CRYPTO ’09. Vol. 5677. LNCS. Springer Berlin Heidelberg, 2009, pp. 619–
636 (cit. on pp. 140, 145).

[WQZ+16] Qianhong Wu, Bo Qin, Lei Zhang, Josep Domingo-Ferrer, Oriol Farràs, and Jesús A.Manjón.
« Contributory Broadcast Encryption with Efficient Encryption and Short Ciphertexts ». In:
IEEE Transactions on Computers 65.2 (2016), pp. 466–479 (cit. on p. 139).

[Yao86] Andrew Chi-Chih Yao. « How to Generate and Exchange Secrets (Extended Abstract) ». In:
27th Annual Symposium on Foundations of Computer Science. Toronto, Ontario, Canada: IEEE
Computer Society Press, Oct. 1986, pp. 162–167 (cit. on pp. 9, 55).

[YK05] M. Yung and J. Katz. Digital Signatures (Advances in Information Security). Springer-Verlag,
2005 (cit. on p. 24).

[YKJ+15] Ji Won Yoon, Hyoungshick Kim, Hyun-Ju Jo, Hyelim Lee, and Kwangsu Lee. « Visual
Honey Encryption: Application to Steganography ». In: Proceedings of the 3rd ACM Workshop
on Information Hiding and Multimedia Security, IH&MMSec 2015, Portland, OR, USA, June 17
- 19, 2015. Ed. by Adnan M. Alattar, Jessica J. Fridrich, Ned M. Smith, and Pedro Come-
saña Alfaro. ACM, 2015, pp. 65–74. ISBN: 978-1-4503-3587-4. DOI: 10.1145/2756601.
2756606 (cit. on p. 122).

[You67] Daniel H. Younger. « Recognition and Parsing of Context-Free Languages in Time n3 ». In:
Information and Control 10.2 (1967), pp. 189–208. DOI: 10.1016/S0019-9958(67)80007-
X (cit. on p. 129).

[YY05a] Adam L. Young and Moti Yung. « A Space Efficient Backdoor in RSA and Its Applications ».
In: Selected Areas in Cryptography, 12th International Workshop, SAC 2005, Kingston, ON,
Canada, August 11-12, 2005, Revised Selected Papers. 2005, pp. 128–143. DOI: 10.1007/
11693383_9. URL: http://dx.doi.org/10.1007/11693383_9 (cit. on p. 43).

[YY05b] Adam L. Young and Moti Yung. « Malicious Cryptography: Kleptographic Aspects ». In:
Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA Conference 2005, San
Francisco, CA, USA, February 14-18, 2005, Proceedings. 2005, pp. 7–18. DOI: 10.1007/978-
3-540-30574-3_2. URL: http://dx.doi.org/10.1007/978-3-540-30574-3_2
(cit. on p. 43).

[YY96] Adam L. Young and Moti Yung. « The Dark Side of "Black-Box" Cryptography, or: Should
We Trust Capstone? » In: Advances in Cryptology - CRYPTO ’96, 16th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings.
Vol. 1109. Lecture Notes in Computer Science. Springer, 1996, pp. 89–103. ISBN: 3-540-
61512-1. DOI: 10.1007/3-540-68697-5_8. URL: http://dx.doi.org/10.1007/3-
540-68697-5_8 (cit. on p. 43).

[YY97] Adam L. Young and Moti Yung. « Kleptography: Using Cryptography Against Cryptogra-
phy ». In: Advances in Cryptology - EUROCRYPT ’97, International Conference on the Theory
and Application of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding.
1997, pp. 62–74. DOI: 10.1007/3-540-69053-0_6. URL: http://dx.doi.org/10.
1007/3-540-69053-0_6 (cit. on p. 43).

[ZO14] Zeyuan Allen Zhu and Lorenzo Orecchia. « Using Optimization to Break the Epsilon
Barrier: A Faster and Simpler Width-Independent Algorithm for Solving Positive Linear

http://dx.doi.org/10.1145/362375.362389
http://doi.acm.org/10.1145/362375.362389
http://doi.acm.org/10.1145/362375.362389
http://dx.doi.org/10.1145/2756601.2756606
http://dx.doi.org/10.1145/2756601.2756606
http://dx.doi.org/10.1016/S0019-9958(67)80007-X
http://dx.doi.org/10.1016/S0019-9958(67)80007-X
http://dx.doi.org/10.1007/11693383_9
http://dx.doi.org/10.1007/11693383_9
http://dx.doi.org/10.1007/11693383_9
http://dx.doi.org/10.1007/978-3-540-30574-3_2
http://dx.doi.org/10.1007/978-3-540-30574-3_2
http://dx.doi.org/10.1007/978-3-540-30574-3_2
http://dx.doi.org/10.1007/3-540-68697-5_8
http://dx.doi.org/10.1007/3-540-68697-5_8
http://dx.doi.org/10.1007/3-540-68697-5_8
http://dx.doi.org/10.1007/3-540-69053-0_6
http://dx.doi.org/10.1007/3-540-69053-0_6
http://dx.doi.org/10.1007/3-540-69053-0_6

Programs in Parallel ». In: CoRR abs/1407.1925 (2014). URL: http://arxiv.org/abs/
1407.1925 (cit. on p. 84).

[ZQWZ10] L. Zhang, B. Qin, Q. Wu, and F. Zhang. « Efficient Many-to-One Authentication with
Certificateless Aggregate Signatures ». In: Computer Networks 54.14 (2010), pp. 2482–2491
(cit. on p. 89).

[ZWD+14] Lei Zhang, Qianhong Wu, Josep Domingo-Ferrer, Bo Qin, and Peng Zeng. « Signatures in
hierarchical certificateless cryptography: Efficient constructions and provable security ».
In: Information Sciences 272 (2014), pp. 223–237 (cit. on p. 138).

[ZYT14] Mingwu Zhang, Bo Yang, and Tsuyoshi Takagi. « Anonymous spatial encryption under
affine space delegation functionality with full security ». In: Information Sciences 277 (2014),
pp. 715–730 (cit. on p. 140).

http://arxiv.org/abs/1407.1925
http://arxiv.org/abs/1407.1925

Résumé
Cette thèse présente des résultats appartenant aux
trois thèmes fondamentaux de la cryptographie à clé
publique: l’intégrité, l’authentification et la confi-
dentialité. Au sein de chaque thème nous concevons
des nouvelles primitives et améliorons des primitives
existantes.

Le premier chapitre, dédié à l’intégrité, introduit une
preuve non-interactive de génération appropriée de
clés publiques RSA et un protocole de co-signature
dans lequel tout irrespect de l’équité laisse automa-
tiquement la partie lésée en possession d’une preuve
de culpabilité incriminant la partie tricheuse.

Le second chapitre, ayant pour sujet l’authentifica-
tion, montre comme une mesure de temps permet de
raccourcir les engagements dans des preuves à divul-
gation nulle et comment des biais, introduits à dessin
dans le défi, permettent d’accroitre l’efficacité de pro-
tocoles. Ce chapitre généralise également le proto-
cole de Fiat-Shamir à plusieurs prouveurs et décrit
une fraude très sophistiquée de cartes-à-puce illus-
trant les dangers de protocoles d’authentification
mal-conçus.

Au troisième chapitre nous nous intéressons à la con-
fidentialité. Nous y proposons un cryptosystème à
clé publique où les hypothèses de complexité tradi-
tionnelles sont remplacées par un raffinement du con-
cept de CAPTCHA et nous explorons l’application
du chiffrement-pot-de-miel au langage naturel.

Nos dernières contributions concernent le chiffre-
ment basé sur l’identité (IBE). Nous montrerons
comment ajouter des fonctions d’émission à l’IBE
hiérarchique et comment l’IBE permet de réduire la
fenêtre temporelle de risque lors de la diffusion de
mises à jour logicielles.

Mots Clés
cryptographie, intégrité, authentification, confiden-
tiailité, chiffrement signatures numériques, équité,
preuves à divulgation nulle.

Abstract
This thesis presents new results in three fundamental
areas of public-key cryptography: integrity, authen-
tication and confidentiality. In each case we design
new primitives or improve the features of existing
ones.

The first chapter, dealing with integrity, introduces
a non-interactive proof for proper RSA public key
generation and a contract co-signature protocol in
which a breach in fairness provides the victim with
transferable evidence against the cheater.

The second chapter, focusing on authentication,
shows how to use time measurements to shorten zero-
knowledge commitments and how to exploit bias in
zero-knowledge challenges to gain efficiency. This
chapter also generalizes Fiat-Shamir into a one-to-
many protocol and describes a very sophisticated
smart card fraud illustrating what can happen when
authentication protocols are wrongly designed.

The third chapter is devoted to confidentiality. We
propose public-key cryptosystems where traditional
hardness assumptions are replaced by refinements of
the CAPTCHA concept and explore the adaptation
of honey encryption to natural language messages.
Our final contributions focus on identity-based en-
cryption (IBE) showing how to add broadcast fea-
tures to hierarchical IBE and how to use IBE to re-
duce vulnerability exposure time of during software
patch broadcast.

Keywords
cryptography, integrity, authentication, confidential-
ity, encryption, digital signatures, fairness, zero-
knowledge proofs.

	Introduction
	Confidentiality Throughout History
	Integrity, Authentication & Fairness

	Mathematical and Cryptographic Preliminaries
	Computational Hardness Assumptions
	Computational Security
	One-Way Functions
	Provable Security
	Theoretical Framework
	The Random Oracle Paradigm

	Digital Signatures
	General Framework
	Some Examples
	Security Notions for Digital Signatures

	Public-Key Cryptography
	General Framework
	Security Notions for Public-Key Cryptography

	Proof Systems
	Interactive Proofs
	Zero-Knowledge Proofs
	Applications
	Zero-Knowledge Proofs of Knowledge
	Non-Interactive Zero-Knowledge Proofs

	Results & Contributions
	Thesis Results
	Fairness & Attestation in Cryptographic Protocols
	Zero-Knowledge Proof Systems & Authentication Protocols
	Exploring Interactions Between Natural Language, Vision & Encryption
	Generalization & Applications of Hierarchical Identity-Based Encryption (HIBE)

	Additional Results
	Trusted Computing for Embedded Devices: Defenses & Attacks
	Creating Covert Channels & Preventing Their Exploitation
	Efficient Hardware & Software Implementations
	Finding Security Flaws in Server Software

	Personal Bibliography
	Journal Papers
	Conference Papers
	Manuscripts & Pre-Prints

	Designing Integrity Primitives
	Non-Interactive Attestations for Arbitrary RSA Prime Generation Algorithms
	Introduction
	Outline of the Approach
	Model and Analysis
	Multi-Modulus Attestation Scheme (u 2, = 2)
	Security and Parameter Choice
	Compressing the Attestation
	Parameter Settings
	Conclusion and Further Research
	Implementing the Second Hash Function H'

	Legally Fair Contract Signing Without Keystones
	Introduction
	Preliminaries
	Legally Fair Co-Signatures

	Designing Authentication Protocols
	Slow Motion Zero Knowledge – Identifying With Colliding Commitments
	Introduction
	Building Blocks
	Commitment Pre-Processing
	Time-Lock Puzzles
	Slow Motion Zero-Knowledge Protocols
	An Example Slow Motion Zero Knowledge
	Security Proof
	Conclusion and Further Research

	Thrifty Zero-Knowledge: When Linear Programming Meets Cryptography
	Introduction
	Preliminaries
	Optimizing E(P V)
	Thrifty Zero-Knowledge Protocols
	Thrifty SD, PKP and PPP

	Public-Key Based Lightweight Swarm Authentication
	Preliminaries
	Distributed Fiat-Shamir Authentication
	Security Proofs
	Variants and Implementation Trade-offs

	When Organized Crime Applies Academic Results
	Introduction
	Physical Analysis
	Protocol Analysis
	Side-Channel Power Analysis
	EMV ``Select'' Command
	EMV ``VerifyPIN'' Command
	Destructive Analysis
	Aftermath & Lessons Learned
	Other Applications of Miniature Spy Chips

	Designing Confidentiality Building-Blocks
	Human Public-Key Encryption
	Introduction
	Preliminaries and Definitions
	Human Public-Key Encryption
	Short Password-Based Encryption
	DCP and ECP Candidate Instances
	Further Applications

	Honey Encryption for Language: Robbing Shannon to Pay Turing?
	Introduction
	Preliminaries
	Natural Language Encoding
	Limitations of Honey Encryption
	Corpus Quotation DTE
	Further Research
	Grammatical Tags for English

	Compact CCA2-Secure Hierarchical ID-Based Broadcast Encryption with Public Ciphertext Test
	Introduction
	Preliminaries
	Syntax
	IND-CIVS-CPA Secure HIBBE with Constant Size Ciphertext
	Compact IND-CIVS-CCA2 HIBBE with Short Ciphertexts
	Conclusion

	Improved Delayed Decryption for Software Patching
	Introduction
	Single Editor, Constant Memory, Linear Time
	Single Editor, Polylogarithmic Memory, Polylogarithmic Time
	Multiple Editors, Linear Memory, Constant Time
	Multiple Editors, Polylogarithmic Memory, Polylogarithmic Time
	How Long Should We Wait?

	Conclusion and Further Developments
	Thesis Results & Contributions
	Personal Perspectives

	Computing Thrifty Parameters

