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A B S T R A C T

This thesis presents new results addressing three fundamental areas
of cryptography: security notions, assumptions, and efficiency.

The first part encompasses the security of symmetric primitives.
We give a new security notion that provides the strongest security
for symmetric primitives proven in the random oracle model (ROM).
Key-correlated attacks (KCA) model the scenario where all inputs
(keys, messages, and possibly nonces and headers) are correlated
with the secret key. Under mild assumptions, we prove KCA secu-
rity of blockciphers, and show that 3-rounds of Even-Mansour are
necessary to achieve this. Then, we define a KCA-security notion for
nonce-based authenticated encryption (AE), and provide a black-box
transformation that turns a multiuser-secure AE into an AE scheme
that is provably KCA secure in the ROM. We show relations and sepa-
rations with older notions (related-key and key-dependent message
security) to show that security under KCA is strictly stronger, and
implies the others.

The next part turns to public-key cryptography, and analyses the
assumptions underlying the new public-key cryptosystem of AJPS.
Cryptanalysis of their assumption, based on arithmetic modulo a
Mersenne prime, allowed us to reconstruct the secret key, given only
the public key. Based on a modified version of the assumption, we
propose a variant public-key cryptosystem secure against known
quantum attacks.

The last part turns to efficiency, and studies the Schnorr Signature
scheme. Exploiting the group structure we leverage the nonce-material
to generate a batch of signatures. This, together with some prepro-
cessing tricks, allow us to increase the efficiency of Schnorr signature
generation. Security is maintained under a new assumption of in-
tractability, provable in the generic group model.
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R E S U M É

Cette thèse présente des résultats nouveaux portant sur trois do-
maines fondamentaux de la cryptographie : les propriétés de sécurité,
les hypothèses cryptographiques, et l’efficacité algorithmique.

La première partie s’intéresse à la sécurité des primitives symé-
triques. Nous introduisons une nouvelle propriété de sécurité cor-
respondant à la plus forte sécurité pour les primitives symétriques
prouvées sûres dans le modèle de l’oracle aléatoire. Les attaques par
clé corrélées capturent les scénarios dans lesquels toutes les entrées
(clés, messages, et éventuellement nonces et en-têtes) sont corrélées
avec avec la clé secrète. Sous des hypothèses relativement faibles
nous prouvons la sécurité contre les attaques par clé corrélées pour
les algorithmes de chiffrement par bloc, et montrons que trois tours
d’Even-Mansour sont nécessaires pour cela. Nous étendons ensuite
les attaques par clés corrélées au chiffrement authentifié basé sur les
nonces, et fournissons une transformation en boîte noire qui, partant
d’un chiffrement authentifié à utilisateurs multiples, donne un chif-
frement authentifié démontré résistant aux attaques par clés corrélés
dans le modèle de l’oracle aléatoire. Nous établissons les relations et
séparations avec les notions déjà existantes (sécurité contre les attaques
par clés apparentées et par message dépendant de la clé) pour montrer
que la sécurité contre les attaques par clé corrélés est strictement plus
forte, et implique les autres.

La partie suivante porte sur la cryptographie à clé publique, et
analyse les hypothèses sous-jacentes au nouveau cryptosystème in-
troduit dans AJPS17. La cryptanalyse de cette hypothèse, reposant
sur l’arithmétique modulo un premier de Mersenne, nous permet de
reconstruire la clé secrète à partir de la clé publique uniquement. Nous
proposons alors une variante de ce sytème à clé publique, fondée sur
une modification de l’hypothèse précédente, résistant aux attaques
connues (classiques et quantiques).

La dernière partie aborde l’efficacité algorithmique du schéma de
signature de Schnorr. En mettant à profit la structure de groupe
nous pouvons tirer parti du nonce pour produire un lot de signatures.
Combinant ceci avec des méthodes de précalcul nous permet de rendre
plus efficace l’algorithme de signature de Schnorr . La sécurité est
préservée sous une hypothèse nouvelle, dont on montre qu’elle est
vraie dans le modèle du groupe générique.
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P R E FA C E

This thesis is not perfect, indeed far from it, yet I like it very much. I
have little doubt that inconsistencies reside in every page, and I reserve
the right to leave them there. I have, however, tried in ways to make
this document somehow nice, a little bit different, in the hope that
it becomes more pleasurable to read, and navigate, than a standard
200-page block of text.

I have been told I thought about this too much, but I disagree.
Science, without communication, is a fruitless endeavour, so I feel it is
as much our duty to think about, and experiment with communication
as it is to uncover, or create (however you like to see it), the truths of
our world.

On Motivation. If you know me, you’ll know that I’m not a very
‘motivated’ person. I just want to learn some things, and simple things
at that. Things, however, have become quite complicated over the
course of time, and to pare them back to what could be considered
simple, takes quite some effort. It would be somewhat pointless, or
selfish, to learn things, and then not use them, so while going to the
effort of paring things back to their simplicities, I also try to share
them with other people. This thesis was concieved as a result of
my paring and sharing carried out as a student of the École normale
supérieure in Paris, and as a member of the Advanced Reserach team
at Ingenico Group. Both places, but particularly Ingenico, have been
unexpectedly and incredibly kind to me. I never dreamed I would
land amongst such good company.

On Style. While trying to learn simple things, I wanted to produce
a simple-looking document to describe them. Tufte has thought a
lot about how to arrange information nicely on a page; his style is
often used when building textbooks. As I am not writing a textbook
(although I would like to at some point), I have little use for much
of the functionality that comes with the style. I have instead used
the Classic Thesis package which is similar in style to Tufte, yet more
simple, and is based on Robert Bringhurst’s Elements of Typographic
Style. I have modified the package a little to make it even simpler
again. There are a number of reasons why I like these styles, I have
listed some of them below
wide margins . Well, you say ‘wide margins’, I say short lines. I

thought often about the one-column vs. two-column style that
is used when publishing papers. Different venues have their
preferenes, and both syles have their advantages. One column
looks very clean in that there is just one place for your eyes
to be dragged to. Two columns are nice because the lines are
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short to read which somehow helps to keep my attention longer.
However, with two columns, a lot is packed into the page, which
makes it look quite ugly. I thought it would be nice to have
something in-between. One column so that the page stays tidy
looking, but short enough lines so that you don’t feel like you’ve
read War and Peace before you get to move to the next line. This
is what you’ll find here.

margin paragraphs . In using ‘short lines’ there is a lot of space
left in the margins. The tufte style has even wider margins than
you will find here, and often people use this space to put little
diagrams, or notes that summarise the adjacent paragraph, or
references to more explanatory text. I like the idea of using the
margin space, but putting too much text or image in the margin
runs the risk of falling into a two-column cluttered-looking page
problem. Here, the margins have been kept wide enough so as
to include some text, but not so wide that it could be considered
a second column.
The content you will see in the margin paragraphs is therefore
limited in scope to less than you will find in tufte-style books;
no diagrams, no rambling explainations. I intended to writeMore often than not,

they probably
resemble more snide

remarks.

summaries or a sort of tl;dr of the paragraph, and some side
remarks. Hopefully you will find them useful, and where the
content gets particularly involved, e.g., in the proofs, I try to
highlight what the key point is, or where the ‘trick’ is, or at least
to indicate “this is the only part you really need to read.” Now I
have gotten used to doing this, it hurts that there’s nowhere to
put these pointers in regular scientific papers.

table of contents . I have always wondered why, in a table of
contents, the section titles are flushed left, and the page numbers
flushed right. Is it not difficult to trace across from left to right
to find the corresponding page? It is not so bad on printed
paper, but on a screen, I just find it unnecessarily complicated.
People sometimes put a row of dots between the section title
and the page numbers, to assist in the left-right tracing, but with
a table of these rows the page just looks like it’s about to start
explaining lattice-based crypto to me. Here you will find the
page numbers beside the section titles. No right-flushing, no
dots, no tracing.

On Capitalisation. I have a terrible habit of capitalising words I
shouldn’t, and not capitalising words I should. I don’t know if this
is perhaps due to a very good German teacher, Berit, I had at one
point, who drilled into us correct capitalisation rules in German, so
much that it ruined my English, or if it is related to the fact that I
always mix up left and right. In English, something with a capital
letter is often of greater importance to something without, so it can
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cause offence to (mis-)place capital letters. In any case, please don’t
take it personally if I diminuate you by not capitalising your name, or
if I canonise someone by referring to ‘His’, ‘Her’, or ‘Their’ work.

On Grammar. When I am not making capitalisation mistakes, I have,
tried at least, to use nice grammar. I would like to say that I have
included elements from the Chicago Manual of Style. In reality, this
book is too big for me, but I have at least read the small Strunk and
White book on The Elements of Style. I am also, as you will come to
learn, quite fond of using Oxford commas.

On English. I come from a country that happened to be colonised
by the British Empire for a bit too long. We picked up some of their
habits, and have not managed to shake them, so the language used
here is (mostly) British English. Many academics seem perturbed
by the use of British (as opposed to American) English in scientific
writing, I imagine because it gives rise to inconsistencies in spelling
when different authors collaborate. Details are important when they
may give rise to ambiguity, particularly in the sciences, but I feel that
writing color or colour will not lead to too much confusion, so I don’t
care to correct it. I do understand that some things in British English
can have more meanings than most people would like, and in these
instances I assure you I will not write flat, or lift, and instead write
‘appartment’ and ‘elevator’. In any case, you should count yourself Although, if you’re

wide to this gill’s g
that’d be pure tome.

lucky that I didn’t write in Irish English!

On Beckett. You may have noticed I have included a number of
references to Samuel Beckett and his work. People have asked what
is the ‘Beckett obsession’, and I would like to clarify. First, it is not
an obsession, but rather just a few references to something that nicely
ties together some memories and principles I care about from this
place and time. Let me elaborate, and then you can read the thesis, I
promise.

the title "Ever tried. Ever failed. No matter. Try again. Fail again.
Fail better." Perhaps his most famous line, I had to include it
somewhere. I like it so much, I put it as the title of this thesis. I
like it so much still that I name the three main technical parts of
this thesis by those last three short sentences.

the quotes Many people include quotes in their PhD theses. Per-
haps they wish to show some personality, or to inspire. I tried
to think of quotes that I would like to include, but I felt this is
not to place to share the sentences I would really like to share.
Those ones, I would rather tell you over a coffee. So instead, all I feel safe in saying

that you should read
more literature, as
everyone should.

quotes stem only from Beckett, first, because he’s a great writer
and you should read more literature, second, because in truth, I
do find many of them inspirational, and third, simply because it
matched the theme.
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the room I organised my PhD defence to take place in Salle Beckett.
It is one of the smallest rooms at ENS and so is quite inappro-
priate for a defence. Additionally, it is one of the main teaching
rooms (of which there are very few), so it’s constantly booked
during term time. Furthermore, it doesn’t belong to the DI, we
have our own room for defences, so why care so much about
Salle Beckett?
As Ireland was once colonised by the British Empire, it has
now become colonised by the Tech Empire. With very low (and
sometimes zero) corporate tax rates, many international tech
companies set up their European headquarters in Dublin. People
are damned because the salaries in these places are so high that
if you don’t work in one of them, you can’t afford to live in the
city (I begin to call it the San Francisco effect). The universitiesMany schools within

the humanities have
been closed, and even
within the math and
cs departments, the

scope to study
something ‘not

immediately useful’
is almost

non-existant.

then scramble to educate people in the topics needed to become
employed in these companies, and those alone, which, in the
short-run, maybe raises employment, but in the not-even-long-
run, sees a country devoid of thought, algorithmically producing
machine-like staff for Tech Corp. This is an exageration, of
course, I just mean to say that there are few people who stop to
really think what we’re losing for all this percieved growth. This
is not my Ireland.
Ireland, the ‘land of saints and scholars’ produced Beckett, and
many great writers, scientists, actors, and politicians. Beckett isJoyce is great too,

and he also made it
to the ENS, albeit

somewhat unoficially.

one of the most noteworthy, and one of the only ones to make
it to the ENS. That is the Ireland I like to think of, and the Irish
that I try to be.
I am not special, and definitely not Beckett-level special, but, as
an Irish(wo)man at ENS, if it’s the last thing I do, I’ll stand in
his room and promise to be something.
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Je suis comme ça.
Ou j’oublie tout de suite ou je n’oublie jamais.

A C H Á I R D E

On a cool evening in Istanbul in the spring of 2015, I found myself
sat at a table of cryptographers. They were a curious bunch and upon
asking me what I was doing, I told them I hoped to pursue a PhD Actually, I believe I

told them I was
interested in

“playing with shapes
in space.”

in computational geometry. They laughed, more than they should,
and told me that the only right thing to do, is a PhD in cryptography.
The topic was not too far from my mind, as also in that spring, Citizen
Four had just won an academy award, Signal had just been launched,
and my house in Ireland had just been raided by the cops because
someone was using TOR. After a few beers and some chat, I began to
think. . . maybe I should do a PhD in cryptography. . .

The following months saw me heeding the advice of the cryptogra-
phers and by the end of the year, I was admitted to one of the finest
schools on the continent, to work with the “free man” of cryptography. Every time I

mentioned David
Naccache, people
would rejoice “you
know he made a
computer from. . .
plants!?”

I was very excited, but not at all prepared for what was about to come.
Now, I sit here, four years later, and there is negligible chance

that I would come to write these words for you without the help,
encouragement, patience, and magic of a good number of people, and
one in particular. Let me take a moment to recount some of the thanks
I have wished to express over these past few years.

To David. I could write a second thesis on all the things I would
like to say to you. Many people would remark on your cleverness,
your quirkiness, your helpfulness, but I wont, for you have given me
something far greater than all of those combined. You left me alone
when I wanted, you trusted me to think, to experiment, to play with
my thoughts and talks and papers. Never once have you said ‘no’, not Perhaps they still

pale in comparison
to the craziness of
yours :)

once have you discouraged me from dreaming up my crazy plans, nor
did you scorn me when I couldn’t deliver. All of this boils down to
a rare and fundamental gift; you’ve given me freedom, and for this, I
will be forever grateful.

To Bart. My thesis reviewer, and one of the busiest men I know. The
first time I saw you, you gave a talk at Eurocrypt about Snowden and
mass surveillance. I remember excitedly turning to the person beside
me and asking ‘who’s this guy?!’ to which they responded "He’s the
president of the IACR.." You were one of the first to make me excited
to enter this field, so it’s an honour to have you on my jury as I make
my sort of début. Most people either talk to me about crypto, or the
‘fluffy’ social stuff I like, but you are one of the few who talks to me
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about both, which I appreciate greatly. Thanks for remaining one of
the ‘good guys’.

To Moti. My second thesis reviewer, thanks for not living up to
the reputation of the dreaded ‘reviewer number 2!’ You make me
laugh and cheered me up on days where you didn’t know I needed
it. My curiosity in you arose from several events, all of which you are
unaware. I reviewed some of your work, which introduced me to anForgive me for

breaking protocol,
but I dont say which

papers.

area I would later become very excited about and between this and
various events I’ve seen you speak, the intrigue silently grew. Thanks
for being so accommodating throughout these past few months, your
ease of style is much appreciated.

To Whit. For being the human cryptographer. I enjoy so much to see
you on the RSA panel, and every year to relinquish your opportunity
to push your opinion of the latest cryptographic trends in favour of
remembering the people who helped cryptography get to where it is
today. Thanks for all the stories, for the few laughs, for helping me
see the importance and amusement in the small things, and for being
the one who kept me somewhat excited about living in Paris.

To Christian. For dragging me up and down mountains. Through
rocks, and rivers, and mud, safely. For teaching me about S-boxes in
Colombia, Grostl in Austria, ropes in Turkey, and knots in the snow.
You’re the most positive person I know, and the definition of a good
friend. I am grateful for every experience we’ve shared, except one. I
will forever curse you for introducing me to those smoked almonds. I
cannot get enough of them.

To Manuel. For having patience, where others could not. It means
more to me than you’ll ever know. I’ll say no more.

To Delaram. For being inclusive. For the encouragement, advice,
the coffees, and for sprinkling a little glamour into cryptography, and
into my days. It was such a pleasure to meet you in Paris and I look
forward to working together in the future.

To Guénolé. For being one of the rational people at UCD. You know
how hard a time I had there and I thank you greatly for being the
one to make me believe there’s something better that I can do. Thanks
for doing things right, and for all the conversations and hours spent
mulling over everything. Thanks for inviting me to give lectures, I
didn’t realise at the time how significant this was. You’re the only one
from Ireland who has been involved in this PhD process, and I am
overjoyed that I could fulfill my promise to bring you to the jury if I
ever made it to the end. Now that I’m here, I somehow feel like we’ve
made it to the end.

To Michel Abdalla. For being a friend, my conference companion,
my confidant, and now on my jury. Thanks for being there always.
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To Michel Léger. They say you can tell a lot about a person by the
company they keep. You know me now, and you know that I am not
the most ‘company’ type of person. Yet, you (probably singlehandedly)
have made me grow to love the industry. Literally every single time we
speak you are full of excitement and encouragement even on the most
stressful days. It’s quite amazing, and you’re a force to be reckoned
with. You have helped me achieve more than I ever thought possible,
for which I’m super appreciative. Here’s to the future, and to realising
all those projects we’ve dreamed about :)

To Marc. I don’t know what to say to Marc that I haven’t already said If I had to estimate,
I’d say I’ve talk more
to Marc, than
everyone else
combined, during
my time in Paris.

to his face turning him a puse shade of red with embarrassment. Marc
is my academic brother, with whom I sat for three years discussing
everything from ‘what is a primitive,’ to ‘how to look like Axl Rose,’
to ‘philosophy’ at the bistro d’en face. Thanks for always listening to
me, and for putting up with me when I talked about things that made
you feel really awkward. Thanks for being one of the few that never
made me feel stupid, and also for not giving me unsolicited advice.∗ ∗A rare skill

amongst young,
educated men.To Hiba. For being one of the most surprising and coolest people I’ve

ever met. For taking care of a lot of the annoying stuff so we didn’t
have to. Your efforts did not go unnoticed and are much appreciated,
really.

To Rémi. It is clear to me now why David gave you the secret to
living 400 years, while he only told me how to manage 200. Thanks
for being the one to do many things, quickly. Thanks also for taking
care of me at the start, and for easing me into my many new lives.

To Octavio. For being so bright, and so warm, and so kind. I’m so
happy to have met you. I hope you go on to do fantastic things, and
act as a glue in the centre of the community. I really wish the best for
you, people like you are too rare.

To Mihir. For having the special ability to teach more through one
carefully constructed sentence, than most people could in a lifetime.

To James. For being my one cool non-crypto friend in Paris. I will
never forget the night we met, on set at France 24, commenting live on
Zuckerberg in Congress, Saudi Princes in Paris, and the UN Security
Council’s opinions on the use of chemical weapons. You, your "oh!
are you Irish?", and your topic jumping left my mind spinning that
night, as have the nights we spent together since. Thanks for adding
a little variety to my life. Yer a tonic, as they say, and I hope I get to
hear you sing, over and over again, and that we get to go for many
Long Walks in the years to come.

Georg & Alex. For all the trips, and conversations, crypto and
otherwise. You were our closest friends in Paris, and I’m so grateful
for all the memories we have to look back on.
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To Ireland. And the Irish. Naturally to Shell and John. To Emma
and Aileen and Motja, for patiently listening to me when I talk too
much during hard times, and for waiting for me, when I talk too little
during the good times. To the NUIGalway gang; Kevin, Niall, Rachel,
Aisling, Jerome, you shaped me in the nicest ways in my ‘early’ years
and I’m so appreciative for all you took the time to teach me. And to
Oliver, I’ll be eternally grateful for the days we spent in UCD, my only
sadness is that I didn’t have a friend like you in Paris.

To ENS. For acting as my academic home over the past years. You’ve
been everything I wanted from a school, and I’m so glad to know
that places like you still exist. To the Naccache gang. Petra for the
cocktails and the sex and the city chats. Mirko for the eh.. unspeakable.
Marius for the tricks. Fatima for being the normal one—thanks for
grounding us! Bruno, for being calm and putting up with us. Georges-
Axel the office is all yours now. And Natacha for having a larger
than life personality! And to the Crypto gang. David for being so
calm and kind to everyone. Hoeteck for being fun, for preparing
the best talks, and giving the toughest advice. Damien for being
the proof God. Anca for showing us how to do style and substance
simultaneously. Geoffroy for being like, literally everything, if I could
be half what you are, I’d be doing well. Chloé for being one of the few
that seriously sees the technical interest in social issues. Melissa for
being **amazing**. Michele for being too cool, I hope we get to chill
together in the future. Azam, for making it to Paris, I am so proud to
know you. And Julia for always remembering, and taking care of us.

Finally to Stéphane and Sophie, for being the two that showed too
much patience with me trying to navigate French administration.

To Ingenico. For acting as my industrial home over the past few
years. I’ve grown to like you more than I ever thought I would.
To Laurence, for taking such good care of us, and for keeping me
entertained at lunchtime. To all at the labs, thanks for patiently
listening to me as I got excited about too many privacy topics over the
years. And to Erlin, the greatest intern that ever lived. I miss you.

Misc. There are some moments that make a profound impact on
your work but you may never be sure whether to thank or curse them.
Here I will share a few acknowledgments to those random things.
One is for the mosquito that feasted on the ball of my palm the week
before I submitted this thesis. You made these last words all the more
unbearable to type. Another is for the creators of the game Two Dots.Don’t get me wrong,

I believe it’s super
important to know
what’s going on in

the world, but while
one is writing a

thesis, it can be quite
distracting.

I’m not sure if this game has been a blessing or a curse, but it has kept
me from looking at Twitter and getting very sad at the state of the
world we live in. The third is to the creators of Star Trek. The original
one, from the ’60s. It is so calming that it has helped me to quieten all
these thoughts and get to sleep every night. Actually, I have learned
that they were quite pioneering in science.
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And then, After all is said and done. After all the fun is over.
After I have made all of my excuses. After dinner. After too-long
breakfast. After I have cried, and swore, and laughed (twice). After
all the people, and the problems, have given up. After the stress and
misunderstandings. After Dublin. After drawing one-way functions
on the window in the Library bar. After moving. After traveling. After
too much coffee. After toothaches. After all my insights, and all my
ignorance. After undeserved successes. After failure, after failure,
after failure. After all the untaken advice. After sushi, and after pizza.
After the mistakes in booking, mistakes in proofs, mistakes in coffee
machines. After missed flights, missed meetings, missed deadlines.
After walks in the woods, walks in the forest, walks in the hills, walks
in the proper mountains, walks in the rivers, walks in the mud, walks
in the rocks, walks in the snow, walks in the volcanoes, after walking
for weeks, after walking home. After working too much. Too much in
the evenings, too much at the weekends, and sometimes not enough
at all. Too often not enough at all. After Joyce, after Mohsen, after
Beckett. After all this imbalance and inefficiency.

After all my whimsy, and my daydreams. After all my wondering
what exactly is the difference between symmetric and asymmetric
cryptography, instead of just studying katz-lindell. After Marie, and
bagels and soup, and her cancerous dog. After smushed pears in the
usb port of the newest macbook. After Christmas trees. And after
deriving the general formula to predict the spruciness-longevity of
Christmas trees. After bowls of randomness. After jungles, no, sorry,
after rainforests. After whales. After pomegranates, and hierarchies,
and sahndeviches. After broken cups, broken bowls, broken glasses,
broken plates, broken bottles, and broken promises. After clicking
‘submit’ while we’re still working. After so many typos. After so many
started, so many left, so many unfinished projects. After so many
words and so little action. After kale soup.

After I have changed, sometimes for the better, sometimes for worse.
After reluctance to change, after stubbornness, after the thoughtless-
ness. After too many no’s. After picking fingers and scrunchy faces.
After ‘you people’. After blankets, and cushions, and hot-water bottles,
and foxes, and hippos, and bunnies, and goats, and marx, and gah.
After political theorists. After critical theorists. After Amy and Juan,
and Nermeen Shaikh. After Chomsky and Said and Rushdie and
Sontag. After all the stress, after all the things I’ve forgotten now, and
after all those things you do that I don’t even notice.

After all the things the others don’t see. Even after all of this, after
all the afters. . . you remain by my side.

And now, after a moment of reflection, after thinking for a sec, after
trying to instill the lessons learned, I see that all these afters sum up
to one giant before.
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So, before it’s too late, and before I forget, and before we embark on
our journey towards the next set of proofs, the next set of mountains,
the next set of books, the next set of ..afters, let me give you these
words, too many as they may be, as a marker in time, to note that
however good or bad the days may seem, however many afters I may
write, there are equally as many befores to come.

I can’t give you thanks. I can’t give you an acknowledgement. I
can’t give you so many things. The best I can do, in this chaotic world
and point in time, is to hold your hand, and give you hope.

Alors, pa’lante, Pooya jan.
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Part I

P R O L O G U E





1
I N T R O D U C T I O N

Let us begin by taking a brisk stroll through history.

1.1 the birth of modern cryptography

The year is 1943. You need a key. Deciding to keep it simple,
you press ‘A’, a rotor turns, you take some paper and write ‘K’.
Press ‘B’, write ‘Q’. Press ‘C’, write ‘G’. Again, press ‘A’, then ‘B’,
then ‘C’. Write ‘R, N, J’. Next, you can begin communication, press
‘W’, write ‘D’ and continue; press E, T, T, E, R, B, E, R, I, C, H, T,
write OAJKXTQHETTI. You have your message. Move to your radio
and transmit KQGRNJDOAJKXTQHETTI. . . and you’ve sent your first
encrypted text. Does the thought ever arise in your mind as to whether
or not it is dishonest to scramble your message? You do this for the
sake of national security, for strategy in time of war, for your nation.
You need ask no questions; this is your duty.

We jump to 1970. The height of the post-war, Golden Age of Capi-
talism. Electronic fund transfers (EFTs) are rampant and the number
of issued credit cards surpasses 1 million in the United States. The
world’s economy is booming. Life is sweet.

It’s 1977. Recovering from the 73–75 recession you are more skep-
tical about EFTs. Data protection laws surrounding the collection
of payment information are passed. You need more secure systems
and welcome the development of DES [PUB77]. But to use it is not
straightforward. What was once an instrument solely used for mil-
itary advantage, encryption is now commercially required due to
post-recession insecurities and the growth of electronic and comput-
ing industries, and is permissioned only via the licensing of your
IP.

Let’s move to 1991. You possess your own Personal Computer.
Imagine that! For the first time you see the ability to encrypt moving
into the hands of the citizen. This yields excitement, but also, it is
immediately obvious that this will cause some consternation. On
one hand, the First Amendment of the U.S. Constitution [U.S. Const.
am. I] strongly protects freedom of speech and expression, which—in
a roundabout way—means that cryptography within the U.S. can not
be controlled. On the other hand, cryptography remains on the U.S.
Munitions List, meaning that its export is still heavily regulated.

The next decade sees some of the bloodiest years of the Crypto Wars.
With global connection to the Internet, pressure mounts on the U.S.

3
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Government to loosen the laws surrounding the export of software.
The battles were fought in court and in 1996 [Cli96], encryption soft-
ware was removed from the munitions list. By the turn of the century,
rules surrounding the export of commercial and open-source software
containing cryptography were greatly simplified, restrictions on keys
were lifted, backdoors were prohibited, and you, the citizen, felt that
progress was underway.

Fast forward to June 2013. You sit happily tip tapping on your
smartphone, sharing doge memes and giggling over screaming goats,
before moving on to check the news. You learn that the U.S. Govern-
ment has forced Verizon to hand over the phone records of millions
of Americans [Gre13]. It’s not such a nice story. Over the coming
days you see more articles of a similar vein. You discover the NSA’s
direct access to data held by all your beloved internet giants. You learn
of secret programs and backdoors, and within months, you come to
terms with the fact that you live in a quasi-surveillance state. This is a
grave situation and once again, as you did two decades ago, you find
yourself debating the same disparity between individual privacy and
state security.

Between then and now. The debate raged on and the disparity still
exists. Several nations have the desire to forbid encryption, to keep
it as a military tool, to stifle progression, to retain control, and to un-
dermine democracy. But there has also been much progress. In 2018,
the EU put a new regulation into place: the General Data Protection
Regulation [Reg16]. It expands and solidifies the points set out in the
Charter of Fundamental Rights of the European Union [Uni12] and
the Treaty on the Functioning of the European Union [Uni07] which
state that EU citizens have the right to privacy both online and offline.
It insists that in order to maintain security of the individual while en-
suring compliance with the regulation, appropriate measures (such as
encryption) must be used. The regulation covers the collection, storage,
processing, and deletion of personal information and communications.
The regulation applies to the handling of personal information within
Europe irrespective of the location of the organisation handling the
data.

The United Nations Human Rights Council and the General As-
sembly have also specified the necessity for encryption to ensure the
right to privacy in the digital age, building their argument by paying
particular focus to the dangers faced by journalists. The UN [HRC16]

Emphasizes that, in the digital age, encryption and anonymity
tools have become vital for many journalists to exercise
freely their work and their enjoyment of human rights,
in particular their rights to freedom of expression and to
privacy, including to secure their communications and to
protect the confidentiality of their sources, and calls upon
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States not to interfere with the use of such technologies,
with any restrictions thereon complying with States’ obli-
gations under international human rights law.

These are simply two examples of many that build upon the argu-
ments of yore. However strong were the efforts made by the privacy
advocates in the 90’s, they were very few voices. Now, with technology
in every inch of our lives, with the increased media attention due to
the Snowden revelations, high profile court cases, and freer flowing
information, citizens are much more aware of the consequences of not
using encryption. This time around, there are many voices.

And so here we are. You have come a long way since your button
pressing days on the Enigma. You’ve seen four world recessions, men
walking on the moon, the fall of the Berlin wall, and some moves
towards equality. You’ve danced to records, to cassette tapes, to mp3s,
and now to Spotify. You must be tired. But you cannot sit yet! The
world has grown around you, and there are problems old and new
left to be solved. If I ask you to send me an encrypted email, right
here and now, can you do it? If I ask you to remove any records of
me, to grant my request to be forgotten, is it easy? If I want to travel,
to meet people in the world, will you stop me at the border? Will you
question me and demand my passwords? If I want to talk, to exercise
a curiosity, to learn and teach and spread information, but without
prying eyes, will you let me? Ultimately, all I’m asking is to exercise a
right, is it possible?

Until the answer to all of these questions is a definitive Yes, then
I’m afraid we’ve still got some work to do.

1.2 contributions of this thesis

We saw the development of several worlds all becoming dependent
on cryptography. While a traditional thesis aims to dig deep and focus
on one particular topic, the goal of this work was to arrive at a level
of scientific understanding and creativity that would allow to tackle
general problems that arise in this increasingly technological society.
As such, this thesis studies a variety of cryptographic topics. It encom-
passes new theoretical results, new security notions, constructions and
generic transforms for both public-key and symmetric cryptosystems,
and efficiency gains. The results mainly appear in three papers, briefly
outlined below.

1.2.1 Try Again

Part II introduces a new attack model, namely key-correlated attacks
(KCA), that subsumes two previous models (related-key attacks, and
key-dependent message attacks), and further shows that even if these
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two security notions are both guaranteed, together they are still not
enough to yield KCA-security as was previously thought. As such,
it is a lesson that we should expect try again before getting the most
complete security notions.

Key-Correlated Attacks. The part encompasses the security of
symmetric primitives. In Chapter 3 we give the background and moti-
vation for why it is interesting to study the security of key-dependent
messages encrypted under related keys. Chapter 4 describes a new
security notion that provides the strongest security for symmetric
primitives proven in the random oracle model (ROM). Key-correlated
attacks (KCA) model the scenario where all inputs (keys, messages,
and possibly nonces and headers) are correlated with the secret key.
We show relations and separations with older notions (related-key
and key-dependent message security) to show that security under
KCA is strictly stronger, and implies the others. In Chapter 5 we
describe the assumptions necessary to prove KCA security of block-
ciphers, and show that 3-rounds of Even-Mansour are necessary to
achieve this. Finally, in Chapter 6 we define a KCA-security notion for
nonce-based authenticated encryption (AE), and provide a black-box
transformation that turns a multiuser-secure AE into an AE scheme
that is provably KCA secure in the ROM.

1.2.2 Fail Again

Part III turns to public-key cryptography, and describes an attack
against a new assumption. Experimentally we show that we can obtain
the secret key without too much computing power. We go on and
attempt to modify the assumption and construct a variant scheme, but
alas, it also succumbs to the same attacks, and hence in this part we
are destined to fail again.

Unstudied Assumptions. Chapter 7 analyses the assumptions un-
derlying the new public-key cryptosystem of [AJPS17c]. Cryptanalysis
of their assumption, based on arithmetic modulo a Mersenne prime, al-
lowed us to reconstruct the secret key, given only the public key. Based
on a modified version of the assumption, in Chapter 8 we propose a
variant post-quantum secure public-key cryptosystem. This variant
is also vulnerable to the attacks described against [AJPS17c], but the
scheme still could be of use as it is a simpler construction, is based on
a different assumption, and thus potentially easier to cryptanalyse.

1.2.3 Fail Better

Part IV turns to efficiency, and studies the efficiency of signature
schemes. We describe a way to efficiently generate a batch of Schnorr
signatures using the same amount of ‘random’ as was traditionally
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required to generate one signature. We fail to maintain security
under traditional assumptions and are required to reduce to a new
assumption. If we are going to fail to use traditional assumptions, at
least we gain efficiency and fail better.

Efficiency. Chapter 9 sees the exploitation of the group structure
used in Schnorr signatures to reuse the nonce, with which we can
then generate a batch of signatures. This, together with some prepro-
cessing tricks, allow us to increase the efficiency of Schnorr signature
generation. We prove security of the signature scheme in the random
oracle model, but require a new assumption which we show to be
intractable in the Generic Group Model.





2
P R E L I M I N A R I E S

When writing cryptography, there are a number of design choices
that need to be made. There are definitions, notations, paradigms,
frameworks and each can be presented in different styles. This chapter
aims to clarify conceptual and notational choices, by introducing the
language and tools used throughout this thesis.

2.1 provable security

It is often the case that we cannot prove security in an absolute
sense. This can be limiting because, in practice, we are not tasked
with defending against adversaries that have unlimited resources to
perform attacks against the system we are trying to protect. Yet, at the
same time we should hope to protect against more than just ad-hoc
security approaches. It used to be, and is sometimes still, the case that
schemes are built according to an iterated ‘bug, fix, bug, . . . ’ approach,
where there is no formal proof of security, and no particular attack. If
flaws are found, the scheme is updated to capture and protect against
them. This is not very safe at all, and we see in practice that bugs
are found, but rather than being disclosed, they’re saved, stored, and These are known as

zerodays and are
actually very scary.

used to exploit a system at a later date. We can’t always get systems

In fact, there’s only
one time we can get
it.

with full and unconditional security, yet, it’s risky to rely on schemes
that have no proof of security, so what to do?

A successful paradigm that emerged to cover a middle ground is
known as provable security. It allows us to:

1. Abstract and define general notions for cryptographic primitives
which enable us to reason about their security.

2. Relate these notions to each other to form a clearer picture about
the relative strength of the security guarantees of a particular
primitive.

For example, AES
has no security proof,
but with provable
security we can
reason well about the
security of a generic
blockcipher. Then we
can ask ourselves if
the specific
instantiation (AES)
satisfies that
reasoning.

Overall, it gives us a sense of the security and gives us the confidence
to say that a particular primitive has no inherent design flaws.

Definitions. Generally when we talk about cryptographic objects,
we refer to them as primitives. We define a general class of primitives,
rather than relying on reasoning about the security of a particular
instance or instantiation of a primitive. These primitive abstractions
are built in the form of definitions. In writing definitions, there are a
number of things to consider:

syntax is the language used to describe this primitive. It lays down
the algorithms, mandates whether they are randomised or deter-

9
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ministic, describes the inputs expected by the algorithms, notes
from which domain (or space) the inputs can be chosen, and the
outputs the algorithms return, along with the range or space in
which they can lie.

correctness describes the interaction between algorithms that
forces the primitive to work correctly. For example, in any given
encryption scheme, we can say that it is correct if it is always
the case that the message obtained from the decryption of a
ciphertext is the same message that was encrypted to produce
that ciphertext.

security is where the fun starts. Security specifies the goal that theFor example, we may
wish to achieve the

security goal of
confidentiality, or

authenticity.

primitive should achieve, and the power of an attacker trying to
inveigle the system. It is often expressed as a game played by an
adversary with a given set of computational resources. We say
that the security goal is achieved if the adversary’s advantage, or
their probability of winning the game, is below some threshold.

Reductions. Given a definition of a primitive, we know how it
should look (through its syntax), how it should behave (through its
correctness), and what security goals it should achieve when faced
by an adversary. In proving that the primitive achieves these goals,
we need to bound the advantage of the adversary playing the security
game. To generate these bounds, we often need to rely on someWithout

assumptions, most
proofs would boil

down to solving the
P

?
= NP problem

along the way, and
this is still a bit

beyond us.

assumptions. The assumptions used are often well studied problems
that are universally considered to be hard enough at a given point in
time. New assumptions undergo careful cryptanalysis by many in
the community, but we’ll see more on that later, and particularly in
Part III. Equipped with carefully studied assumptions, the aim is
to show a relationship between the hardness of breaking primitive
and the hardness of the assumption. Describing this relationship is
typically done via a reduction.

A reduction is simply a process that shows how to transform an
efficient adversary A that succeeds in breaking the target primitive,
into a solver B that solves the problem that was assumed to be hard.
Reductions often proceed in the contrapositive, and we say that be-
cause it its assumed that no solver B exists to solve the hard problem,
it cannot be the case that we have an adversary A that breaks the
primitive.

Throughout this thesis, particularly in Parts II and IV we will see a
number of proofs by reduction.

2.2 hard problems

Now that we’re equipped with our primitive definitions, and our
methods to prove their security, we need some assumptions to reduce
to. There are a number of hard problems, and we are forever searching
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for more, but often the very first thing people think of when they
hear the word cryptography are the elusive prime numbers. Their
infamousity is largely due to the fact that the most widely used public-
key cryptosystem, RSA, is based on the hardness of integer factoring.
It was not, however, the first hard problem used to construct public-key
encryption. In 1976, Diffie and Hellman [DH76] proposed methods
for key exchange and digital signatures based on the Discrete Log
Problem. Below, you’ll find a brief description of these, and other hard
problems used in cryptography.

2.2.1 One-way Functions

Modern cryptography exists largely due to the fact that we have
some functions which we assume to be one-way. The problem is that
we do not have functions that are known to be one-way, and so we rely
on this as an assumption. However, this assumption would not form
the basis for modern cryptography if we did not have some candidates
that we strongly believe to be one-way.

One-way Function. A function is said to be ‘one-way’ if it satisfies
two properties:

1. It’s easy to compute.

2. It’s hard to invert.

It’s as simple as that. Here, easy means that if we’re given a uniform
value x from the domain of some function f , y := f (x) should be
computable in polynomial time. On the other hand, hard means that
if we’re given such a y that was produced by applying the function
f to the uniform value x, it should be infeasible for any probabilistic
polynomial time algorithm to invert f . The following paragraphs
describe some candidates strongly assumed to be one-way.

2.2.2 Integer Factorisation

Integer factorisation. Suppose we are given n = pq with p, q
prime. The problem is simply to find p. Provided that p and q are
large enough this problem is assumed to be hard.

RSA problem. Given integers n, x, e the problem posed is to compute
y such that ye = x mod n. One way to solve this problem is by
factoring n as above. In fact, it could be the only practical way, see
[Bro16], which addresses amongst others some initial doubts raised
by [BV98]. Assuming access to special oracles, efficient attacks are
known, see e.g. [JLNT09].
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Figure 2.1 – Illustration of the shortest-vector problem in a two-dimensional
lattice.

2.2.3 Discrete Logarithms

Discrete Logarithm Problem, DLP. Let G be a group, and g be a
generator of G. Given y ∈ G, find x such that gx = y.

The DLP was first introduced by Diffie & Hellman [DH76] to enable
key exchange by describing the function as a trapdoor the exponen-
tiation in a finite field. Fixing a prime p and a generator g of the
finite field of order p, computing gx mod p is easy (i. e. polynomial
time) by fast exponentiation. The converse, which is finding x given
gx mod p is hard. The discrete logarithm problem lies at the heart of
a vast proportion of modern public-key cryptography and has many
variations. Below we list some, and introduce a new one in Part IV.

Computational Diffie-Hellman, CDH. Let G be a group, and g beFor some primes, den
Boer [den90],

Maurer [Mau94],
and others have

shown equivalence
between CDH and

DLP but the problem
is still open.

a generator of G. Given gx and gy, compute gxy. The best approach to
solving this problem is by using a solution to the DLP.

Decisional Diffie-Hellman, DDH. Let G be a group of order q, and
g be a generator of G. Given gx and gy, it should be hard to decide, or
distinguish the value gxy from gz, where z a random element in G.

2.2.4 Lattice Based Problems

Lattice-based cryptosystems rely on the hardness of solving certain
problems appearing in discrete subgroups of Zn, typically of the form
L = ∑i cibi where bi ∈ Zn are called the basis vectors. The most
common hard problem is the shortest vector problem (SVP), which
intuitively seeks to find the shortest vector from any point to a point
in the lattice. More formally:In higher

dimensions, the
problem of finding

the shortest vector of
a lattice is believed to

be hard, this then
can be leveraged to

construct public-key
cryptographic

schemes.

SVPγ. Given a basis of L, find a non-zero vector v ∈ L of length
‖v‖ ≤ γλ1(L), where λ1(L) denotes the length of the shortest vector
in L. Figure 2.1 illustrates the SVP problem on a simple case.
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The results in Part III pertain to lattice-based public-key cryptogra-
phy.

2.3 idealised models of computation

Now we have our
definitions, our
reductions, our
assumptions, and
some examples, are
we ready to start yet?
Not exactly..

Hard problems, assumptions, and security in general, have been
studied for a number of decades now. Traditionally in proving security,
we had a well defined security target that we hoped to achieve. Yet, as
cryptographic primitives become increasingly complex, the notions
of security get deeper, and these schemes are used in ways that were
not necessarily envisioned when they were designed. As such, it’s
not always the case that we know exactly what property we want
to achieve, so there is a move to prove security in a more general
sense. Rather than reducing to a specific hard problem as outlined
above, we can also leverage black-box reductions where we are given
access to some ideal object that encompasses many desired security
properties. Proving security within these ideal models allows us to
keep proofs self-contained, and to bound adversaries against a general
set of attacks.

Random Oracles. The random oracle model ([BR93; CGH98; FS87])
models the operation of a random function as queries to an entity
called a random oracle. When queried with a given input, the random
oracle replies with a truly random number from some sample space.
Input queries and corresponding outputs are stored in a table; such
that upon receiving the same query twice, the oracle returns the
same corresponding output value. With a ‘full’ table containing all
input/output values from a given space, a random oracle models an
ideal hash function.

There are some uses of Random Oracles that we will call upon
throughout this thesis.

1. Lazy Sampling. Working in these idealised models, H can be
defined over an infinite domain. This can be technically cumber-
some to deal with, but also non-intuitive to reason about. For
this reason, it is often convenient to lazily sample H such that as
queries arrive, the output values are uniformly sampled, and the
input/output pair is stored in the table. This way, the table is
built up over time, rather than being pre-defined before use.

2. Programmability. Before we said that a reduction is process
describing how to convert an adversary that breaks the scheme
in question, into an adversary that solves some hard problem.
A property gained by using random oracles within a reduction
is that adversarial queries to H can be seen by the reduction
and as such, the reduction can return or program H to return
appropriate values.
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3. Forgetfulness. Upon receiving a query, H returns a uniformly
random value, without checking whether or not this query has
been made before.

However, no efficient algorithm can implement a true random or-I believe this to be
one of the more
over-used and

unexciting
comments regarding

random oracles.

acle; this can lead to the situation where a cryptosystem is provably
secure in the ROM, but provably insecure when instantiated with any
concrete hash function [CGH98]. However, such constructions are
very unnatural from a cryptographic point of view [KM15], but illus-
trate that there exists a gap between the ideal model and real-world
implementations.

Ideal Cipher Model. The ideal cipher model (ICM) is very close
in spirit to the random oracle model. Where the ROM models a
random function (or an ideal hash function), the ICM models a random
blockcipher (or an ideal cipher). Many schemes have been proven
secure in the ICM [BRS02; Des00; EM93; KR01]. As with the ROM,The reduction given

in [CPS08] is not
tight; thus the ROM

and the ICM are
qualitatively

equivalent, but the
ICM is

quantitatively a
stronger assumption.

there are (artificial) schemes that are provably secure in the ICM, but
provably insecure for any concrete block cipher [Bla06]. In fact the
ROM and ICM are equivalent [CPS08].

Generic Group Model. The generic group model (GGM) was
introduced by Shoup [Sho97] and gives an adversary access to a
randomly chosen encoding of a group, rather than a specific efficient
encoding.

The generic group model is useful, in that it gives more theoretical
power to prove statements, but it is unsatisfactory from a crypto-
graphic standpoint, because no group is truly generic. Groups used
in practice have additional structure, which leads to more efficient
algorithms. Like the ROM and the ICM, cryptosystems which are
provably secure in the GGM may be insecure when the generic group
is replaced by any concrete group [Den02; CGH98].

2.4 notation

Before getting into descriptions of primitives used throughout the
thesis, you will find listed below some preliminary notation to assist
in reading.

Strings. We let {0, 1}n denote the set of bit strings of length n and
{0, 1}∗ the set of all finite-length bit strings. For two bit strings X
and Y, X|Y denotes their concatenation and (X, Y) denotes a uniquely
(and efficiently) decodable encoding of X and Y. The length of X is
denoted by |X|.

Sampling. By x � S we mean sampling x uniformly from set S,
whereas by y � A(x) we mean the action of assigning the output
of the randomized algorithm A on input x to y. Assignment from
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deterministic algorithms and calculations are denoted by the symbol
←.

Lists. We denote appending element X (resp., a list L′) to a list L by
L : X (resp., L : L′).

Games. We adopt the code-based game-playing language of Bellare
and Rogaway [BR06], for which all lists are initialized to empty and all
bad flags to false. A game Game sometimes consists of an initializing
procedure Init, one or more procedures to respond to oracle queries,
and a finalizing procedure Fin. We denote changes from one game to
the next by highlighting boxed sections.

Parameters. Following the concrete security approach, we will
primarily content ourselves with defining advantages and providing
concrete reductions, without dwelling too much on the question when
a scheme is actually deemed secure or not (e.g., for a sufficiently large
class of adversaries, the advantages are sufficiently small). One can
of course easily recast our work in an asymptotic framework (where
for all probabilistic polynomial-time adversaries advantages should
be negligible in the security parameter λ, i.e., in λ−ω(1)). From time
to time we do use an asymptotic approach, for measuring efficiency,
and in such cases we denote the security parameter by λ ∈N which
is given to all algorithms in the unary form 1λ.

Algebra. If n is an integer, we write Zn for the ring Z/nZ. We let
Z∗n denote the invertible elements of Zn. The set of numbers 1, 2, . . . , k
is denoted [k].

Algorithms. f ∈ Negl(λ) denotes a function that decreases faster
than the inverse of any polynomial in λ; such functions are called
negligible. We often refer to an efficient algorithm or a probabilistic
polynomial time (PPT) algorithm, which is a probabilistic algorithm
running in time polynomial in its input size, on all inputs and all
random coins.

2.5 symmetric cryptography

Symmetric, or
private-key
cryptography was
the first developed
notion of
cryptography and
remains today the
most efficient and
widely used
primitive.

In Part II we will take a look at contributions in symmetric cryptog-
raphy. This section builds up the preliminaries and notation necessary
to read fluidly there.

Symmetric primitives are largely based on blockciphers built from
pseudorandom permutations and pseudorandom functions. These
in turn are used to build symmetric encryption primitives such as
Authenticated Encryption and its variants. Outlined below the reader
will find the descriptions from basic to advanced primitives, and the
security notions associated with them. Before we can build anything
we need some randomness.

Pseudorandom Functions (PRF). A family of functions F : K × A PRF is the
generalisation of a
PRG.
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D → R is a two argument function that takes a key K from the key
space K, and input x in the domain D and returns an output F(K, x)
in the range R. We define the PRF-advantage of an adversary A with
respect to the function family F as:

Advprf
F (A) = |Pr[AFK(·) = 1 : K� K]− Pr[A f (·) = 1 : f � Func(D,R)]|

F is said to be a pseudorandom function if the above advantage is
“small” for every “reasonable” adversary A.

Pseudorandom Permutations (PRP). A family of permutationsA PRP is a
restricted class of
PRFs mapping

inputs to outputs in
the same domain.

They are really the
fundamental

building block of
symmetric

cryptography.

Π : K×D → D is a two argument function that takes a key K from
the key space K, and input x in the domain D and returns an output
Π(K, x) in D. We define the PRP-advantage of an adversary A with
respect to the permutation family Π as:

Advprp
Π (A) = |Pr[AΠK(·) = 1 : K� K]− Pr[Aπ(·) = 1 : π � Perm(D)]|

Π is said to be a pseudorandom permutation if the above advantage
is “small” for every “reasonable” adversary A.

2.5.1 Blockciphers

Blockciphers are the fundamental building block for encrypting
messages under a shared key. They can be constructed in a number ofThe most commonly

used blockcipher
models are the Feistel

network, and
Even–Mansour.

ways by connecting PRPs together under various models. Now, let’s put
all the earlier preliminaries into action and think about blockciphers
more formally.

Blockciphers. Given a non-empty finite set K and a non-empty set
M, called the key space and the message space respectively, we let
Block(K,M) denote the set of all functions E : K ×M → M such
that for each K ∈ K the map E(K, ·) is

1. a permutation onM, and

2. length-preserving, in the sense that for all M ∈ M we have
that |E(K, M)| = |M|. Such an E uniquely defines its inverse
D : K×M→M.

A blockcipher for key space K and message space M is a tuple of
efficient algorithms BC := (E,D) such that E ∈ Block(K,M) and D

is its inverse. We assume that the keys of a blockcipher are chosen
uniformly from the key spaceK, which is typically {0, 1}k for some k ∈
N called the key length. Algorithm E is the deterministic enciphering
algorithm E : K×M →M. TypicallyM = {0, 1}n for some n ∈ N

called the block length. Algorithm D is the deterministic deciphering
algorithm D : K×M→M.

A blockcipher is correct if for all K ∈ K and M ∈ M we have
D(K,E(K, M)) = M. A (public) permutation on M is a blockcipher
with a singleton key space K = {ε}. We denote a permutation with P

and its inverse with P−.
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Ideal ciphers. The ideal cipher for key space K and message
space M is the uniform distribution over Block(K,M). The ideal-
cipher model (ICM) for given key and message spaces K, M is a
model of computation where all parties, honest or otherwise, have
oracle access to a uniformly random element in Block(K,M) and
its inverse. The ideal-cipher model when restricted to K = {ε}
gives rise to the random-permutation model (RPM). We abbrevi-
ate Block({0, 1}k, {0, 1}n) by Block(k, n) and Block({ε}, {0, 1}n) by
Perm(n).

The ideal-cipher model and the random-permutation model will
be used extensively in Chapter 5 to assist in proving security for
blockciphers.

2.5.2 Symmetric Encryption

Blockciphers are very useful, and will call upon them often, but
they are subject to some constraints that can be debilitating in the real
world. Because they are permutations, and deterministic, it means Spoiler: we get

around these
constraints by using
modes of operation to
turn blockciphers
into encryption
schemes.

that the encrypted message returned will always be the same given
the same input, and all input output pairs will have the same length.
Hence upon intercepting an encrypted message, the adversary can
already infer information about the plaintext. We extend the ideas
found in blockciphers to overcome these obstacles by defining possibly
randomised encrypting algorithms which are not restricted to produce
a ciphertext of the same length as the message. As such, we define
a more general sense of encryption, which, when used with a shared
secret key, we call symmetric encryption (SE). Let’s use the framework
from item 2.1 to define a symmetric encryption scheme.

SE syntax. A symmetric encryption scheme SE consists of three algo-
rithms SE = (Gen, Enc,Dec) that work as follows:

1. Gen is the randomized key generation algorithm that returns a
bit string K from a finite key-space K (which is typically {0, 1}k

for some k ∈N).

2. Enc : K ×M � C is the randomized encryption algorithm
which takes as input a key K, a message M from message space
M, and returns a ciphertext C from some ciphertext-space C.
We write this as C← Enc(K, M).

3. The deterministic decryption algorithm Dec : K×C →M∪{⊥}
takes a key K, a ciphertext C, and returns either a plaintext M or
the failure symbol ⊥6∈ M.

SE Correctness. Correctness requires that Dec(K,Enc(K, M)) = M
for all values of the inputs above.
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2.6 security notions for encryption

Taking a look at any security book, you will not be able to escape the
three pillars of information security, namely, confidentiality, integrity,
and authenticity.

confidentiality provides the guarantee that the message cannot
be understood by anyone other than those intended to read
them. It is most often guaranteed by symmetric and public-key
encryption.

integrity convinces us that a ciphertext has not been altered or
tampered with on its journey from sender to receiver. Integrity
is often guaranteed by hash functions.

authenticity gives the assurance that the message received by
the receiver is indeed the one sent by the sender. This is usu-
ally guaranteed by sending a digital signature, or a message
authentication code.

Any good encryption scheme aims to achieve confidentiality at the
very least. Depending on how much power is given to the adversary,
this can be easy or hard. There are a number of notions to captureIt is good to model

the strongest possible
adversaries to give

the best security
guarantees.

the power of an adversary; some are old, some are newer, and we con-
sider here only the stronger notions of chosen-plaintext attacks (CPA),
and chosen-ciphertext attacks (CCA) as outlined below and captured in
Figure 2.2.

CPA-security In conducting a chosen-plaintext attack, and adver-
sary A is given access to an encryption oracle Enc under which
it can encrypt plaintext messages M of its choice. When queried,
Enc encrypts messages under a key K which remains unknown
to A. The encryption oracle then returns a ciphertext C ←
EncK(M) as the reply to the query.

CCA-security In a chosen-ciphertext attack, and adversary A has
access to Enc, and an additional oracle for decryption, Dec, under
which it can decrypt ciphertexts C of its choice. When queried,
Enc encrypts messages under a key K which remains unknown
to A. The encryption oracle then returns a ciphertext C ←
EncK(M). When queried, Dec decrypts ciphertexts under a
key K which remains unknown to A. The decryption oracle
then returns a plaintext message M← DecK(C) as the reply to
the query. To avoid trivial wins, we disallow the adversary to
query Dec (resp. Enc) with ciphertexts (resp. messages) that
were previously generated by Enc (resp. Dec).

It is clear to see that CCA is the stronger notion of the security
as the adversary is given access to both encryption and decryption
oracles. This is the common standard security goal to aim for, and the
one used in chapters 4 and 5.
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Game CPAASE:
b� {0, 1}; K� K
b′ � AEnc

return (b′ = b)

Game CCAASE:
b� {0, 1}; K� K
b′ � AEnc,Dec

return (b′ = b)

Figure 2.2 – CPA and CCA experiments for a symmetric encryption scheme.

We say that we aim to achieve confidentiality through ciphertext
indistinguishability, and that we give and adversary access to oracles
that return ciphertext and/or plaintexts, but what exactly does it try
to distinguish? There are a number of flavours of indistinguishabil-
ity game, but there are two more common than others, which are
described as follows:

left-or-right indistinguishability (LR): A challenge bit b
and key K are chosen. An adversary A queries two messages
(M0, M1) to the encryption oracle. One of the messages, corre-
sponding to the challenge bit is encrypted and returned as Cb.
The adversary must then distinguish whether M0 or M1 was en-
crypted. It is often mandated that A can make at most q queries,
after which their guess is returned as b′. A wins if b′ = b. The
advantage of A against a symmetric encryption scheme SE in
the LR game is defined by

Advlr-cca
SE (A) = 2 · Pr[b′ = b]− 1.

real-or-random indistinguishability (RR): As in LR, a chal-
lenge bit b and key K are chosen. In this game, an adversary A
queries a single message (M) to the encryption oracle. Depend-
ing on the bit b, the oracle will encrypt either the real message,
or will choose a string uniformly at random from the prescribed
ciphertext space and returns the ciphertext as Cb. The adversary
A must distinguish whether it is an encryption of the real mes-
sage or of a random string. Often with b = 1 being ‘real’ and
b = 0 being ‘random’, A returns a bit b′ and wins if b′ = b. The
CCA advantage of A against SE in the RR game is defined by

Advrr-cca
SE (A) = 2 · Pr[b′ = b]− 1.

These notions appeared first in [BDJR97] and are displayed pictorially
in Figure 2.3 as a starting point to see how games will be presented
throughout the thesis.

2.6.1 Authenticated Encryption

So far we have
understood some
provable security,
something about
blockciphers, using
them to make
symmetric
encryption, are we
done? Not yet.
There’s one more
thing to consider. . .

Symmetric encryption gives strong guarantees for the confidentiality
of a ciphertext. We know that in the CCA security model, even if we
give an adversary A access to encryption and decryption oracles
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Game LR-CCAASE:
b� {0, 1}; K� K
b′ � ALREnc,LRDec

return (b′ = b)

Game RR-CCAASE:
b� {0, 1}; K∗ � K
b′ � ARREnc,Dec

return (b′ = b)

Proc. LREnc(M0, M1):
C0 ← Enc(K, M0)

C1 ← Enc(K, M1)

CL← CL : (K, Cb)

return Cb

Proc. RREnc(M):
C0 ← Enc(M0)

C1 � {0, 1}|C0|

CL← CL : (K, Cb)

return Cb

Proc. LRDec(C0, C1):
if (K, C) ∈ CL: return ⊥
M0 ← Dec(K, C0)

M1 ← Dec(K, C1)

return Mb

Proc. Dec(C):
if (K, C) ∈ CL: return ⊥
M← Dec(K, C)
return M

Figure 2.3 – Left-or-right, and real-or-random indistinguishability games for
a symmetric encryption scheme SE in the CCA-security model.

so they can obtain ciphertexts and messages, we can still maintain
security (ciphertext indistinguishability). However, it is often the
case that this is insufficient. Attacks have shown, that unless the
encryption is authenticated in some way, the integrity of the system
can be compromised. Authenticated Encryption aims to solve this
by producing a message authentication code based on the plaintext, and
encrypting this together with the plaintext to create the ciphertext.
Although they differ in instantiation and implementation, there is only
one syntactical difference between a symmetric encryption scheme SE
and an authenticated encryption scheme AE. The encryption scheme
Enc is randomised in SE, but is mandated to be deterministic in AE.

AE syntax. An AE scheme is a 3-tuple of algorithms SE = (Gen, Enc,Dec),
where

1. Gen is the randomized key generation algorithm that returns a
bit string K from a finite key-space K (which is typically {0, 1}k

for some k ∈N).

2. Enc : K ×M → C is the deterministic encryption algorithm
which takes as input a key K, a message M from message space
M and returns a ciphertext C from some ciphertext-space C. We
write this as C← Enc(K, M).

3. The deterministic decryption algorithm Dec : K×C →M∪{⊥}
takes a key K and a ciphertext C, and returns either a plaintext
M or the failure symbol ⊥6∈ M.

Correctness requires that Dec(K, Enc(K, M)) = M for all values of the
inputs above.
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AE security. For symmetric encryption we were content with achiev-
ing CCA security. For an authenticated encryption scheme, however,
there is another guarantee that we need to define, ciphertext integrity
(CI). If we can show a scheme to be both CCA secure, and CI secure,
then we infer that the scheme is AE secure.

Ciphertext Integrity. In a CI game a challenge key K is chosen at
random. An adversary A queries a message M to the challenger and
receives encryptions of the message C� Enc(K, M). A can make up
to q such queries, after which it outputs a candidate ciphertext C′ that
is different from all Cs returned by the challenger. We say that A wins
the game if C′ is a valid ciphertext and Dec(K, C′) 6=⊥.

Given CCA and CI we say the AE advantage of an adversary A
against an authenticated encryption scheme SE is defined by

Advcca+ci
SE (A) := 2 · Pr

[
AEASE

]
− 1 .

2.6.2 Nonce-Based Authenticated Encryption

With blockciphers we ran into trouble sometimes because the enci-
phering algorithm was mandated to be deterministic. We introduced
symmetric encryption to overcome this (amongst other issues) by
defining a randomised encryption algorithm. Now, in the authenti-
cated setting, because of how authentication is formed, we are forced
back to using deterministic encryption algorithms. A way to solve this
issue is to introduce a user-specified nonce, that acts as an input to
Enc and has the responsibility of flipping the random coins during
the encryption process. The syntax is similar to AE, but introduces a
nonce N from a nonce space N . For completeness, we describe the
syntax below.

Nonce based AE syntax. An nonce-based AE scheme is a 3-tuple of
algorithms SE = (Gen, Enc,Dec), where

1. Gen is the randomized key generation algorithm that returns a
bit string K from a finite key-space K (which is typically {0, 1}k

for some k ∈N).

2. Enc : K×M×N → C is the deterministic encryption algorithm
which takes as input a key K, a message M, and a nonce N and
returns a ciphertext C. We write this as C← Enc(K, M, N).

3. The deterministic decryption algorithm Dec : K × C × N →
M∪ {⊥} takes a key K, a ciphertext C, and a nonce N, and
returns either a plaintext M or the failure symbol ⊥6∈ M.

Correctness requires that Dec(K, Enc(K, M, N), N) = M for all values
of the inputs above.
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2.6.3 Authenticated Encryption with Associated Data

With SE we got confidentiality, and with AE we introduced integrity.
Authenticated Encryption with Associated Data (AEAD) addresses
the third pillar, authenticity. It involves the addition of associated data
(known as header data) that is bound to the ciphertext and to the
environment.

AEAD syntax. An AEAD scheme is a 3-tuple of algorithms SE =

(Gen, Enc,Dec), where K,M, and C are defined as above, and

1. Gen is the randomized key generation algorithm that returns a
bit string K.

2. Enc : K ×M×N × H → C is the deterministic encryption
algorithm which takes as input a key K, a message M, a nonce N
from nonce space N , and possibly some associated header data
H from header-space H and returns a ciphertext C. We write
this as C← Enc(K, M, N, H).

3. The deterministic decryption algorithm Dec : K×C ×N ×H →
M∪ {⊥} takes a key K, a ciphertext C, a nonce N, and possibly
some associated header data H and returns either a plaintext M
or the failure symbol ⊥6∈ M.

Correctness requires that Dec(K,Enc(K, M, N, H), N, H) = M for all
values of the inputs above. Note that K, N, and H, must be the same
in Enc and Dec for decryption to work.

AEAD security. We define the AEAD-security of an authenticated
encryption scheme SE = (Gen, Enc,Dec) by considering the game
described in the middle in Fig. 2.4. The AEAD advantage of an
adversary A against SE is defined by

Advaead
SE (A) := 2 · Pr

[
AEADASE

]
− 1 .

It is required that A is nonce-respecting in that it does not repeat
nonces in its encryption queries (but it may repeat them in decryption
or across encryption and decryption queries).

Misuse-Resistant Authenticated Encryption (MRAE). We de-
fine the MRAE-security of an authenticated encryption scheme SE =

(Gen, Enc,Dec) by considering the rightmost game described in Fig. 2.4.
The MRAE advantage of an adversary A against SE is defined by

Advmrae
SE (A) := 2 · Pr

[
MRAEASE

]
− 1 .

However, in this case, unlike AEAD, A is not required to be nonce-
respecting and can repeat nonces in all queries.

It is clear to see that the syntax and the correctness of AE and its
variants are very similar. Sometimes it is difficult to see the subtle dif-
ferences between the notions. This is where the beauty of game based
definitions comes in. Figure 2.4 outlines the RR indistinguishability
games for the three variations.
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Game AEASE:
b� {0, 1}; K� K
b′ � ARREnc,Dec

return (b′ = b)

Game AEADASE:
b� {0, 1}; K� K
b′ � ARREnc,Dec

return (b′ = b)

Game MRAEASE:
b� {0, 1}; K� K
b′ � ARREnc,Dec

return (b′ = b)

Proc. RREnc(M):
if M ∈ ML: return ⊥
C1 ← Enc(K, M)

if T[K, M] = undef:
T[K, M]� {0, 1}|C1|

C0 ← T[K, M]

ML← ML : (M)

CL← CL : (K, Cb)

return Cb

Proc. RREnc(M, N, H):
if (M, N, H) ∈ ML: return ⊥
C1 ← Enc(K, M, N, H)

if T[K, M, N, H] = undef:
T[K, M, N, H]� {0, 1}|C1|

C0 ← T[K, M, N, H]

ML← ML : (M, N, H)

CL← CL : (K, Cb, N, H)

return Cb

Proc. RREnc(M, N, H):
if (M, H) ∈ ML: return ⊥
C1 ← Enc(K, M, N, H)

if T[K, M, N, H] = undef:
T[K, M, N, H]� {0, 1}|C1|

C0 ← T[K, M, N, H]

ML← ML : (M, H)

CL← CL : (K, Cb, H)

return Cb

Proc. Dec(C):
if (K, C) ∈ CL: return ⊥
M← Dec(K, C)
return M

Proc. Dec(C, N, H):
if (K, C, N, H) ∈ CL: return ⊥
M← Dec(K, C, N, H)

return M

Proc. Dec(C, N, H):
if (K, C, N, H) ∈ CL: return ⊥
M← Dec(K, C, N, H)

return M

Figure 2.4 – Real-or-random indistinguishability games for an adversary
playing against AE (left), nonce-based AEAD (middle), and MRAE (right).

2.7 public-key cryptography

It is interesting to
note that unlike
English where the
term ‘Public-Key’
pertains to both the
concept of
public-key
encryption, and the
public key itself. In
(correct) french, a
distinction is made
between the concept
‘la cryptographie à
clé révélée’ and the
the keys themselves
‘la clé publique’ and
‘la clé secrète’.

Up until now, we have discussed symmetric encryption where
communicating parties share a common key. Symmetric encryption
is very efficient, and very secure, but its major limitation is that it
does not allow to distribute keys over insecure channels that allow
eavesdropping. In an attempt to solve this, public-key cryptography
was invented in the 1970’s and redefined how we thought about keys.
Schemes were designed to perform key exchange over an insecure
channel, allowing parties to jointly compute a symmetric key. Further
developments led to schemes producing two keys; one public, one
private, such that the public key could be widely distributed and used
by anyone to encrypt a message, but only the private key, kept secret,
could be used to decrypt.

2.7.1 Key Exchange

The first key exchange protocol was described in [DH76] and was
based on the DLP ( Section 2.2) To exchange a key, two parties agree When starting to

learn cryptography,
this is where the
subject really feels
like magic

on public parameters p and g. The first party generates a random x
and computes w = gx mod p which they send to the second party. By
the DLP it is assumed that the second party, nor an eavesdropper, can
infer the value x. The second party generates a random y, computes
z = gy mod p and sends to the first party. After these two exchanges
the first party knows x and z = gy mod p. They can then compute
the exponentiation of z by x to get zx = (gy)x mod p = gyx mod p.
The second party knows y, and w = gx mod p, and can similarly
compute wy = gxy = gyx = zx mod p. They have agreed on a common
value. The eavesdropper only knows gx mod p and gy mod p. Without
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knowing x and y, there is no known efficient way for an eavesdropper
to compute the shared secret, which can therefore be used to derive a
symmetric key.

2.7.2 Public Key Encryption

In addition to key exchange, Diffie and Hellman’s New Directions
in Cryptography also introduced interactive public-key encryption (PKE).
The first (published) non-interactive public-key encryption scheme,
known as RSA was introduced by Rivest, Shamir, and Adelman
[RSA78] and remains the most widely used PKE today, based on
the hardness of the RSA problem. Although they are very different in
spirit, syntactically, SE and PKE are not all that different. The main
difference, naturally, is the addition of a public key.

PKE syntax. A public-key encryption scheme is a 3-tuple of algo-
rithms PKE = (Gen, Enc,Dec) where

1. Gen is the randomised key generation algorithm that outputs
a pair (pk, sk) � Gen where pk is the public key, and sk is the
secret key.

2. Enc is the randomised encryption algorithm that takes as input
a public key pk, a message M from some message space M,
and outputs a ciphertext C� Enc(pk, M) where C belongs to a
ciphertext space C.

3. Dec is the deterministic decryption algorithm which takes as
input a secret key sk, a ciphertext C, and returns a message
M← Dec(sk, C).

PKE Correctness. It is required that for all possible outputs (pk, sk)
from Gen, and messages M, Dec(sk, Enc(pk, M)) = M.

PKE Security. In the public-key setting, CPA security is somewhat
meaningless, as such, as in the symmetric setting, we focus on the
CCA security notion. It is arguably more important in the public-key
setting as the receiver can receive encrypted messages from many, and
possibly unknown sources.

CCA security in the public-key setting. Playing in the real-or-
random CCA indistinguishability game an adversary A interacts with
the PKE environment to try to distinguish whether a real or random
message was encrypted. Gen is run to produce a pair of keys (pk, sk).
The adversary A is given access to the public key pk and to the
decryption oracle Dec and outputs a message M. A uniform bit b is
chosen, and a ciphertext C← Enc(pk, M) is generated. Depending on
whether b = 0 or b = 1, Enc either encrypts the message sent by A,
or uniformly selects a message of the same length as M and encrypts
it. The ciphertext C is sent to A. The adversary can then continue to
interact with the decryption oracle in this manner, with the restriction
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that decryptions of C may not be asked. Eventually, A outputs a bit b′

and wins if b′ = b. The CCA advantage of A against PKE in the RR
game is defined by

Advrr-cca
PKE (A) = 2 · Pr[b′ = b]− 1.

2.7.3 Key Encapsulation Mechanisms

The advent of public-key cryptography solved the majority of key
distribution problems. The first, through key exchange protocols,
another, through public-key encryption, but there’s a third, and it’s
sweet. We talked a lot about symmetric cryptography and how it gave
nice security guarantees, and is very efficient. A way to overcome
the private-key distribution problem is to use a key-encapsulation
mechanism (KEM) to encrypt a symmetric key, in a public-key setting.
This way, only the intended recipient, i. e. the one with the private key
corresponding to the public key, can decrypt to reveal the symmetric
secret key. This has come to be known as hybrid encryption.

Key-encapsulation mechanism. A key-encapsulation mechanism
(KEM) is a 3-tuple of algorithms (Gen, Encaps,Decaps) such that:

1. Gen is the randomised key generation algorithm that outputs
a pair (pk, sk) � Gen where pk is the public key, and sk is the
secret key. We assume pk and sk each have length at least k, and
that k can be determined from pk.

2. The encapsulation algorithm Encaps takes as input a public key
pk and outputs a ciphertext C and a key K ∈ {0, 1}`(k) where `

is the key length. We write this as (C, K)� Encaps(pk).

3. Decaps is the deterministic decapsulation algorithm, which takes
as input a private key sk and a ciphertext C, and outputs a key K
or a special error symbol ⊥. We write this as K← Decaps(sk, C).

KEM security. As with SE and PKE, the standard notion of security
for KEM is that of CCA security. Again, playing in the CCA indis-
tinguishability game, with an adversary A interacting with the KEM

environment. Gen is run to produce a pair of keys (pk, sk). Then
Encaps(pk) is run to obtain a pair (C, K). A bit b is chosen, and de-
pending on whether b = 0 or b = 1 we set K′ = K or choose a uniform
K′ ∈ {0, 1}n. The adversary A is given (pk, C, K′) and access to the
decapsulation oracle Decaps(sk). The adversary can then continue to
interact with Decaps in this manner, with the restriction that decapsu-
lations of C may not be asked. Eventually, A outputs a bit b′ and wins
if b′ = b. The CCA advantage of A against the KEM game is defined
by

Advcca
KEM(A) = 2 · Pr[b′ = b]− 1.

Public-key encryption and key-encapsulation mechanisms appear
mostly in Chapters 7 and 8
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2.8 digital signatures

We saw in the case of symmetric encryption that there was the need
for more than message confidentiality. When introducing authenti-
cated encryption we saw the need to achieve message integrity. AWhen they wrote

“We stand today on
the brink of a
revolution in

cryptography”,
they were not
exaggerating!

similar situation arises in public-key cryptography, and is solved by
the creation of digital signatures. Yes, you guessed it, they were also
introduced in the 1976 paper by Diffie and Hellman [DH76]. A digital
signature scheme is simply a method to verify the authenticity of a
message. The come in various flavours, and are based on similar hard
problems as public-key encryption schemes; perhaps most notably,
the DLP and integer factorisation problems.

Digital signature syntax. A digital signature scheme is a 3-tuple
of algorithms Σ = (Gen, Sign,Verify).

1. Gen is the randomised key generation algorithm that generates
a key-pair (sk, pk) � Gen. The user then keeps the secret (or
signing) key sk, and reveals the public (or verifying) key pk to
everyone.

2. Sign is the signing algorithm that takes as input a message M,
and a secret key sk, and outputs a signature σ� Sign(pk, M).

3. Verify is the deterministic verification algorithm takes as input a
signature σ, a message M, and a public key pk, and outputs True
if verification works, and False otherwise. Verify(pk, M, σ) =

True∨ False.

Correctness requires that Verify(pk, M, Sign(sk, M)) = True for all
possible pairs (pk, sk) generated by Gen and all valid messages M.

Signature security. In the symmetric setting, we introduced the
notion of ciphertext integrity to authenticate our encryption scheme.
With digital signatures, we have a similar concern. We can also think of
the analogy with a handwritten signature where the greatest ‘security’
issue is that they can potentially be forged. In the digital setting a
successful forgery is a signature that is accepted by the verifier, while
being generated by an adversary, without using the secret key. SinceThere is also the

possibility that the
secret key could be
somehow extracted

and then used, which
constitutes a total

break.

signatures are by nature public, adversaries can generally access a vast
quantity of message-signature pairs; in some scenarios they can even
ask their targets to sign well-crafted documents. To guarantee security,
we require that even despite having access to all this information, an
adversary should not be able to produce forgeries.

Unforgability. We hope to achieve a notion that provides assurance
that there exists no forgery under a chosen message attack. The notion
has become known as ‘existential unforgability’, and we denote it by
EUF-CMA. Given a digital signature scheme Σ = (Gen, Sign,Verify),
an an adversary A playing the EUF-CMA game aims to come up with
a pair (M, σ) such that Verify(pk, M, σ) = 1. In the EUF-CMA game,
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Game EUF-CMAAΣ :
(sk, pk)� Gen

(M∗, σ∗)← ASign,Verify,H

if (M∗, σ∗) 6∈ L

return Verify(pk, M∗)
return ⊥

Sign(M):
σ� Sign(sk, M)

L← L∪ {M, σ}
return σ

Verify(M, σ):
return Verify(pk, M, σ)

Figure 2.5 – The EUF-CMA experiment for a digital signature scheme.

Gen is run to obtain public-private key pair (pk, sk). A is given pk,
and access to a signing oracle Sign(sk). After some time, A outputs a
candidate message and signature pair (M, σ). Let ML denote the list
of all As queries to the signing oracle. We say that A succeeds if two
conditions are met:

1. Verify(pk, M, σ) = True, and

2. M /∈ ML

A signature scheme Σ is secure against existential forgeries in a chosen-
message attack (strongly EUF-CMA-secure) if the advantage of any PPT
adversary A against the EUF-CMA game defined in Figure 9.1 is
negligible:

Adveuf-cma
Σ,A = Pr

[
EFAΣ (λ) = 1

]
∈ Negl

2.8.1 Concrete Signature Schemes

DLP-Based Signatures. ElGamal introduced in 1984 the first DLP-
based signature scheme [ElG84]. It inspired the more efficient Schnorr
signature scheme [Sch90], for which a security proof is known in the
random oracle model assuming the hardness of DLP [PS00]. Schnorr’s
scheme was initially protected by patents, which had the effect of
limiting its diffusion. All these schemes can be implemented on elliptic
curves (EC), to decrease parameter size and improve performance.
The patent surrounding Schnorr signatures expired in 2008, and since
then, they have been gaining popularity.

Schnorr Signatures. Schnorr signatures are provably secure in the
Random Oracle Model under the assumed hardness of solving generic
DLP instances and work in the following way. A cyclic group G = Zp

of prime order p is chosen, in which it is assumed that the DLP is hard,
along with a generator g ∈ G. A hash function H : G× {0, 1}k → Zp

is chosen. A Schnorr signature scheme is a 3-tuple of algorithms that
work as follows:

— Gen(g) takes as input the generator g of G and chooses a (secret)
signing key sk� Zp and a (public) verification key pk← gsk.
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— Sign(sk, M) takes as input the signing key sk and a message
M ∈ {0, 1}k. It chooses a random integer r � Zp, sets R ← gr,
and C← H(R, M), and computes y← sk · C + r mod p. Finally,
it outputs a signature σ = (R, y).

— Verify(pk, M, (R, y)): Computes e ← H(M, R) and returns True

if gy = pke · R, and False otherwise.
Schnorr signatures form the basis for the work contained in Part IV.



Part II

T RY A G A I N





Abstract

We study the security of symmetric primitives against key-correlated
attacks (KCA), whereby an adversary can arbitrarily correlate keys,
messages, ciphertexts, and possibly nonces and associated data. Secu-
rity against KCA is required whenever a primitive should securely en-
crypt key-dependent data, even when used under related keys. KCA
is a strengthening of the previously considered notions of related-
key attack (RKA) and key-dependent message (KDM) security. This
strengthening is strict, as we show that 2-round Even–Mansour fails
to be KCA secure even though it is both RKA and KDM secure. We
provide feasibility results in the ideal-cipher model for KCAs and
show that 3-round Even–Mansour is KCA secure under key offsets in
the random-permutation model. We also give a natural transform that
converts any authenticated encryption scheme to a KCA-secure one
in the random-oracle model. Conceptually, these results allow for a
unified treatment of RKA and KDM security in idealised models of
computation.

This is joint work with Pooya Farshim and Georg Fuchsbauer.





3
K E Y C O R R E L AT E D S E C U R I T Y

Cryptographic algorithms are subject to a multitude of threats.
Many of these threats are accounted for in the theoretical security
analysis carried out by cryptographers, but not all. For example, early
on, the seminal paper of Goldwasser and Micali [GM84] pointed out
that guarantees of semantic security may break down if the adversary
sees encryptions of the secret key. Formal analyses of protocols can
also become moot [Bih94b; Bih94a] when the assumption that cryp-
tosystems are run on independently generated keys no longer holds.
A number of works have analyzed the security of cryptosystems in
the presence of key-dependent messages or when different keys are
generated in dependent ways (see the related work section below). We
continue this line of work and ask to what extent basic cryptosystems
(such as blockciphers and symmetric encryption) can resist attacks
that exploit correlated inputs.

3.1 motivation

Our motivation for studying correlated-input security is twofold. We
are interested in settings where a cryptosystem may be run on related
keys—either by design or due to attacks—to securely encrypt messages
that depend on the encryption key. Suppose a user stores a secret key K
on its hard drive. An adversary may be able to tamper with this key, for
example flip some of its bits and change it to K⊕ ∆ for some bit string
∆. It may then obtain a full-disk encryption under this key. It is not
clear what security assertions can be made, as this setting falls outside
both the related-key attack (RKA) and the key-dependent message
(KDM) models. Indeed, the RKA model only allows the adversary to
obtain encryptions of the form Enc(φ(K), M), for functions φ mapping
keys to keys, but for key-independent messages, while KDM accounts
for key-dependent encryptions of type Enc(K, ψ(K)), for functions
ψ mapping keys to messages, but under untampered keys. In the
described attack, the adversary obtains Enc(K ⊕ ∆, K ⊕ ∆). This is
not covered by either of these models since both the key and the
message are correlated with the original key. Other applications of
KCAs include efficient garbling of XORs [App16], where KCA security
(called RK-KDM there) with respect to linear functions or the form
α · K⊕ ∆ for a bit α are used.

These settings require a stronger security notion, which is what we
introduce here. The Key-Correlated Attacks (KCAs) model lets the ad-
versary obtain encryptions of key-dependent messages under related

33
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keys. Generally, wherever there is a possibility of both RKAs and KDM
attacks, i.e., key-correlated encryptions of the form Enc(φ(K), ψ(K)),
there is good chance that the actual security needed is KCA security.
A typical use case is when the round functions of a block cipher
are keyed via related keys, and the construction is used to encrypt
key-dependent data.

In our model, for generality, simplicity and strength, we symmet-
rically allow for key-dependent ciphertexts, that is, the adversary can
see Dec(φ(K), ψ(K)). Such settings arise when the decryption algo-
rithm of a blockcipher is run during encryption, which is for example
the case in the triple DES construction [BR06], the ElmD construc-
tion [BDMN16], or in amplification theorems for blockciphers [MP04;
CPS14].

Our second motivation is conceptual in that KCA provides a unified
approach to RKA and KDM security analyses of symmetric primitives.
More concretely, our goal is to prove KCA feasibility theorems and
then derive RKA and KDM security as simple corollaries. This allows
for reuse of security proofs and identifies classes of permitted attacks
more generally, while leading to stronger security results.

3.2 related work

RKA security. Knudsen and Biham [Knu93; Bih94b; Bih94a] initiated
the study of RKAs and Bellare and Kohno [BK03] gave a theoretical
treatment. High-profile RKAs on AES were discovered by Biryukov
et al. [BKN09; BK09]. The RKA model was extended by Albrecht et
al. [AFPW11] to account for attacks that depend on an ideal prim-
itive [Har09; Ber10]. The RKA security of Feistel networks [BF15]
and Even–Mansour ciphers [FP15; CS15] have been studied. Bellare,
Cash, and Miller [BCM11] present a comprehensive treatment of RKA
security for various cryptographic primitives.

KDM security. Goldwasser and Micali [GM84] already hinted at
the need for KDM security. The first use of KDM security appears
in the work of Camenisch and Lyskanskaya [CL01] for anonymous
credentials. Black, Rogaway, and Shrimpton [BRS03] formulated KDM
security for symmetric encryption and proved its feasibility in the
random-oracle model. Halevi and Krawczyk [HK07] later gave feasi-
bility results in the standard model. Bellare and Keelveedhi [BK11]
studied KDM in the context of authenticated encryption. Bellare, Cash,
and Keelveedhi [BCK11] give a generic construction of a tweakable
blockcipher from a blockcipher which is KDM secure. More recently,
Farshim, Khati, and Vergnaud [FKV17] studied KDM security for the
ideal cipher and the iterated Even–Mansour constructions. In the
asymmetric setting the first feasibility result in the standard model for
rich classes of functions was by Boneh et al. [BHHO08]. Camenisch,
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Chandran and Shoup [CCS09] gave a KDM-CCA secure public-key
encryption scheme.

Correlated inputs. Study of security under correlated inputs goes
back to the work of Ishai et al. [IKNP03] as correlation-robustness
in the design of oblivious transfer protocols. Correlated-input se-
curity was made explicit for hash functions by Goyal, O’Neill, and
Rao [GOR11], who show relations with related-key attacks. The work
of Böhl, Davies and Hofheinz [BDH14] considers related-key attacks
in the presence of key-dependent messages. Their RKA-KDM security
could be considered a natural analogue of our model for public-key
encryption. They construct schemes that achieve their notion based on
number-theoretic assumptions such as DDH, LWE, QR, or DCR. Ap-
plebaum [App16] gives an RKA-KDM symmetric encryption scheme
based on the LPN assumption.

3.3 contributions

Building on the above line of works, we formulate a new security
model incorporating and strengthening both the RKA and KDM mod-
els. We speak of key-correlated attack (KCA) in this context, a name
that is loosely inspired by the introduction of correlated-input attacks
against hash functions [GOR11] (note that the notion of key-dependent
input attacks has already been used by Halevi and Krawczyk [HK07]).
We give appropriate definitions of security under key-correlated at-
tacks that relate well to the standard RKA and KDM security notions.
Our definition extends that in [App16] for randomized symmetric en-
cryption under chosen-plaintext attacks to the setting of authenticated
encryption with associated data (AEAD).

We start with comparing our notion to existing ones. After proving
that KCA implies RKA and KDM security, we show that KCA security
is strictly stronger than even simultaneously having RKA and KDM
security. We give a natural separation by demonstrating a KCA attack
on the 2-round Even–Mansour cipher, which was shown to satisfy
both RKA and KDM security in two previous works [FP15; FKV17].

After defining KCA and showing a separation result, we study
feasibility of KCAs. Our starting point is the ideal-cipher model,
in which all parties have oracle access to a keyed random permuta-
tion in both directions. We cannot allow arbitrary dependencies of
keys and messages as otherwise “trivial” attacks, which work against
any scheme, arise. To exclude these and thus obtain a meaningful
notion, we restrict the classes of allowed dependencies. We show
that if they satisfy appropriate notions of key-unpredictability and claw-
freeness then the ideal cipher satisfies KCA security. Roughly speaking,
key-unpredictability requires that the adversary does not obtain en-
cryptions or decryption under predictable keys. Claw-freeness, on
the other hand, requires that the inputs are distinct, and so repetition
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pattern of the outputs cannot be exploited. Analogues of these notions
were previously considered in the RKA and KDM settings.

In our setting we require a third condition, which we call cross-key-
claw detectability, that allows us to deal with claws across encryption
and decryption queries. This notion is sufficiently weak so that in the
RKA and KDM setting it automatically follows from claw-freeness. In
the KCA setting, however, it does not necessarily, as it restricts claws on
keys. 1 Two results on the RKA and KDM security of the ideal cipher
by Bellare and Kohno [BK03] and Farshim, Khati, Vergnaud [FKV17]
respectively, fall out as natural corollaries of our theorem.

Turning to concrete constructions, we analyze the KCA security of
the iterated Even–Mansour cipher with three rounds in the random-
permutation model. We show that with reuse of keys (which is
known to be necessary for RKA security [FP15]) and using different
permutations (which is necessary for KDM security whenever keys
are reused [BW99; FKV17]) we can provably achieve security against
key-correlated attacks that concurrently encrypt messages M or offsets
of key of the form K⊕ ∆2 under other offsets of the key of the form
K⊕ ∆1. This strengthens two feasibility results due to Farshim, Khati,
Vergnaud [FKV17] and Farshim and Procter [FP15].

From a technical point of view, the novelty of our KCA proof
for 3-round Even–Mansour is that we keep the outer permutations
partially consistent with the replaced forgetful oracles as well as the
permutation oracles. For legal queries we show this can be done with
overwhelming probability, while a detection algorithm will allow us
to identify illegal queries and reject them. This proof thus deviates
from previous works in which oracles are fully decoupled. As a result
we also obtain a different (albeit somewhat more complex) way to
prove the RKA security of 3-round Even–Mansour against key offsets
by replacing the outer (rather the inner) permutation [FP15].

We end this part by showing how to generically transform any
AE-secure AEAD scheme to one which is a KCA-secure in the random-
oracle model by hashing the key with nonces. For this result we only
require the set of allowed functions to be unpredictable, as nonces
automatically prevent repetitions due to claws in the functions. In
contrast to previous work by Bellare and Keelveedhi [BK11] on similar
transforms for achieving KDM-security, our scheme is secure with
key-dependent nonces and headers. Although key-dependent headers are
briefly discussed in [BK11], security with respect to key-dependent
nonces is not considered at all. Arguably, however, there is a stronger
case for the key-dependency of nonces than of headers: when nonces
are randomly chosen they might become correlated with the key
due to, e.g., bad generation of random numbers. For key-dependent

1. Claw-freeness can be modified to key-claw-freeness across encryption and
decryption so that cross-key-claw-freeness is automatic. But in this case the reach
of our feasibility results do not extend to the KDM setting since under KDM keys
always collide.
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headers, Bellare and Keelveedhi give a negative result, by having the
adversary exploit the pattern of decryption errors (either ⊥ for an
illegal query or 0 for failure in authenticity) to recover the key. In
our setting, however, the decryption oracle only returns a single error
symbol, which enables security under key-dependent inputs. If our
model were modified to also have distinct error symbols, an attack
similar to that in [BK11] would arise. We note that in these settings
one might be able to obtain non-trivial feasibility results by requiring
a form claw-freeness. 2

Where to go from here. In Chapter 4, we define KCA security
for blockciphers and study its relation to RKA and KDM security
before showing two separation results in Section 7.3. In Chapter 5

we study KCA in the ideal-cipher model and we prove 3-round Even–
Mansour KC-CCA secure for offsets. Chapter 6 contains our generic
construction of a KCA-secure authenticated encryption scheme from
any AE-secure one.

2. Consistently, the attack in [BK11] exploits claws in the key-dependent headers.





4
T H E M O D E L

4.1 concept and definitions

Correlation-derivation function (CDF). A correlation-derivation
function (CDF) is a circuit of the form

ξ : K −→ K×M .

A set of such functions is called a CDF set. Throughout the paper
we denote CDF sets by Ξ and require that membership of a CDF
set can be efficiently decided. We will define key-correlated security
primitives relative to two CDF sets Ξe and Ξd that describe allowed
encryption and decryption queries, respectively.

KCA-secure blockciphers. Let BC be a blockcipher with key space
K = {0, 1}k and message (and ciphertext) space M = {0, 1}n. Let
Ξe and Ξd be CDF sets for the input space K ×M. The KC-CCA
advantage of an adversary A against BC is defined by

Advkc-cca
BC (Ξe, Ξd, A) := 2 · Pr

[
KC-CCAΞe, Ξd,A

BC

]
− 1 , (4.1)

where game KC-CCAΞe, Ξd,A
BC is given in Figure 4.1. In this game, the

adversary’s goal is to decide whether (case b = 1) its oracles are
using the blockcipher BC = (E,D) or (case b = 0, the ideal case) a
random permutation iE and its inverse iD. Lists ML and CL prevent the
adversary from trivially winning the game. Otherwise the adversary
could, for instance, recover the challenge key K∗ by querying an
encryption (or decryption) of K∗ and subsequently ask for decryption
(or encryption) of the oracle’s reply.

We note that for two sets Ξe
1 ⊆ Ξe

2 and Ξd
1 ⊆ Ξd

2 security against
(Ξe

2, Ξd
2)-KC-CCA implies security against (Ξe

1, Ξd
1)-KC-CCA. When-

ever Ξd = ∅ we obtain a chosen-plaintext attack model.

Note. Analogues of KCA security can be formulated for hash
functions and pseudorandom generators, which become equivalent
to correlated-input security for hash functions [GOR11] and RKA
security for PRGs [BCM11].

4.2 examples

As examples of KC functions, suppose that related keys, described
by functions from some set Φ, are used within the specification of an
encryption scheme (an example are the 3GPP protocols [IK04]). Sup-
pose further that the scheme is used to encrypt messages that depend
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Game KC-CCAΞe, Ξd,A
BC :

b� {0, 1}
(iE, iD)� Block(K,M)

K∗ � K
b′ � AKCEnc,KCDec

return (b′ = b)

Proc. KCEnc(ξe):

(K, M)← ξe(K∗)
if (K, M) ∈ ML: return ⊥
C← E(K, M)

if b = 0: C← iE(K, M)

CL← CL : (K, C)
return C

Proc. KCDec(ξd):

(K, C)← ξd(K∗)
if (K, C) ∈ CL: return ⊥
M← D(K, M)

if b = 0: M← iD(K, M)

ML← ML : (K, M)

return M

Figure 4.1 – Game defining the (Ξe, Ξd)-KC-CCA security of a blockcipher
BC = (E,D) with key space K and message space M. We require that
ξe ∈ Ξe and ξd ∈ Ξd for all queries.

on the key in ways represented by functions from a set Ψ. The overall
effect is that an adversary has access to ciphertexts corresponding to
key-dependent messages under related keys. In other words, the adversary
can see key-correlated ciphertexts for functions:

ξ : K 7→ (φ(K), ψ(K)) with φ ∈ Φ and ψ ∈ Ψ , and

ξ : K 7→ (φ(K), M) with φ ∈ Φ and M ∈ M .

Alternatively, suppose an adversary has access to encryptions under
related keys with respect to Φ through, say, injection of faults that
change bits of a hardware-stored encryption key [BDL97; BS97]. 1 If
the scheme is used to encrypt key-dependent messages with respect
to Ψ, the adversary would be able to launch a KCA for the functions:

ξ : K 7→
(
φ(K), ψ(φ(K))

)
with φ ∈ Φ and ψ ∈ Ψ , and

ξ : K 7→ (φ(K), M) with φ ∈ Φ and M ∈ M .

The KCA model thus captures, among other things, a variety of joint
RKA and KDM attacks on a blockcipher.

4.3 relation with rka and kdm

Let id denote the identity function on a key space K and let Γ denote
the set of all constant functions K 7→ M for M ∈ M. We identify a
pair of functions (φ, ψ), with ranges K andM respectively, with the
correlation-derivation function K 7→ (φ(K), ψ(K)).

CPA/CCA-only sets. We call a pair (Ξe, Ξd) CCA-only if Ξe =

Ξd = {id} × Γ. (The adversary can only make regular encryption and
decryption queries.) We call (Ξe, Ξd) CPA-only if Ξe = {id} × Γ and
Ξd = ∅.

RKA/KDM-only sets. We call a pair (Ξe, Ξd) RKA-only if Ξe =

Ξd = Φ× Γ for an RKA set Φ of functions mapping keys to keys.
We call (Ξe, Ξd) KDM-only if Ξe = {id} ×Ψ and Ξd = {id} × Γ (i.e.,
no key-dependent ciphertexts allowed [FKV17]) for a KDM set Ψ of
functions mapping keys to messages. (The CPA versions are defined

1. KCA security does not imply security against fault attacks in general.
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analogously by demanding that Ξd = ∅.) We assume that any KDM
set Ψ contains Γ, as it is natural to always allow for chosen plaintexts.

We show that our definition of KC security extends the standard
RKA and KDM definitions for blockciphers, which we recall in Ap-
pendix Section 4.5. In particular, for KDM-only sets we have that KCA
and KDM security are equivalent and similarly for RKA-only sets KCA
and RKA security are equivalent. For two of the four implications, we
assume claw-freeness of the correlation-derivation functions. This re-
quires that it is hard to find two different functions that have the same
output given a random input and is defined formally in Section 5.1
(p. 54). Claw-freeness is required because the KCA game returns ⊥
whenever claws are detected whereas the RKA game does not. The
proof of the following proposition can be found in Section 4.5.

Proposition 4.1. Let BC be a blockcipher. Let Ξe and Ξd be two CDF sets.

rka : Suppose (Ξe, Ξd) are RKA-only with Ξe = Ξd = Φ × Γ. If BC
is (Ξe, Ξd)-KC-CCA-secure then it is Φ-RK-CCA secure. If BC is
Φ-RK-CCA-secure and Ξe = Ξd is claw-free then BC is (Ξe, Ξd)-
KC-CCA-secure.
In particular, let n be the block length, A be an adversary and q the
maximum number of its queries. Then there exists an adversary B
such that

Advrk-cca
BC (Φ,A) ≤ Advkc-cca

BC (Ξe, Ξd, B) + q2/2n .

Moreover, there exist adversaries B and Bcf such that

Advkc-cca
BC (Ξe, Ξd, A) ≤ q2 ·

(
Advcf

Φ(Bcf)+ 1/2n)+Advrk-cca
BC (Φ,B) .

kdm : Suppose (Ξe, Ξd) are KDM-only with Ξe = {id} × Ψ and Ξd =

{id}×Γ. If BC is Ψ-KDM-CCA secure then it is (Ξe, Ξd)-KC-CCA-
secure. If BC is (Ξe, Ξd)-KC-CCA-secure and Ξe is claw-free then BC
is Ψ-KDM-CCA-secure.
In particular, for every adversary A there exists an adversary B such
that

Advkc-cca
BC (Ξe, Ξd, A) = Advkdm-cca

BC (Ψ,B) ,

and there exist adversaries B and Bcf such that

Advkdm-cca
BC (Ψ,A) ≤ q2 ·Advcf

Ψ(Bcf) + Advkc-cca
BC (Ξe, Ξd, B) ,

where q is the maximum number of queries adversary A makes.
Analogous implications hold in the CPA setting.
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E′(K, M):
C∗ ← E(min(K, K), 0n)

if M = K: return C∗

if M = D(K, C∗): return E(K, K)
return E(K, M)

D′(K, C):
C∗ ← E(min(K, K), 0n)

if C = C∗: return K
if C = E(K, K): return D(K, C∗)
return D(K, C)

Figure 4.2 – Blockcipher (E′,D′) that is both KDM-secure and RKA-secure
secure but not KCA-secure.

4.4 key-correlated attacks

In this section we show that even if a blockcipher simultaneously
achieves security against RK and KDM attacks, it may still fail to
achieve security against concurrent RK/KDM attacks, and hence also
fail to achieve KCA security. We provide two separations, one artificial
and one natural, to demonstrate this.

4.4.1 A generic separation result

Let K = M = {0, 1}n and define the following sets of functions:

Φ⊕ :=
{

K 7→ K⊕M : M ∈ M
}

Ψ⊕ :=
{

K 7→ α · K⊕M : M ∈ M, α ∈ {0, 1}
}

(4.2)

Ξ⊕ :=
{

K 7→ (K⊕M1, α · K⊕M2) : M1, M2 ∈ M, α ∈ {0, 1}
}

.

Given a Φ⊕-RKA secure and Ψ⊕-KDM secure blockcipher (E,D),
consider the modified cipher (E′,D′) shown in Fig. 4.2, where min
is the lexicographic minimum and K := K⊕ 1k. Note that (E′,D′) is
again a blockcipher, i.e., a permutation for each value of the key (we
simply swapped E(K, K) and C∗ in the image space).Note that

min(K, K) =
min(K, K), thus

E′(K, K) =
E′(K, K).

To see that (E′,D′) is not (Ξ⊕, ∅)-KC-CCA secure, consider an ad-
versary that queries K 7→ (K, K) and K 7→ (K, K) = (K⊕ 1n, K⊕ 1n) to
its KCEnc oracle. For the modified cipher both queries yield the same
result:

E′(K, K) = E
(
min(K, K), 0n) = E

(
min(K, K), 0n) = E′(K, K) ,

while for the ideal cipher this would only happen with probability
1/2n. On the other hand, the modified cipher (E′,D′) remains both
RKA and KDM secure as it essentially behaves like (E,D) when no
joint RKA and KDM attacks as above can be mounted. We kept this
discussion informal as our second separating example below is more
natural and practically relevant.
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M

K1

P1

K2

P2

K3 Kr

Pr

Kr+1

C

Figure 4.3 – The r-round iterated Even–Mansour cipher.

4.4.2 Attack on 2-round Even–Mansour

The r-round Even–Mansour cipher EM is defined by r permutations
P1, . . . ,Pr, has key space K = {0, 1}(r+1)n, domainM = {0, 1}n and
en- and deciphering algorithms (cf. Fig. 4.3)

E
(
(K1, . . . , Kr+1), M

)
:= Pr

(
. . .P2(P1(M⊕ K1)⊕ K2) . . .

)
⊕ Kr+1 ,

D
(
(K1, . . . , Kr+1), C

)
:= P−1

(
. . .P−r−1(P

−
r (C⊕ Kr+1)⊕ Kr) . . .

)
⊕ K1 .

The EM ciphers can also be considered in configurations where (some
of the) keys and/or (some of the) permutations are reused in different
rounds. We denote the EM cipher where Pi and Ki+1 are used in round
i by EMP1,...,Pr [K1, K2, . . . , Kr+1].

Recall the function sets Φ⊕, Ψ⊕, and Ξ⊕ from (4.2). The 2-round
Even–Mansour cipher with key reuse and independent permutations
E(K, M) := EMP1 ,P2 [K, K, K] was shown to be Φ⊕-RK-CPA secure
in [FP15] and Ψ⊕-KDM-CCA secure in [FKV17]. We now show that
this construction fails to be (Ξ⊕, ∅)-KC-CCA secure. Consider the
KDM encryption

E(K, K) = P2(P1(0n)⊕ K)⊕ K . (4.3)

Now let ∆∗ := P1(0n)⊕ P1(1n) and consider the key-correlated en-
cryption

C1 := E(K⊕ ∆∗, K⊕ ∆∗ ⊕ 1n) = P2(P1(1n)⊕ K⊕ ∆∗)⊕ K⊕ ∆∗

= P2(P1(0n)⊕ K)⊕ K⊕ ∆∗
(4.3)
= E(K, K)⊕ ∆∗ .

Thus the two key-correlated ciphertexts C1 and E(K, K) differ by a
known value ∆∗. For the ideal cipher this event only occurs with
probability 1/2n, as both ciphertexts would be randomly distributed
among at least 2n − 1 values. An attacker thus merely needs to make
two queries K 7→ (K, K) and K 7→ (K ⊕ ∆∗, K ⊕ ∆∗ ⊕ 1n) and check
whether the answers differ by ∆∗.

4.5 relation between kca , rka , and kdm

RKA and KDM security. Fig. 4.4 gives the definitions of RKA
security [BK03] and KDM security [FKV17] for blockciphers. The
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Game RK-CCAΦ,A
BC :

b� {0, 1}; K∗ � K
(iE, iD)� Block(K,M)

b′ � ARKEnc,RKDec

return (b′ = b)

Proc. RKEnc(φ, M):
K← φ(K∗)
C← E(K, M)

if b = 0: C← iE(K, M)

return C

Proc. RKDec(φ, C):
K← φ(K∗)
M← D(K, C)
if b = 0: M← iD(K, C)
return M

Game KDM-CCAΨ,A
BC :

b� {0, 1}; K∗ � K
(iE, iD)� Block(K,M)

b′ � AKDMEnc,Dec

return (b′ = b)

Proc. KDMEnc(ψ):
M← ψ(K∗)
C← E(K∗, M)

if b = 0: C← iE(K∗, M)

CL← CL : C; return C

Proc. Dec(C):
if C ∈ CL: return ⊥
M← D(K∗, C)
if b = 0: M← iD(K∗, C)
return M

Figure 4.4 – RKA-, and KDM-security games.

(Top) Game
defining the Φ-

RK-CCA security
of BC = (E,D).
We require that

φ ∈ Φ for all
queries φ.

(Bottom) Game
defining the Ψ-

KDM-CCA
security of BC with

key space K and
message spaceM.

We require that
ψ ∈ Ψ for all

queries ψ.

advantage functions are defined in the standard way (as for KCA,
Equation (4.1) in Sec. 4). The CPA versions are obtained naturally by
disallowing decryption queries.

We now prove that for RKA-only (resp. KDM-only) claw-free sets
KCA and RKA (resp. KDM) security are equivalent. For convenience
we restate Proposition 4.1 as Propositions 4.2 and 4.5 below.

4.5.1 KC(RK-only)⇔ RK

Proposition 4.2. Let BC be a blockcipher. Let Ξe and Ξd be two RKA-only
CDF sets with Ξe = Ξd = Φ× Γ. Then for every adversary B there exists
an adversary A such that

Advrk-cca
BC (Φ,B) ≤ Advkc-cca

BC (Ξe, Ξd, A) + q2/2n ,

where n is the block length and q is the maximum number of queries B makes.
Moreover, for every adversary A there exist adversaries B and Bcf such that

Advkc-cca
BC (Ξe, Ξd, A) ≤ q2 · (Advcf

Φ(Bcf) + 1/2n) + Advrk-cca
BC (Φ,B) ,

where q is the maximum number of queries adversary A makes.

Recall that (Ξe, Ξd) is RKA-only if Ξe = Ξd = Φ× Γ for an RKA set
Φ of functions mapping keys to keys (where Γ is the set of constant
functions over M). The difference between games RK and KC is
that in the former there are no lists ML and CL, thus all queries
are allowed. When showing KC⇒RK, the reduction must therefore
answer all queries, while its KC challenger might reply with ⊥. The
reduction will therefore keep local lists CL′ and ML′, which simulate
the challenger’s blacklists.

The KC challenger, when queried KCEnc(ξe = (φe, M)) stores pairs
(K = φe(K∗), C = E(K, M)) in its list CL. The reduction does not
know the values K and will store pairs (C, M) in a list CL′. In the
KC game, queries KCDec(ξd = (φd, C)) with (φd(K∗), C) ∈ CL are
answered with ⊥, whereas in the RK game, RKDec(φd, C) always
returns D(φd(K∗), C). To answer such queries, the reduction looks for
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an entry (C, M′) for some M′ in its list CL′. If (1) there is only one such
entry, it returns M′, which perfectly simulates RKDec: if (C, M′) ∈ CL′

and KCDec(ξd = (φd, C)) returned ⊥ then (φe(K∗), C) ∈ CL and if
there is only one entry with C, we must have φd(K∗) = φe(K∗). If (2)
there are several entries (C, M0), (C, M1) ∈ CL′, the reduction aborts
the simulation and returns 1 (that is, it guesses that it is interacting
with the actual blockcipher). As we show in the lemma below, we
can bound the probability of this type of collision in CL′ in case
the reduction is interacting with an ideal cipher, and therefore the
probability of aborting and returning a wrong guess. The list ML and
queries to the KCEnc oracle are dealt with analogously.

Lemma 4.3. Consider game KC-CCAΞe, Ξd,A
BC with b fixed to 0. Then the

probability that there are two entries (K0, C), (K1, C) ∈ CL with iD(K0, C) 6=
iD(K1, C) is at most q2/2n, where q is the number of queries made by A.
The same holds for the probability of two entries (K0, M), (K1, M) ∈ ML

with iE(K0, M) 6= iE(K1, M).

Proof. Let us consider CL (the case ML is completely analogous). In
order for a pair (K, C) to be added to CL, the adversary must make a
query KCEnc(ξe = (φe, M)) such that K = φe(K∗) and C = iE(K, M).

Since (iE, iD) is ideal, the probability that after q queries the adver-
sary finds K0, K1, M0 6= M1 such that iE(K0, M0) = iE(K1, M1) =: C,
without having queried both iD(K0, C) and iD(K1, C) before, is at
most q2/2n. On the other hand, when the adversary queries both
KCDec(φ0, C) and KCDec(φ1, C) with φi(K∗) = Ki, then (K0, M0)

and (K1, M1), with Mi := iD(Ki, C), are both added to ML. But then
any call to KCEnc(ξe = (φ′i , Mi)) with φ′(K∗) = Ki will be answered
with ⊥, meaning that (Ki, C) will not be added to CL. So the only way
for the event to happen is that the adversary guesses K0, K1, M0 6= M1

which map to the same C.

KC ⇒ RK. We now prove the first statement of Proposition 4.2.
Consider an adversary B against RK; we construct a reduction A
against KC, which maintains local lists CL′ and ML′, allowing it to
simulate B’s oracles even when its own oracles return ⊥.

Whenever adversary B queries RKEnc on (φ, M), reduction A
queries its own oracle KCEnc on ξe : K 7→ (φ(K), M). If its answer is
⊥ then there must be an entry (M, C′) in ML′. If there is more than
one such entry, A stops and returns 1; otherwise it returns C′. If A’s
KCEnc oracle returned a value C 6= ⊥, B returns C and adds (C, M)

to its local list CL′.
Analogously, if B queries RKDec on (φ, C), reduction A queries

its own oracle KCDec on ξd : K 7→ (φ(K), C). If its answer is ⊥ then
there must be an entry (C, M′) in CL′. If there is more than one such
entry, A stops and returns 1; otherwise it returns M′. If A’s KCDec

oracle returned a value M 6= ⊥, B returns M and adds (M, C) to its
list ML′.
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If A has not stopped the simulation, it forwards B’s output b′.
First note that to any entry (K, C) ∈ CL of A’s challenger corre-

sponds an entry (C,D(K, M)) in A’s local list CL′ (and similarly for
ML and ML′). From Lemma 4.3 we thus have that in case b = 0, the
probability that there are two entires (C, M0), (C, M1) with M0 6= M1

in CL′ is at most q2/2n =: ε. Thus, the probability that A stops the
simulation in case b = 0 is bounded by ε. In case b = 1, if A stops the
simulation, it outputs the correct bit. More formally, let Ei denote the
event that A stops the simulation when its challenger’s bit b = i and
let KCi denote game KC-CCAΞe, Ξd,A

BC with bit b fixed to i and similarly
for RKi. Then we have:

Advrk-cca
BC (Φ,B) + 1 = Pr[RK0|E0]Pr[E0] + Pr[RK0|¬E0]Pr[¬E0]

+ Pr[RK1|E1]Pr[E1] + Pr[RK1|¬E1]Pr[¬E1]

= Pr[RK0|E0]Pr[E0] + Pr[KC0|¬E0]Pr[¬E0]

+ Pr[RK1|E1]Pr[E1] + Pr[KC1|¬E1]Pr[¬E1]

≤ 1 · ε + Pr[KC0|¬E0]Pr[¬E0]

+ 1 · Pr[E1] + Pr[KC1|¬E1]Pr[¬E1]

= ε + Pr[KC0|E0]Pr[E0] + Pr[KC0|¬E0]Pr[¬E0]

+ Pr[KC1|E1]Pr[E1] + Pr[KC1|¬E1]Pr[¬E1]

= ε + Advkc-cca
BC (Ξe, Ξd, A) + 1 ,

where for the second equality we used that games RK and KC have
the same output conditioned on ¬E; the inequality uses Pr[E0] ≤ ε by
Lemma 4.3; and the second to last equality follows from B’s behavior
in case of E happening, thus Pr[KC0|E0] = 0 and Pr[KC1|E1] = 1. This
concludes this direction of the proof.

The above simulation strategy for does not work the converse im-
plication RK ⇒ KC, as best illustrated by the following example:
Consider a blockcipher for which there exist K 6= K′ ∈ K and M ∈ M
with E(K, M) = E(K′, M) = C; now consider a KC adversary A
that queries KCEnc(φ, M) with φ(K∗) = K; thus (K, C) ∈ CL. Later
A queries KCDec(φ′, C) and KCDec(φ′′, C) where φ′(K∗) = K′ and
φ′′(K∗) = K. Reduction B can forward these queries to its RK oracle
and will get M in both cases. But KCDec(φ′, C) should be answered
with M (since (K′, C) /∈ CL), whereas KCDec(φ′, C) should be an-
swered with ⊥. Thus, storing (C, M) in a local list CL′ doesn’t help,
since both queries would make B look at this entry, but should result
in different actions.

The reduction can thus not perfectly simulate the KC experiment;
although this situation is very unlikely to occur for the ideal cipher,
the reduction cannot abort and return 1 (as in the above proof), since
the event that the adversary found a tuple (K, K′, M, C) that would be
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hard to find for the ideal cipher is not detectable by the reduction (in
contrast to the proof for KC⇒ RK).

The proof will now rely on claw-freeness of the set Φ. If it was
perfectly claw-free, then the reduction could perfectly simulate entries
(K, C) ∈ CL by entries (φ, C) ∈ CL′ with φ(K∗) = K. But if claw-
freeness is only computational then the adversary could find φ, φ′

with φ(K∗) = φ′(K∗) for the key K∗ chosen by the game, but which
would not be a claw for a random key and thus cannot be output as a
solution in the claw-freeness game.

However, we can show that until the adversary finds a claw, the
ideal game can be simulated without having chosen any key K∗ at all.
If the adversary thus finds a claw, it must be one for a random key
with non-negligible probability as well. We start with proving this last
observation in the following lemma.

Lemma 4.4. Consider game RK-CCAΦ,B
BC with b fixed to 0 and define event

E as follows: the adversary B makes two RKEnc queries (φ, M) and (φ′, M),
with φ 6= φ′, both answered by the same C; or it makes two RKDec queries
(φ, C), (φ′, C), with φ 6= φ′, both answered by the same M; or it makes two
queries RKEnc(φ, M), answered by C and RKDec(φ′, C), answered by M,
with φ 6= φ′.

Then there exists an adversary Acf such that Pr[E] ≤ q2 · (Advcf
Φ(Acf) +

1/2n) =: ε2, where q is the number of oracle queries B makes in game
RK-CCA.

Proof. The crucial observation is that game RK-CCAΦ,B
BC when b is

fixed to 0 can be simulated without knowing choosing K∗ up to the
event E happening, that is, the point where the adversary produces the
first claw. Let (φi)

q
i=1 denote the list of all functions queried to RKEnc

or RKDec. We construct an adversary Acf against claw-freeness as
follows: it first guesses i0, i1 ∈ [1, q] and then simulates the game for
B until the i1-th query as follows:
Acf keeps a list L with entries of the form (φ, M, C). Whenever B

queries RKEnc(φ, M), it checks whether there is some entry (φ, M, C′) ∈
L and if so, returns C′. Else it samples C ←M, adds (φ, M, C) to L
and returns C. Whenever B queries RKDec(φ, C), it checks whether
there is some entry (φ, M′, C) ∈ L and if so, returns M′. Else it sam-
ples M←M, adds (φ, M, C) to L and returns M. When B makes its
i1-the query, Acf stops and returns (φi0 , φi1).

Assume even E occurred and Acf guessed correctly that the i1-th
query was the first query after which E occurred and the i0-th query
was the one it collided with. Consider Acf’s challenger, which chooses
K∗ ← K and checks whether φi0(K

∗) = φi1(K
∗). If so, then Acf won

the claw-freeness game. Else the probability that Acf would have
answered the i1-th query so that E still occurred is 1/2n.

RK ⇒ KC. This direction relies on the claw-freeness of the set Φ.
Let A be a KC adversary; we construct a reduction B against RK that
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maintains two local lists ML′ and CL′ and aborts whenever event E,
defined in Lemma 4.4, occurs.

Whenever A queries KCEnc for ξe : K 7→ (φ(K), M), reduction B
queries RKEnc(φ, M) to receive C. It first checks whether there has
been a “colliding” RKEnc query: if there is an entry (φ′, C, M) in its
list CL′ with φ′ 6= φ then B aborts and returns 1.

To answer the query KCEnc(φ, M), an actual KC challenger would
check whether (φ(K∗), M) ∈ ML. Instead, B checks its local list ML′: if
(φ, M, C) ∈ ML′, it returns ⊥; if there is an entry (φ′ 6= φ, M, C) then B
aborts the simulation and returns 1; if there is no entry (·, M, C) ∈ ML′,
it adds (φ, C, M) to its local list CL′ and returns C.

KCDec queries for ξd : K 7→ (φ(K), C) are dealt with analogously:
B first queries RKDec(φ, C) to receive M. If there is an entry (φ′, M, C)
in ML′ with φ′ 6= φ then B aborts and returns 1. To answer KCDec(φ, C),
an actual KC challenger would now check whether (φ(K∗), C) ∈ CL.
Instead, B checks its local list CL′: if (φ, C, M) ∈ CL′ it returns ⊥;
if there is an entry (φ′ 6= φ, C, M) then B aborts the simulation and
returns 1; if there is no entry (·, C, M) ∈ CL′, it adds (φ, M, C) to its
local list ML′ and returns M.

We show that the simulation is perfect if B does not abort; consider
a query KCDec(φ, C): (1) If (φ, C, M) ∈ CL′ then there must have been
a query KCEnc(φ, M) with C = E(φ(K∗), M); thus a KC challenger
would have added (φ(K∗), C) to CL and the above KCDec query
would have been answered by ⊥. (2) If there is no entry (·, C, M) ∈ CL′

then (φ(K∗), C) cannot be in CL, since whenever it is added to CL,
an entry (·, C,D(φ(K∗), C) would have been added to CL′. Perfect
simulation of KCEnc queries is argued completely analogously.

On the other hand, we have that B aborts precisely when E, as
defined in Lemma 4.4, occurs. With ε as defined in the latter, we thus
have

Advkc-cca
BC (Ξe, Ξd, A) + 1 = Pr[KC0|E0]Pr[E0] + Pr[KC0|¬E0]Pr[¬E0]

+ Pr[KC1|E1]Pr[E1] + Pr[KC1|¬E1]Pr[¬E1]

= Pr[KC0|E0]Pr[E0] + Pr[RK0|¬E0]Pr[¬E0]

+ Pr[KC1|E1]Pr[E1] + Pr[RK1|¬E1]Pr[¬E1]

≤ 1 · ε + Pr[RK0|¬E0]Pr[¬E0]

+ 1 · Pr[E1] + Pr[RK1|¬E1]Pr[¬E1]

= ε + Pr[RK0|E0]Pr[E0] + Pr[RK0|¬E0]Pr[¬E0]

+ Pr[RK1|E1]Pr[E1] + Pr[RK1|¬E1]Pr[¬E1]

= ε + Advrk-cca
BC (Φ,B) + 1 ,

where for the second equality we used that games RK and KC have
the same output conditioned on ¬E; the inequality uses Pr[E0] ≤ ε by
Lemma 4.4; and the second to last equality follows from B’s behavior
in case of E happening, thus Pr[RK0|E0] = 0 and Pr[RK1|E1] = 1. This
concludes this direction of the proof.
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4.5.2 KC(KDM-only)⇔ KDM

Proposition 4.5. Let BC be a blockcipher. Let Ξe and Ξd be two KDM-only
CDF sets with Ξe = {id}×Ψ and Ξd = {id}× Γ. Then for every adversary
A there exists an adversary B such that

Advkc-cca
BC (Ξe, Ξd, A) = Advkdm-cca

BC (Ψ,B) ,

and for every adversary B there exist adversaries A and Acf such that

Advkdm-cca
BC (Ψ,B) ≤ q2 ·Advcf

Ψ(Acf) + Advkc-cca
BC (Ξe, Ξd, A) ,

where q is the maximum number of queries adversary B makes.

We show that our definition is equivalent to the KDM definition
from [FKV17] for claw-free sets Ψ. Recall that (Ξe, Ξd) is KDM-only if
Ξe = {id} ×Ψ and Ξd = {id} × Γ, where Ψ is a KDM set of functions
mapping keys to messages and Γ is the set of constant functions
K 7→ M for all M ∈ M; we assume Γ ⊆ Ψ.

We first observe that games KC and KDM are similar in that every
entry C in CL in game KDM corresponds to (K∗, C) in CL in KC.
The crucial difference is that in KDM there is no list ML, thus all
KDMEnc queries are allowed, whereas KC disallows queries in ML.
KDM implying KC can be shown because the reduction can perfectly
simulate the list ML.

The converse (KC ⇒ KDM) is trickier to show and it relies on
claw-freeness of the set Ψ. To illustrate this, consider the following
attack against KDM, which does not work against KC: for two random
C0, C1 ∈ M, the adversary queries Dec(C0) and Dec(C1) to receive
M0 and M1. It then queries KDMEnc(ψM0 ,M1) with ψ : K∗ 7→ MK∗1 ,
where K∗1 is the first bit of K∗. When receiving Ci as a reply, the
adversary learnt that i is the first bit of K∗ and it can use the same
strategy to learn all other bits of K∗. Note that in the KC game,
the two decryption queries add (K∗, M0) and (K∗, M1) to ML and
consequently KCEnc(ξe := id× ψM0,M1) is answered with ⊥.

KDM⇒ KC. To show that KDM implies KC, consider a KC adversary
A and let us construct a reduction B against KDM. B basically simu-
lates the KC oracles for A by forwarding A’s queries to its own KDM
oracles. To simulate game KC correctly, B maintains its own list ML′.
Whenever A queries KCDec(ξd) for ξ2 ∈ Ξd, we have ξ2 : K 7→ (K, C)
for some C ∈ M. Reduction B queries C to Dec to obtain M, which it
returns to A; B also appends (M, C) to its list ML′ (whereas an actual
KC challenger would have appended (K∗, M) to its list ML).

Whenever A queries KCEnc(ξ1) with ξ1 : K 7→ (K, ψ(K)) for some
ψ ∈ Ψ, the reduction queries KDMEnc(ψ) to obtain C. If for some M′

there is an entry (M′, C) ∈ ML′: B returns ⊥; otherwise, it returns C.
To see that this correctly simulates the list ML that B’s challenger

maintains, observe that (K∗, M) is in the latter iff (M, E(K∗, M)) is in
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B’s local list ML′ and since E(K∗, ·) is a permutation, each C uniquely
determines the corresponding M, thus B’s simulation is perfect. We
thus have Advkc-cca

BC (Ξe, Ξd, A) = Advkdm-cca
BC (Ψ,B).

KC ⇒ KDM. In this direction, we assume an adversary B against
KDM and construct A against KC. This time, A will not be able to
perfectly simulate the game; however, A can detect when it is not
able to. In this case A aborts and returns b′ = 1 (it guesses that it
is talking to the real blockcipher). As for in the proof for KC⇒ RK,
we show that if b = 0 (the ideal case), the probability of A aborting
is bounded—in contrast to the previous proof, we bound it by the
advantage of breaking clawfreeness.

We start by defining the following event E in game KDM-CCAΨ,B
BC :

let (Mi)i denote the messages returned by the Dec oracle and let (ψj)j
denote the queries made to the KDMEnc oracle; let K∗ denote the
challenge key. We say E occurs if we either have (1) ψj0(K

∗) = ψj1(K
∗)

for some j0 6= j1; or (2) ψj(K∗) = Mi for some j, i. We show the
following:

Lemma 4.6. Consider game KDM-CCAΨ,B
BC with b fixed to 0 and let E

be the event defined above. Then there exists an adversary Acf such that
Pr[E] ≤ q2 ·Advcf

Ψ(Acf), where q is the number of oracle queries B makes
in game KDM-CCA.

Proof. First note that there exists some first query j1 that makes E occur,
and some query j0 < j1, which will be the query with which the j1-th
query “collides”. Acf starts with guessing j0 and j1 and simulates the
game until the j1-th query as follows: any query Dec(Ci) is answered
with a random Mi ←M; any query KDMEnc(ψi) is answered with a
random Ci ←M (all repeated queries are answered consistently).

If the j0-th query was a query Dec(Ci) answered by Mi then define
ψj0 : K 7→ Mi; if it was a query KDMEnc(ψ) then let ψj0 := ψ; define
ψj1 analogously. Acf returns (ψj0 , ψj1).

First note that if A guessed j1 correctly then the simulation is perfect,
as for the random key K∗, the same message was never queried twice
(via encryption or decryption). Moreover, if A also guessed j0 correctly
then (ψj0 , ψj1) is indeed a collision and A wins the claw-freeness game.
We thus have Advcf

Ψ(Acf) ≥ 1/q2 · Pr[E], which proves the lemma.

We now give a reduction A against KC that simulates the KDM
game to adversary B by forwarding all queries to its own oracle. When
A cannot answer a KDMEnc query because its own oracle KCEnc

replies ⊥ it aborts the simulation. In order to use the above lemma, A
will also abort when it could continue the simulation. In particular, A
aborts and returns 1 when one of the two things happen:

(1) B makes two queries ψ, ψ′ to KDMEnc, which when forwarded
to A’s RKEnc oracle return the same C; or

(2) A forwards a KDMEnc query to its KDMEnc oracle which is
answered with ⊥.
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Note that these two cases define precisely the event E above. We thus
have that A aborts the simulation whenever E occurs. If A does not
abort the simulation, it returns whatever B outputs.

Let KCi denote game KC-CCAΞe, Ξd,A
BC with bit b fixed to i and Ei the

event that E occurs in this case. Define KDMi analogously and let
ε := q2 ·Advcf

Ψ(Acf). Then we have:

Advkdm-cca
BC (Ψ,B) + 1 = Pr[KDM0|E0]Pr[E0] + Pr[KDM0|¬E0]Pr[¬E0]

+ Pr[KDM1|E1]Pr[E1] + Pr[KDM1|¬E1]Pr[¬E1]

= Pr[KDM0|E0]Pr[E0] + Pr[KC0|¬E0]Pr[¬E0]

+ Pr[KDM1|E1]Pr[E1] + Pr[KC1|¬E1]Pr[¬E1]

≤ +1 · ε + Pr[KC0|¬E0]Pr[¬E0]

1 · Pr[E1] + Pr[KC1|¬E1]Pr[¬E1]

= ε + Pr[KC0|E0]Pr[E0] + Pr[KC0|¬E0]Pr[¬E0]

+ Pr[KC1|E1]Pr[E1] + Pr[KC1|¬E1]Pr[¬E1]

= ε + Advkc-cca
BC (Ξe, Ξd, A) + 1

where for the second equality we used that games KDM and KC have
the same output conditioned on ¬E; the inequality uses Pr[E0] ≤ ε by
Lemma 4.6; and the second to last equality follows from B’s behavior
in case of E happening, thus Pr[KC0|E0] = 0 and Pr[KC1|E1] = 1. This
concludes this direction of the proof.





5
K C A - S E C U R E B L O C K C I P H E R S

In this chapter we study the feasibility of achieving security against
key-correlated attacks in the ideal-cipher model. In this setting the
adversary has oracle access to the ideal cipher in both the forward
and backward direction.

5.1 kca security of the ideal cipher

We begin by extending the standard notion of CCA security to
the KCA setting, where key-dependent messages may be enciphered
under related keys. Consider game KC-CCAΞe, Ξd,A

Block(k,n) shown in Fig. 5.1.
The KC-CCA advantage of an adversary A against the ideal cipher
with key length k and block length n is defined by

Advkc-cca
Block(k,n)(Ξ

e, Ξd,A) := 2 · Pr
[
KC-CCAΞe, Ξd,A

Block(k,n)

]
− 1 .

We now prove a feasibility theorem for the ideal cipher that gen-
eralizes and extends those of both Bellare and Kohno [BK03] and of
Farshim et al. [FKV17]. We define four conditions on CDF sets, which
exclude trivial attacks.

Unpredictability. The unpredictability advantage of an adversary
A against a CDF set Ξ is defined as

Advup
Ξ (A) := Pr

[
ξ(K) = (K0, M0) : (ξ, (K0, M0))� A; K� K

]
,

where we require that ξ ∈ Ξ. Informally, we say Ξ is unpredictable if
the above advantage is “small” for every “reasonable” A.

We also define a multi-shot version of this game where A outputs
a list L1 of candidates for ξ and a list L2 of predicted values (K0, M0).
Adversary A wins if some ξ in L1 evaluates to some (K0, M0) in L2

when run on a random key K. Denoting the advantage in this game
by Advm-up

Ξ (A), a simple guessing argument shows that for any A
there exists B with

Advm-up
Ξ (A) ≤ `1 · `2 ·Advup

Ξ (B) ,

where `1 and `2 are upper bounds on the sizes of L1 and L2 respec-
tively. 1

1. Single-shot adversary B runs any given multi-shot A to obtain two lists, picks
one entry at random from each list and outputs the pair. Then the success probability
of B is at least 1/(`1`2) times that of A.

53
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Game KC-CCAΞe, Ξd,A
Block(k,n):

b� {0, 1}
(iE, iD)� Block(k, n)
(iE′, iD′)� Block(k, n)
K∗ � {0, 1}k

b′ � AiE ,iD,KCEnc,KCDec

return (b′ = b)

Proc. KCEnc(ξe):

(K, M)← ξe(K∗)
if (K, M) ∈ ML: return ⊥
C← iE(K, M)

if b = 0: C← iE′(K, M)

CL← CL : (K, C)
return C

Proc. KCDec(ξd):

(K, C)← ξd(K∗)
if (K, C) ∈ CL: return ⊥
M← iD(K, C)
if b = 0: M← iD′(K, C)
ML← ML : (K, M)

return M

Figure 5.1 – Game defining (Ξe, Ξd)-KC-CCA security of the ideal cipher
with key length k and block length n.

We require that
ξe ∈ Ξe and

ξd ∈ Ξd for all
queries ξe , ξd.

Key-unpredictability. The key-unpredictability advantage of an
adversary A against a CDF set Ξ is defined as

Advkup
Ξ (A) := Pr

[
ξ|1(K) = K0 : (ξ, K0)� A; K� K

]
,

where we require that ξ ∈ Ξ. Here ξ|1(K) denotes the projection to
the first coordinate of ξ(K). Informally we say Ξ is key-unpredictable
if the above advantage is “small” for every “reasonable” A.

We also define a multi-shot version of this game where A outputs a
list L1 of candidates ξ and a list L2 of predicted values K0. Adversary
A wins if for a random key K, for some ξ in L1 we have ξ|1(K) =

K0 for some K0 in L2. If we denote the advantage in this game by
Advm-kup

Ξ (A), again we have that there exists a single-shot B such that

Advm-kup
Ξ (A) ≤ `1 · `2 ·Advkup

Ξ (B) ,

where `1 and `2 are upper bounds on the sizes of L1 and L2 respec-
tively. Note that key-unpredictability implies unpredictability. The
converse does not hold as ξ : K 7→ (0, K) is unpredictable but not
key-unpredictable.

Claw-freeness. This requires that it is hard to find two distinct
functions that output the same on a random input. Formally, the
claw-free advantage of an adversary A against a CDF set Ξ is defined
as

Advcf
Ξ (A) := Pr

[
ξ 6= ξ ′ ∧ ξ(K) = ξ ′(K) : (ξ, ξ ′)� A; K� K

]
,

where we require that ξ , ξ ′ ∈ Ξ. We say Ξ is claw-free if the above
advantage is “small” for every “reasonable” A. Once again, a multi-
shot version of the game with lists of candidates L1 and L2 for ξ and
ξ ′ can be defined, and as before there exists B with

Advm-cf
Ξ (A) ≤ `1 · `2 ·Advcf

Ξ (B) .

Cross-key-claw-detectability. We introduce a new notion and call
a pair of CDF sets (Ξe, Ξd) cross-key-claw-detectable (xkcd) 2 if there is

2. Please do not confuse this notion with the (popular :) web-comic xkcd.com.

https://xkcd.com/541
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an efficient detection algorithm Det such that for any A the advantage
below is small.

Advxkcd
Ξe ,Ξd ,Det

(A) :=

Pr

 Det(ξe, C, ξd, M, 1) 6=
[
(ξe|1(K), C) = ξd(K)

]
∨

Det(ξe, C, ξd, M, 2) 6=
[
(ξd|1(K), M) = ξe(K)

] :
(ξe, C, ξd, M)� A;

K� K


We require that ξe ∈ Ξe and ξd ∈ Ξd. Roughly speaking, xkcd provides
a way to treat legality of queries across encryption and decryption
queries in the KCA game. For example, in an illegal decryption query
the output of an earlier encryption query (stored by the game in list
CL, cf. Fig. 4.1) is sent to the decryption oracle through a CDF function
whose key component matches that used in encryption. Det allows us
to decide when such cases occur and deal with them appropriately in
the security analysis.

A generalization of this notion considers lists L1 for pairs (ξe, C) and
L2 for (ξd, M) and A wins if Det fails for any given tuple (ξe, C, ξd, M)
in the product of the lists. Again, a guessing argument shows that for
every A there exists B with

Advm-xkcd
Ξe ,Ξd ,Det

(A) ≤ `1 · `2 ·Advxkcd
Ξe ,Ξd ,Det

(B) .

Remark. We can modify claw-freeness to claw-freeness of keys over
the union Ξe ∪ Ξd. This would immediately imply xkcd, as Det can
always return “No”. But in this case the reach of our feasibility result
below will not extend to the KDM setting, since under KDM a single
key is used in encryption and decryption and hence they always
collide.

We will now state and prove our first feasibility result, which identi-
fies a set of sufficient conditions on the pair (Ξe, Ξd) so that the ideal
cipher is KCA secure with respect to it.

Theorem 5.1 (KCA security of the ideal cipher). Fix a key length k
and block length n and let Ξe and Ξd be two sets of CDFs with signature
ξ : {0, 1}k → {0, 1}k × {0, 1}n. Then for any (Ξe, Ξd)-KC-CCA adversary
A against the ideal cipher making at most q direct ideal cipher queries,
qe encryption and qd decryption queries, there are (multi-shot) adversaries
B1, . . . ,B5 such that

Advkc-cca
Block(k,n)(Ξ

e, Ξd,A) ≤ Advm-kup
Ξe (B1) + Advm-kup

Ξd (B2) + Advm-cf
Ξe (B3)

+ Advm-cf
Ξd (B4) + Advm-xkcd

Ξe ,Ξd ,Det
(B5)

+
(
qqe + qqd + q2

e + q2
d + qeqd

)
/2n .

Algorithm B1 outputs two lists of sizes at most `1 ≤ qe and `2 ≤ q; B2

outputs lists of sizes at most `1 ≤ qd and `2 ≤ q; B3’s lists are of sizes at
most `1, `2 ≤ qe; B4’s lists are of sizes at most `1, `2 ≤ qd, and B5’s lists of
sizes at most `1 ≤ qe and `2 ≤ qd.
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Proof. The idea of the proof is that we will gradually modify KC-CCA
of Fig. 5.1 so that KCEnc and KCDec oracles run with two independent
and forgetful random oracles, denoted by $+ and $− respectively, and
further the validity checks are performed by the detection algorithm
Det. These modifications ensure that we arrive at a game whichThis is the key goal

to bear in mind
throughout the proof.

does not depend on the explicit key-correlated keys, messages, or
ciphertexts.

Pictorially, in this intermediate game with forgetful oracles the
adversary can make queries that correspond to 1 (corresponding to
iE), 2 (corresponding to iD), 3 and 4:

1−→ iE±
2←− 3−→ $+ −→ ←− $− 4←−

We now describe the transitional steps; the details can be found in
Figs. 5.2 and 5.3.
Game0 : This is the KC-CCA game with respect to b = 1 and where

the four oracles lazily sample the ideal cipher. The same ideal
cipher is used in iE and iD as those used in KCEnc and KCDec

oracles. Consistency is ensured via shared lists T+, T−, Im+, and
Im− used in lazy sampling.

Game1 : This game differs from Game0 in that different lists are used
in iE and iD and in KCEnc and KCDec. The game still ensures
consistency across the lists and hence there are no functional
changes. This game also sets a flag Badkup preparing us to
decouple the two lists. More precisely, whenever a call to iE or
iD needs to use the lists of KCEnc and KCDec, or vice versa,
Badkup is set. This game also sets a bad flag Badcol1 whenever it
samples a ciphertext (resp. plaintext) that was sampled before
and hence appears on Im+

1 or Im+
2 (resp. Im−1 or Im−2 ).

Game2 : This game omits the code after Badkup or Badcol1 is set. Thus
Game1 and Game2 are identical until Badkup or Badcol1 is set. We
defer the analysis of this event to a later game. As a result the
two ideal ciphers used in iE and iD and KCEnc and KCDec are
decoupled.

Game3 : This game checks for repeat queries to the ideal cipher used
within the KCEnc and KCDec oracles. (Note that the queries
to these oracles are assumed, without loss of generality, to be
distinct.) The game sets a flag Badcf when this takes place.
This game also sets a bad flag Badcol2 whenever it samples a
ciphertext (resp. plaintext) that was sampled before in a previous
KCEnc or KCDec query (resp., also in a previous KCEnc and
KCDec query). By dropping the code after Badcf and Badcol2 , we
transition to a game where the ideal cipher within KCEnc and
KCDec act as forgetful random oracles.

Game4 : This games uses the detection algorithm Det to check whether
or not queries to KCEnc or those to KCDec are valid. More
explicitly:
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(1) For each decryption query ξd, KCDec runs Det(ξe, C, ξd, 0n, 1)
for all previous queries ξe to KCEnc, which were answered
with C. (Intuitively, Det checks whether ξd(K) = (ξe|1(K), C);
the input 0n is arbitrary.)

(2) Analogously, for each query ξe, the KCEnc oracle runs
Det(ξe, 0n, ξd, M, 2) for all previous queries ξd to KCDec

which resulted in output M. If Det (which intuitively checks if
ξe(K) = (ξd|1(K), M)) returns “Yes” for any of these, KCEnc

returns ⊥, else it answers randomly.
Note that this game introduces no functional changes since it
still computes the validity of a query using the lists. However
it sets a bad flag Badxkcd when the validity check determined
by Det is different from the (true) value of validity determined
using the lists ML and CL. This then prepares us to drop the
explicit check using the lists and only use Det in the next game.

Game5 : This game drops the code after Badxkcd, and so is identical to
Game4 unless Badxkcd has been set.

Note that in Game5 the iE and iD oracles implement an ideal cipher
whereas the KCEnc and KCDec oracles implement two forgetful
random oracles, except that sometimes they might return ⊥ if the Det

says that a query is invalid. To signify these, in what follows we refer
to KCEnc by $ and KCDec by $−. We also use iE+ for iE and iE− for
iD.

Note also that the above games are all identical unless one of the
bad flags is set. Thus we analyze the probability of setting any of the
bad flags in the final game Game5, where the behavior of the oracles
are independent of the secret key K∗.

We start by analyzing the probability of setting Badkup and Badcol1 .
Flag Badkup can be set under iE if a query (K, M) to iE appears on T+

2 .
Since only KCEnc and KCDec write to T+

2 , this would be the case
if (a) (K, M) = ξe(K∗) for some query ξe to KCEnc or (b) (K, M) =

(ξd|1(K∗), M′) for M′ a randomly chosen output of KCDec.
In case (a) we can build an adversary that wins the multi-shot

unpredictability of Ξe by simulating the oracles as in Game5 (without
the need for K∗) and outputting two lists L1 and L2 consisting of all The ‘trick’ that

allows us to simulate
without K∗ stems
from the fact that in
Game5 all
ciphertexts and
messages are
generated
independently of
ξe(K∗) and ξd(K∗).

tuples (K, M) that were submitted to iE and ξe that were submitted to
KCEnc. These lists are of sizes q and qe respectively.

In case (b), however, we build an adversary that wins the multi-shot
key unpredictability of Ξd (note the exponent d). The four oracles are
simulated as in Game5 (once again without the need for K∗), but now
the adversary outputs two lists L1 and L2 consisting of all keys K for
tuples (K, M) submitted to iE and ξe that were submitted to KCDec.
These lists are of sizes q and qd respectively.

We now look at the probability of setting Badcol1 . A straightforward
analysis shows that this probability is upper bounded by q(qe + qd)/2n.
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GameΞe, Ξd,A
0 :

b← 1; K∗ � {0, 1}k

(iE, iD)� Block(k, n)
b′ �
AiE,iD,KCEnc,KCDec

return (b′ = 1)

GameΞe, Ξd,A
1 :

b← 1; K∗ � {0, 1}k

(iE, iD)� Block(k, n)
b′ � AiE ,iD,KCEnc,KCDec

return (b′ = 1)

GameΞe, Ξd,A
2 :

b← 1; K∗ � {0, 1}k

(iE, iD)� Block(k, n)
b′ � AiE,iD,KCEnc,KCDec

return (b′ = 1)

Proc. iE(K, M):
if T+[K, M]: return T+[K, M]

else C� {0, 1}n \ Im+[K]
T+[K, M] := C
T−[K, C] := M
Im+[K]← Im+[K] : C
Im−[K]← Im−[K] : M
return C

Proc. iE(K, M):
if T+

1 [K, M]: return T+
1 [K, M]

if T+
2 [K, M]: Badkup ← >

return T+
2 [K, M]

else C� {0, 1}n \ Im+
1 [K]

if C ∈ Im+
2 [K]: Badcol1 ← >

C� {0, 1}n \ Im+
1 [K] ∪ Im+

2 [K]
T+

1 [K, M] := C
T−1 [K, C] := M
Im+

1 [K]← Im+
1 [K] : C

Im−1 [K]← Im−1 [K] : M
return C

Proc. iE(K, M):
if T+

1 [K, M]: return T+
1 [K, M]

if T+
2 [K, M]: Badkup ← >

// return T+
2 [K, M]

C� {0, 1}n \ Im+
1 [K]

if C ∈ Im+
2 [K]: Badcol1 ← >

// C� {0, 1}n \ Im+
1 [K] ∪ Im+

2 [K]

T+
1 [K, M] := C

T−1 [K, C] := M
Im+

1 [K]← Im+
1 [K] : C

Im−1 [K]← Im−1 [K] : M
return C

Proc. iD(K, C):
if T−[K, C]: return T−[K, C]
else M� {0, 1}n \ Im−[K]
T−[K, C] := M
T+[K, M] := C
Im−[K]← Im−[K] : M
Im+[K]← Im+[K] : C
return M

Proc. iD(K, C):
if T−1 [K, C]: return T−1 [K, C]
if T−2 [K, C] 6=⊥: Badkup ← >

return T−2 [K, C]
else M� {0, 1}n \ Im−1 [K]
if M ∈ Im−2 [K]: Badcol1 ← >

M � {0, 1}n \ Im−1 [K] ∪
Im−2 [K]
T−1 [K, C] := M
T+

1 [K, M] := C
Im−1 [K]← Im−1 [K] : M
Im+

1 [K]← Im+
1 [K] : C

return M

Proc. iD(K, C):
if T−1 [K, C]: return T−1 [K, C]
if T−2 [K, C] 6=⊥: Badkup ← >

// return T−2 [K, C]

M� {0, 1}n \ Im−1 [K]
if M ∈ Im−2 [K]: Badcol1 ← >

// M� {0, 1}n \ Im−1 [K] ∪ Im−2 [K]

T−1 [K, C] := M
T+

1 [K, M] := C
Im−1 [K]← Im−1 [K] : M
Im+

1 [K]← Im+
1 [K] : C

return M

Proc. KCEnc(ξe):

(K, M)← ξe(K∗)
if (K, M) ∈ ML: return ⊥
if T+[K, M]: return T+[K, M]

else C� {0, 1}n \ Im+[K]
T+[K, M] := C
T−[K, C] := M
Im+[K]← Im+[K] : C
Im−[K]← Im−[K] : M
CL← CL : (K, C)
return C

Proc. KCEnc(ξe):

(K, M)← ξe(K∗)
if (K, M) ∈ ML: return ⊥
if T+

2 [K, M]: return T+
2 [K, M]

if T+
1 [K, M]: Badkup ← >

return T+
1 [K, M]

else C� {0, 1}n \ Im+
2 [K]

if C ∈ Im+
1 [K]: Badcol1 ← >

C� {0, 1}n \ Im+
2 [K] ∪ Im+

1 [K]
T+

2 [K, M] := C
T−2 [K, C] := M
Im+

2 [K]← Im+
2 [K] : C

Im−2 [K]← Im−2 [K] : M
CL← CL : (K, C)
return C

Proc. KCEnc(ξe):

(K, M)← ξe(K∗)
if (K, M) ∈ ML: return ⊥
if T+

2 [K, M]: return T+
2 [K, M]

if T+
1 [K, M]: Badkup ← >

// return T+
1 [K, M]

C� {0, 1}n \ Im+
2 [K]

if C ∈ Im+
1 [K]: Badcol1 ← >

// C� {0, 1}n \ Im+
2 [K] ∪ Im+

1 [K]

T+
2 [K, M] := C

T−2 [K, C] := M
Im+

2 [K]← Im+
2 [K] : C

Im−2 [K]← Im−2 [K] : M
CL← CL : (K, C)
return C

Proc. KCDec(ξd):

(K, C)← ξd(K∗)
if (K, C) ∈ CL: return ⊥
if T−[K, C]: return T−[K, C]
else M� {0, 1}n \ Im−[K]
T−[K, C] := M
T+[K, M] := C
Im−[K]← Im−[K] : M
Im+[K]← Im+[K] : C
ML← ML : (K, M)

return M

Proc. KCDec(ξd):

(K, C)← ξd(K∗)
if (K, C) ∈ CL: return ⊥
if T−2 [K, C]: return T−2 [K, C]
if T−1 [K, C]: Badkup ← >

return T−1 [K, C]
else M� {0, 1}n \ Im−2 [K]
if M ∈ Im−1 [K]: Badcol1 ← >

M � {0, 1}n \ Im−2 [K] ∪
Im−1 [K]
T−2 [K, C] := M
T+

2 [K, M] := C
Im−2 [K]← Im−2 [K] : M
Im+

2 [K]← Im+
2 [K] : C

ML← ML : (K, M)

return M

Proc. KCDec(ξd):

(K, C)← ξd(K∗)
if (K, C) ∈ CL: return ⊥
if T−2 [K, C]: return T−2 [K, C]
if T−1 [K, C]: Badkup ← >

// return T−1 [K, C]

M� {0, 1}n \ Im−2 [K]
if M ∈ Im−1 [K]: Badcol1 ← >

// M� {0, 1}n \ Im−2 [K] ∪ Im−1 [K]

T−2 [K, C] := M
T+

2 [K, M] := C
Im−2 [K]← Im−2 [K] : M
Im+

2 [K]← Im+
2 [K] : C

ML← ML : (K, M)

return M

Figure 5.2 – Game0, Game1, and Game2 used to prove the KCA-security of the
ideal cipher.
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GameΞe, Ξd,A
3 :

Unmodified

Proc. iE(K, M):
Unmodified
Proc. iD(K, C):
Unmodified

GameΞe, Ξd,A
4 :

Unmodified

Proc. iE(K, M):
Unmodified
Proc. iD(K, C):
Unmodified

GameΞe, Ξd,A
5 :

Unmodified

Proc. iE(K, M):
Unmodified
Proc. iD(K, C):
Unmodified

Proc. KCEnc(ξe):

(K, M)← ξe(K∗)
if (K, M) ∈ ML: return ⊥
if T+

2 [K, M]: Badcf ← >
// return T+

2 [K, M]

if T+
1 [K, M]: Badkup ← >

// return T+
1 [K, M]

C� {0, 1}n

if C ∈ Im+
2 [K]: Badcol2 ← >

// C� {0, 1}n \ Im+
2 [K]

if C ∈ Im+
1 [K]: Badcol1 ← >

// C� {0, 1}n \ Im+
2 [K]∪ Im

+
1 [K]

T+
2 [K, M] := C

T−2 [K, C] := M
Im+

2 [K]← Im+
2 [K] : C

Im−2 [K]← Im−2 [K] : M
CL← CL : (K, C)
return C

Proc. KCEnc(ξe):

(K, M)← ξe(K∗)
chk← ⊥
for (ξd, M) ∈ DL:

chk← chk∨Det(ξe, 0n, ξd, M, 2)
if chk 6= ((K, M) ∈ ML):

Badxkcd ← >
chk← ((K, M) ∈ ML)

if chk: return ⊥
if T+

2 [K, M]: Badcf ← >
// return T+

2 [K, M]

if T+
1 [K, M]: Badkup ← >

// return T+
1 [K, M]

C� {0, 1}n

if C ∈ Im+
2 [K]: Badcol2 ← >

// C� {0, 1}n \ Im+
2 [K]

if C ∈ Im+
1 [K]: Badcol1 ← >

// C� {0, 1}n \ Im+
2 [K] ∪ Im+

1 [K]
T+

2 [K, M] := C
T−2 [K, C] := M
Im+

2 [K]← Im+
2 [K] : C

Im−2 [K]← Im−2 [K] : M
CL← CL : (K, C)
EL← EL : (ξe, C)
return C

Proc. KCEnc(ξe):

(K, M)← ξe(K∗)
chk← ⊥
for (ξd, M) ∈ DL:

chk← chk∨Det(ξe, 0n, ξd, M, 2)
if chk 6= ((K, M) ∈ ML):

Badxkcd ← >
// chk← ((K, M) ∈ ML)

if chk: return ⊥
if T+

2 [K, M]: Badcf ← >
// return T+

2 [K, M]

if T+
1 [K, M]: Badkup ← >

// return T+
1 [K, M]

C� {0, 1}n

if C ∈ Im+
2 [K]: Badcol2 ← >

// C� {0, 1}n \ Im+
2 [K]

if C ∈ Im+
1 [K]: Badcol1 ← >

// C� {0, 1}n \ Im+
2 [K] ∪ Im+

1 [K]
T+

2 [K, M] := C
T−2 [K, C] := M
Im+

2 [K]← Im+
2 [K] : C

Im−2 [K]← Im−2 [K] : M
CL← CL : (K, C)
EL← EL : (ξe, C)
return C

Proc. KCDec(ξd):

(K, C)← ξd(K∗)
if (K, C) ∈ CL: return ⊥
if T−2 [K, C]: Badcf ← >

// return T−2 [K, C]

if T−1 [K, C]: Badkup ← >
// return T−1 [K, C]

M� {0, 1}n

if M ∈ Im−2 [K]: Badcol2 ← >

// M� {0, 1}n \ Im−2 [K]
if M ∈ Im−1 [K]: Badcol1 ← >

// M� {0, 1}n \ Im−2 [K] ∪ Im−1 [K]
T−2 [K, C] := M
T+

2 [K, M] := C
Im−2 [K]← Im−2 [K] : M
Im+

2 [K]← Im+
2 [K] : C

ML← ML : (K, M)

return M

Proc. KCDec(ξd):

(K, C)← ξd(K∗)
chk← ⊥
for (ξe, C) ∈ EL:

chk← chk∨Det(ξe, C, ξd, 0n, 1)
if chk 6= ((K, C) ∈ CL):

Badxkcd ← >
chk← ((K, C) ∈ CL)

if chk: return ⊥
if T−2 [K, C]: Badcf ← >

// return T−2 [K, C]
if T−1 [K, C]: Badkup ← >

// return T−1 [K, C]
M� {0, 1}n

if M ∈ Im−2 [K]: Badcol2 ← >
// M� {0, 1}n \ Im−2 [K]

if M ∈ Im−1 [K]: Badcol1 ← >
// M� {0, 1}n \ Im−2 [K] ∪ Im−1 [K]

T−2 [K, C] := M
T+

2 [K, M] := C
Im−2 [K]← Im−2 [K] : M
Im+

2 [K]← Im+
2 [K] : C

ML← ML : (K, M)

DL← DL : (ξd, M)

return M

Proc. KCDec(ξd):

(K, C)← ξd(K∗)
chk← ⊥
for (ξe, C) ∈ EL:

chk← chk∨Det(ξe, C, ξd, 0n, 1)
if chk 6= ((K, C) ∈ CL):

Badxkcd ← >
// chk← ((K, C) ∈ CL)

if chk: return ⊥
if T−2 [K, C]: Badcf ← >

// return T−2 [K, C]
if T−1 [K, C]: Badkup ← >

// return T−1 [K, C]
M� {0, 1}n

if M ∈ Im−2 [K]: Badcol2 ← >
// M� {0, 1}n \ Im−2 [K]

if M ∈ Im−1 [K]: Badcol1 ← >
// M� {0, 1}n \ Im−2 [K] ∪ Im−1 [K]

T−2 [K, C] := M
T+

2 [K, M] := C
Im−2 [K]← Im−2 [K] : M
Im+

2 [K]← Im+
2 [K] : C

ML← ML : (K, M)

DL← DL : (ξd, M)

return M

Figure 5.3 – Game3, Game4, and Game5 used to prove the KCA-security of the
ideal cipher.
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The probability of setting Badkup under iD is analyzed similarly to
cases (a) and (b) above via reductions to the multi-shot unpredictability
of Ξd and the multi-shot key unpredictability of Ξe. The probability of
setting Badcol1 under iD is at most q(qe + qd)/2n. 3

Next we consider the probability of setting Badcf or Badcol2 . Flag
Badcf can be set under KCEnc as a result of a query ξe

0 if either (a) a
previous distinct query ξe

1 to KCEnc resulted in ξe
0(K

∗) = ξe
1(K

∗), or
(b), a previous query ξd

1 to KCDec resulted in ξe
0(K

∗) = (ξd
1 |1(K∗), M),

where M is a random value chosen by KCDec in a previous query.
In case (a) by collecting the list of ξe queried to KCEnc we can

break the multi-shot claw-freeness of Ξe (simulating the oracles as in
Game5). For case (b) to take place it must be that Det classified the
query as valid. However, this leads to setting Badxkcd since M was
returned from the KCDec oracle and hence (ξd

1 |1(K∗), M) appears on
ML but Det did not detect this. We analyze the probability of setting
Badxkcd below. The probability of setting Badcol2 in KCEnc can be
upper bounded by qe(qe + qd)/2n.

The probability of setting Badcf under KCDec is analyzed as above
by a reduction to the multi-shot claw-freeness of Ξd (or setting Badxkcd).
The probability of setting Badcol2 in KCDec is upper bounded by
qd(qe + qd)/2n.

Finally we consider the probability of setting Badxkcd. Flag Badxkcd
is set exactly when ξe(K∗) appears on ML as a result of a query ξd

to KCDec with response M and Det says it does not, or that it does
not not and Det says it does. We can bound the probability of setting
Badxkcd under KCEnc by a reduction to the multi-shot xkcd property
by collecting all queries ξe made to KCEnc and all query-answer pairs
(ξd, M) made to and received form KCDec in two lists and outputting
them lists in the multi-shot xkcd game. The probability of setting of
Badxkcd under KCDec is analyzed analogously.

The theorem now follows by putting the bounds established above
together.

The above theorem shows that key-unpredictability, claw-freeness,
and xkcd are sufficient for achieving KCA security in the ideal-cipher
model. This raises the question whether or not they are also necessary.
Key-unpredictability is. Any adversary that can predict the key output
of ξe can be used to win the KC game as follows:

1. ask for an encryption under ξe(K∗) to get a ciphertext C;

2. predict ξe|1(K∗) as K;

3. compute iD(K, C) to get M;

3. The above cases take care of collisions between wires (1/2, 3), (1/2, 4) in the
picture above.
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4. compute iE(K, M) to get C′;

5. return b′ := 1 if C = C′ and b′ := 0 otherwise.

It is easily seen that this attack returns b′ = 1 with the same probability
of predicting keys when b = 1. On the other hand, it only succeeds
with negligible probability when b′ = 0 as the encryption oracle and
the challenge oracle use independent ideal ciphers. We deal with such
attacks in case (b) of ($+, iE±) in the proof.

Claw-freeness, on the other hand, is not necessary. Consider a CDF
set consisting of exactly two functions that collide with probability
1/2, e.g., K 7→ K and K 7→ min(K, K). Then a security proof for
the ideal cipher can be easily given: guess with probability 1/2 if
min(K, K) = K. Next depending on the guess simulate the key-
correlated oracles either using the same set of ideal cipher oracles or
independent ones. However, one can also exhibit CDF sets that are not
claw-free and do lead to a KCA on the ideal cipher. Indeed, any set of
k + 1 functions that has claws with the identity function depending
on whether or not Ki, the i-th bit of the key, is 1 can be used to recover
the key one bit at a time. In practice this translates to recovering the
key by observing the repetition patters in the outputs.

Finally, there is also a pair of CDF sets which are not xkcd and
can be used to attack the ideal cipher. Let ξe(K) := (K, 0n) and
ξd[i, C](K) := (K⊕ (Ki)

n =: K′, C), that is, K′ = K if Ki = 1 and K′ = K
otherwise. Let C be the answer to KCEnc(ξe). Now for i = 1, . . . , k,
by checking whether KCDec(ξd[i, C]) returns ⊥ or not, one can again
recover the key one bit at a time. In practice this translates to observing
the equality pattern of the decrypted ciphertexts with 0n.

Theorem 5.1 and Proposition 4.1 can be used to recover known feasi-
bility results for RKA and KDM security of the ideal cipher as follows.

RKA security. An RKA-only CDF set Ξ associated to a set Φ is key-
unpredictable iff Φ is unpredictable in the sense of [BK03]. Indeed,
a predictor for a related-key derivation function φ can be converted
to a key-predictor for ξ : K 7→ (φ(K), M) for any fixed M. Conversely,
a key-predictor for (φ(K), M) in particular predicts φ(K). Similarly,
Ξ is claw-free iff Φ is claw-free in the sense of [BK03]. A claw in Φ
can be immediately converted to a claw in Ξ (by adding any message
M). Conversely, a claw ((φ1(K), M1), (φ2(K), M2)) is necessarily also
a claw between φ1 and φ2. For the (funny) xkcd property, Det given
((φ1, M1), C, (φ2, C2), M, i) needs to check if (1) φ1(K) = φ2(K) and
(2) if C = C2 when i = 1 or if M = M1 when i = 2. By claw-freeness,
(1) would only occur if φ1 = φ2; the second condition on the other
hand is trivial to check. Thus, claw-freeness implies xkcd.

KDM security. A KDM-only Ξ associated to a KDM set Ψ is always
key-unpredictable with single-shot advantage 1/2n. This is because
KDM-only functions leave the random key unmodified, which re-
mains information-theoretically hidden from the adversary in the key-
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unpredictability game. Moreover, and similarly to the RKA case, the
set Ξ is claw-free iff Ψ is. Once again, this is because KDM-only CDFs
do not modify the key component and hence any claw must be on the
message part. For the xckd property, given ((id, ψ1), C, (id, C2), M, i),
algorithm Det needs to check (1) if id(K) = id(K), which always holds;
and (2) if C2 = C when i = 1 or if ψ1(K) = M when i = 2. The
first of these is trivially checkable. For the second, two cases could
occur: either ψ1(K) is a constant function mapping to M1, in which
case Det can easily check if M1 = M; or ψ1 is non-constant. However,
since Ψ contains all constant functions, ψ1 and M can be used to break
claw-freeness. Hence in this case Det rejects. So similarly to the RKA
setting, claw-freeness implies xckd.

KCA security. We now show that the reach of the above feasibility
result for the ideal cipher extends beyond RKA and KDM security.
Suppose k = n and recall the set

Ξ⊕ :=
{

K 7→ (K⊕ ∆1, α · K⊕ ∆2) : ∆1, ∆2 ∈ M, α ∈ {0, 1}
}

. (5.1)

This set captures related keys that are computed as offsets, key-
independent messages when α = 0, and key-dependent messages
which are offsets of the key when α = 1. We identify functions in this
set with tuples (∆1, ∆2, α).

This set is key-unpredictable with single-shot advantage at most
1/2n, since xor-ing with ∆1 acts as a permutation and K remains
information-theoretically hidden. It is also claw-free with single-shot
advantage at most 1/2n: If the offsets ∆1 and ∆′1 for two functions ξ , ξ ′

are different, there are no claws. If they are the same, and α = α′, then
a claw also implies ∆2 = ∆′2, making the two functions identical. So
α 6= α′ is necessary for claws, in which case the functions collide on a
random key with probability 1/2n.

The set is also xkcd with single-shot advantage 2/2n with respect
to the following detector (recall that Det(ξe, C, ξd, M, 1) should check
whether (ξe|1(K), C) = ξd(K)):

Det⊕
(
(∆e

1, ∆e
2, αe), C, (∆d

1 , ∆d
2 , αd), M, i

)
:

if i = 1 : if ∆e
1 = ∆d

1 ∧ αd = 0 ∧ ∆d
2 = C: return “Yes”

if i = 2 : if ∆e
1 = ∆d

1 ∧ αe = 0 ∧ ∆e
2 = M: return “Yes”

else return “No” (5.2)

Consider case i = 1 when Det⊕ is trying to decide if (K⊕ ∆e
1, C) =

(K⊕ ∆d
1 , αd · K⊕ ∆d

2). If Det⊕ returns “Yes”, then both the key com-
ponents and the ciphertext components collide; the answer is thus
correct. Suppose it returns “No”. If ∆e

1 6= ∆d
1, the key components do

not collide and the answer is correct. Suppose ∆e
1 = ∆d

1: if αd = 1, the
probability that αd · K⊕ ∆d

2 = C is 1/2n since ⊕ acts a permutation
and K is random; if αd = 0, then Det⊕ checks if ∆d

2 = C and hence its
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answer is correct. Case i = 2 is dealt with similarly and we obtain
overall single-shot advantage of at most 2/2n.

Theorem 5.1 thus implies that the ideal cipher is (Ξ⊕, Ξ⊕)-KC-CCA
secure.

5.2 kca security of 3-round even–mansour

In this section we show that in contrast to the two-round case the
three-round Even–Mansour cipher with reuse of keys and independent
permutations EMP1,P2,P3 [K, K, K, K], defined in Sec. 4.4.2, is (Ξ⊕, Ξ⊕)-
KC-CCA secure, with Ξ⊕ as defined in (5.1). We note that, for Φ⊕, Ψ⊕

as in (4.2), this construction is known to be both Φ⊕-RK-CCA and Ψ⊕-
KDM-CCA secure [FP15; FKV17]. We build on these works to show
KC-CCA security in the theorem.

Theorem 5.2 (KCA security of 3-round EM). EMP1 ,P2,P3 [K, K, K, K] is
(Ξ⊕, Ξ⊕)-KC-CCA secure in the random-permutation model for Pi. More
precisely, for any adversary A against the (Ξ⊕, Ξ⊕)-KC-CCA security of
EMP1 ,P2 ,P3 [K, K, K, K] we have

Advkc-cca
EMP1,P2,P3 [K,K,K,K]

(Ξ⊕, Ξ⊕,A) ≤ 2 ·
(
qqe + qqd + q2

e + q2
d + qeqd

)
/(2n − q) ,

where q is the maximum number of queries of A to P±i (over all i = 1, 2, 3)
and qe and qd are the maximum number of encryption and decryption queries
of A, respectively.

Proof. To analyze the KC-CCA security of Even–Mansour, our strategy
will be similar to that in Theorem 5.1 and those in [FP15; FKV17].
As in these proofs, we replace the last-round permutation P+

3 in
KCEnc queries with a forgetful random oracle and also replace the
first-round permutation P−1 in KCDec with another forgetful random
oracle. After these replacements the outputs of KCEnc and KCDec

will be fully randomized and independent of the inputs; the game is
thus independent of the challenge bit b.

When simulating KCEnc and KCDec with forgetful oracles, we still
need to ensure that illegal queries are answered correctly with ⊥. As in
the proof of Theorem 5.1, we do this using a detector. In particular, we
use Det⊕ as in (5.2), which on input ((∆1, ∆2, α), C, (∆′1, ∆′2, α′), M, 1)
returns “Yes” iff ∆1 = ∆′1 and α′ = 0 and ∆′2 = C (and “No” otherwise);
and on input ((∆1, ∆2, α), C, (∆′1, ∆′2, α′), M, 2) returns “Yes” iff ∆1 =

∆′1 and α = 0 and ∆2 = M.
(1) For each decryption query ξd, KCDec runs Det⊕(ξe, C, ξd, 0n, 1)

for all previous queries ξe to KCEnc, which were answered with
C. If Det says “Yes” for any of these, KCDec⊕ returns ⊥, else it
outputs a random value from the domain.

(2) For each encryption query ξe, KCEnc runs Det⊕(ξe, 0n, ξd, M, 2)
for all previous queries ξd to KCDec, which were answered with
M. If Det⊕ says “Yes” for any of these, KCEnc returns ⊥, else it
answers with a random value.
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These replacements, however, raise the question how P+
1 in KCEnc

and P−3 in KCDec are treated (since their respective counterparts in
KCDec and KCEnc were replaced). Previous works simply leave
these oracles unchanged. Our proof diverges in this aspect, because
the key-dependency of both keys and messages gives rise to queries
that cannot be guaranteed to be disjoint from the forgetful oracle, or
discarded as trivial/illegal as in the KDM setting [FKV17], or not result
in inconsistency due to the middle permutation P2 being replaced in
the RKA setting [FP15].

For the KCA setting we will replace P−3 in KCDec (and analogously
for P+

1 in KCEnc) as follows. When Det⊕ says “No” on a query ξd =

(∆d
1 , ∆d

2 , αd), the game checks if each previous query ξe = (∆e
1, ∆e

2, αe)

to KCEnc with output value C satisfies

C⊕ ∆e
1 = ∆d

2 ⊕ ∆d
1 .

If so, oracle P̃−3 outputs the input U to $+ that was used to compute C.
If multiple values are found, P̃−3 returns ⊥. If the latter is not the case,
P̃−3 is sampled as an independent permutation and consistent with P3.
Permutation P±3 , when directly queried, is also sampled consistently
with P̃−3 on all those entries that are not kept consistent with $+. More
precisely, oracles $+, P±3 and P̃−3 write to independent lists L1, L2 and
L3. Oracle $+ checks consistency with none of the lists, oracle P±3
checks consistency with L2 and L3 and oracle P̃−3 checks consistency
with L1, L2 and L3.

Oracle P+
1 in KCEnc is replaced with P̃+

1 similarly by checking if
M⊕ ∆d

1 = ∆e
2 ⊕ ∆e

1 and outputting the input U to $− that was used to
compute M.

As a result of the above replacements, the following inconsistencies
could arise:

(a) Identical queries to a permutation oracle are answered differ-
ently due to a replacement.

(b) Different queries to a permutation oracle and its replacement are
answered identically (and hence do not respect permutativity).

(c) Multiple candidates for U are found when sampling P̃−3 or P̃+
1 .

We now bound the probabilities of these events.

multiple candidates This event will happen due to: (1) a colli-
sion in the outputs of $+, which happens with probability 1/2n

for each pair of queries to KCEnc; or (2) a collision in the output
of $+ and an output entry in P±3 . This event is equivalent to a
collision in the outputs of $+ and P±3 , which pertains to case (b)
and is analyzed next.

($+,P±3 ) A direct P±3 call in either direction collides with a point
queried to P+

3 due to a query ξe = (∆1, ∆2, α) to KCEnc. Sup-
pose the direct query results in V = P+

3 (U) or U = P−3 (V).
There are now two cases. (a) The inputs collide, i.e.,

P2
(
P1(∆1⊕∆2⊕ (1− α) ·K∗)⊕∆1⊕K∗

)
⊕∆1⊕K∗ = U . (5.3)
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If Y := P1(∆1 ⊕ ∆2 ⊕ (1− α) · K∗)⊕ ∆1 ⊕ K∗ was queried to P2

then the adversary can compute K∗ = P2(Y)⊕ ∆1 ⊕U, which
is only possible with probability 1/2n, since the key remains
information-theoretically hidden. If it was not queried, the prob-
ability that (5.3) holds is also 1/(2n − q), since P2 is a random
permutation, where outputs are chosen in a set of size at least
2n − q.
The other case is that (b) the outputs collide. If the $+ query
comes after the direct query, the probability of this event is 1/2n.
Now suppose the $+ query comes first and outputs C; thus
due to the collision we have that C = V ⊕ K∗ ⊕ ∆1. But in this
case the adversary can compute K∗ = V ⊕ ∆1, which happens
with probability at most 1/2n (as the key remains information
theoretically hidden).

($− , P±1 ) A direct P±1 call in either direction collides with a point
queried to $− due to a query ξd to KCDec. This event is analyzed
analogously to case ($+,P±3 ) above.

($+, $+) The are two cases: (a) two inputs collide or (b) two outputs
collide. In case (a) two distinct calls ξe = (∆1, ∆2, α) and (ξe)′ =

(∆′1, ∆′2, α′) to the KCEnc oracle result in querying $+ on the
same input. For this event to occur we must have that

P2
( =:Y︷ ︸︸ ︷
P1(∆1 ⊕ ∆2 ⊕ (1− α) · K∗︸ ︷︷ ︸

=:X

)⊕ ∆1 ⊕ K∗
)
⊕ ∆1

= P2
(
P1(

=:X′︷ ︸︸ ︷
∆′1 ⊕ ∆′2 ⊕ (1− α′) · K∗)⊕ ∆′1 ⊕ K∗︸ ︷︷ ︸

=:Y′

)
⊕ ∆′1 . (5.4)

If Y = Y′ then P1(X)⊕ ∆1 = P1(X′)⊕ ∆′1 and from (5.4) we get
∆1 = ∆′1. Since P1 is a permutation, this implies that X = X′. If
further α = α′ then we would also have ∆2 = ∆′2, which means
ξe = (ξe)′, contradicting distinctness of queries. Thus α 6= α′

and hence ∆2 ⊕ ∆′2 = K∗ (since X = X′), which only happens
with probability 1/2n as it leads to guessing the key.
Assume now that Y 6= Y′.
— If the adversary does not query P2 on either Y or Y′ then

P2(Y) or P2(Y′) would be distributed randomly and indepen-
dently of the adversary’s view. Hence the probability that the
above equality holds would be at most 1/(2n − q) for each
pair of queries.

— Suppose both Y and Y′ are queried to P2. Then P1 must have
been queried on both X or X′, since otherwise the probability
of computing Y or Y′ would be at most 1/(2n − q). If both
X and X′ are queried to P1 and α = 0 or α′ = 0, then for
each query the probability of querying X (or X′) to P1 is
1/2n, because K∗ is information-theoretically hidden. The
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remaining case is α = α′ = 1. Since the adversary knows Y (it
was queried to P2), it can compute K∗ = Y⊕ P1(∆1 ⊕ ∆2)⊕
∆1. Again, since K∗ is information-theoretically hidden, this
can only happen with probability 1/2n.

In case (b) outputs of $+ collide with probability 1/2n for each
pair of queries.

($−, $−) Two distinct ξd, (ξd)′ ∈ Ξd to KCDec result in querying $−

on the same point. This event is analyzed analogously to case
($+, $+) above.

($+, P̃−3 ) Calls ξe = (∆e
1, ∆e

2, αe) to KCEnc and ξd = (∆d
1 , ∆d

2 , αd) to
KCDec result in (a) querying P̃−3 on an input matching an output
of $+; or in (b) querying P̃−3 on an input whose output matches
an input of $+. Let C be the reply to query ξe. Then the value
chosen by $+ is C⊕ K∗ ⊕ ∆e

1. Thus case (a) would happen if

C⊕ K∗ ⊕ ∆e
1 = αd · K∗ ⊕ ∆d

2 ⊕ K∗ ⊕ ∆d
1 .

If αd = 1, then
C⊕ K∗ ⊕ ∆e

1 = ∆d
2 ⊕ ∆d

1 ,

which leads to guessing K∗ and happens with probability at
most 1/2n. On the other hand, if αd = 0, we would have that

C⊕ ∆e
1 = ∆d

2 ⊕ ∆d
1 .

But for such queries either P̃−3 is sampled to be consistent with
$+ (or it is not called at all when Det⊕ returns “Yes”).
Let us now look at case (b), which would happen if

P2
( =:Y︷ ︸︸ ︷
P1(∆e

1 ⊕ ∆e
2 ⊕ (1− αe) · K∗︸ ︷︷ ︸

=:X

)⊕ ∆e
1 ⊕ K∗

)
⊕ ∆e

1 ⊕ K∗

= P̃−3
(
∆d

1 ⊕ ∆d
2 ⊕ (1− αd) · K∗

)
. (5.5)

If ∆d
1 ⊕ ∆d

2 ⊕ (1− αd) · K∗ was directly queried to P−3 , an incon-
sistency of type ($+,P±3 ) arises, which we dealt with above. On
the other hand, it could be that this value was never queried to
P−3 .
If the KCEnc query comes before KCDec and the inputs are
distinct—colliding inputs was case (a) above—P̃−3 chooses a ran-
dom value, which collides with the input to $+ with probability
at most 1/(2n − q).
Suppose now that the KCEnc query comes after KCDec. Sup-
pose the input to KCEnc is ξe = (∆e

1, ∆e
2, αe). The value com-

puted as input to $+ is independent of the output of P̃−3 unless
P+

1 is kept consistent with $− (since otherwise P1 and P2 are
independent of P̃−3 ). If independent, collisions happen with
probability at most 1/(2n − q). Otherwise, dependency implies
that M⊕ ∆d

1 = ∆e
1 ⊕ ∆e

2 where M is the output of KCDec. This
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query will be marked as illegal unless ∆d
1 6= ∆e

1. In this case the
adversary has found a collision of the form

P2(Y′ ⊕ K∗ ⊕ ∆e
1)⊕ K∗ ⊕ ∆e

1 = U ,

where Y′ = P−2 (U ⊕ K∗ ⊕ ∆d
1) ⊕ K∗ ⊕ ∆d

1 is the value input to
$− and output by P+

1 due to the consistency check in KCEnc.
Rearranging and applying P−2 to the above equality yields Y′ ⊕
K∗ ⊕ ∆e

1 = P−2 (U ⊕ K∗ ⊕ ∆e
1). Substituting the expression for

Y′ we get that P−2 (U ⊕ K∗ ⊕ ∆d
1)⊕ ∆d

1 ⊕ ∆e
1 = P−2 (U ⊕ K∗ ⊕ ∆e

1).
Since P−2 is a permutation, this would happen iff ∆d

1 = ∆e
1, which

is an illegal query.

($−, P̃+
1 ) A call ξd to KCDec and a call ξe to KCEnc result in querying
$− and P̃+

1 on the same point. This event is analyzed analogously
to case ($+, P̃−3 ) above.

(P̃−3 ,P±3 ) A call ξd to KCDec and a direct query to P±3 are such that
either the inputs or the outputs collide. If the KCDec query
comes after the direct query, since oracle P̃−3 is sampled to be
consistent with P3, no inconsistency arises. If P3 comes after
KCDec then an inconsistency arises only with an entry on P̃−3
that is also on $+. But in this case an inconsistency of the form
($+,P±3 ) has been found.

(P̃+
1 ,P±1 ) A call ξe to KCEnc and a direct query to P±1 collide. This

case is treated analogously to (P̃−3 ,P±3 ).

KCEnc inconsistently rejects If Det⊕ does not output an in-
correct answer, ⊥ is the correct answer. On the other hand, as
shown at the end of previous section, Det⊕ with i = 1 outputs
an incorrect answer with probability at most 1/2n per inputs
checked.

KCDec inconsistently rejects Similarly to the above, this event
occurs with probability at most 1/2n per inputs checked.

The theorem follows by putting the above bounds together.

Remark. A potential strengthening of the above theorem would
be to consider a wider class of KCA attacks for which the ideal ci-
pher is known to be secure. One possibility would be the class of
key-unpredictable, claw-free, and xkcd-secure CDF sets as shown in
Theorem 5.1. Although feasibility of this level of security claim for
iterated Even–Mansour ciphers would follow from known indifferen-
tiability [LS13; DSST17], this would require a larger number of rounds
and also comes at the cost of lower levels of security. It remains an in-
teresting open question to find the minimal number of rounds needed
in the Even–Mansour ciphers that yields (Ξe, Ξd)-KC-CCA security
with respect to any pair (Ξe, Ξd) for which the ideal cipher is also
(Ξe, Ξd)-KC-CCA secure.





6
K C A - S E C U R E S Y M M E T R I C E N C RY P T I O N

We have seen that it is possible to achieve KCA-secure blockci-
phers. Given this, we now turn our attention to higher-level primitives
and investigate the possibility of constructing KCA-secure primitives
which rely on blockciphers. A natural first step is to explore symmet-
ric encryption. Specifically, we consider the notion of authenticated
encryption with associated data (AEAD).

6.1 kc-ae security

Let SE be an AEAD scheme as defined in chapter 2. Let Ξe and
Ξd be CDF sets with signatures ξe : K −→ K ×M×N ×H and
ξd : K −→ K×N ×H respectively. As is in the blockcipher case, Ξe

is used to generate correlated keys and key-correlated messages. In
addition to this, for authenticated encryption, we allow all inputs to
the encryption algorithm to be key-correlated. Unlike the blockcipher
case however, we restrict the use of Ξd to generate correlated keys,
nonces, and headers as it seems unnatural to derive a key-correlated
ciphertext for decryption. If ξe ∈ Ξe and ξd ∈ Ξd we note that the We can extend to

key-correlated
ciphertexts, but it
will come at the cost
of requiring stronger
assumptions.

syntactical difference to SE when considering KC-AE security is that
the encryption oracle in the scheme only takes ξe as input, while the
decryption oracle takes (ξd, C) as described in the KC-AEΞe ,Ξd ,A

SE game
on the right in Figure 6.1. The KC-AE advantage of an adversary A
against AEAD is defined by

Advkc-ae
SE (Ξe, Ξd,A) := 2 · Pr

[
KC-AEΞe ,Ξd ,A

SE

]
− 1 .

We require that nonces are not repeated in KCEnc queries. We can further
extend to
misuse-resilient
authenticated
encryption, if we
extend to the
stronger
assumptions as with
key-correlated
ciphertexts.

Security against key-correlated attacks is a strengthening of the
standard notion of AE-security for a symmetric encryption scheme.
As the syntax shows, the input to SE consists of K, M, N, and H. A
natural question may arise as to which inputs we allow to be key-
correlated. Although we would like to provide guarantees against
any correlated inputs, there are two immediate issues with header
security. It can (sometimes) be the case that headers are not private,
and if they are heavily key-correlated, an adversary could trivially
retrieve the key. For this reason, we require that header data is
private. But a more subtle point, as shown in [BK11], is that even
with private headers, it is possible for an adversary to perform a
full key recovery attack by taking advantage of the pattern of errors
returned while list-checking during the decryption process which may
be key-dependent. This attack does not apply in our setting, as we

69
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Game KC-AEΞe ,Ξd ,A
SE :

b� {0, 1};
K∗ � K
b′ � AKCEnc,KCDec

return (b′ = b)

Proc. KCEnc(ξe):
(K, M, N, H)← ξe(K∗)
C1 ← Enc(K, M, N, H)

if T[K, M, N, H] = undef:
T[K, M, N, H]� {0, 1}|C1|

C0 ← T[K, M, N, H]

CL← CL : (K, Cb, N, H)

return Cb

Proc. KCDec(ξd, C):
(K, N, H)← ξd(K∗)
if (K, C, N, H) ∈ CL: return ⊥
M1 ← Dec(ξd, C, N, H)

M0 ←⊥
return Mb

Figure 6.1 – KC-AE-security game for a symmetric encryption scheme SE.

The game defining
the

KC-AE-security of
SE with

key-correlated
inputs. Once again,

the adversary is
required not to

repeat nonces in its
KCEnc queries.

return only one error symbol (⊥) for both illegal queries and a failed
decryption process, and as such, an adversary cannot use this to gain
advantage. Note that even if we define a scheme with different error
symbols to denote different types of decryption failures, we can still
obtain header security, but at the cost of requiring key-claw-freeness.

6.2 the hash-with-nonce transform

We introduce the Hash-with-Nonce (HwN) transform with the goal
of achieving KCA-security for symmetric encryption. Working in
the random-oracle model, HwN converts a conventional AE-secure
AEAD scheme SE to a new one, SE = HwN[SE,Gen] = (Gen, Enc,Dec),
which we will prove to be KC-AE secure. Gen is its key-generation
algorithm, its key length is k and nonce length is n. Its encryption and
decryption algorithms are defined as follows, where H : K×N −→ K
is a random oracle.

Enc(K, M, N, H):
C← Enc(H(K|N), M, N, H)

return C

Dec(K, C, N, H):
M← Dec(H(K|N), C, N, H)

return M

To show that SE is (Ξe, Ξd)-KC-AE secure it will be convenient to re-
duce to a multi-user variant of the AE game. Multi-user authenticated
encryption (MUAE) allows an adversary to choose the number of keys
to target, analogous to the number of users in the scheme. In addition
to taking a message, nonce, and header, the encryption oracle takes an
index i (indicating user number), and returns encryptions under a key
Ki, or a random string of the same length. Decryption always returns
the error symbol, except in the case the real algorithms are being used
where the message M is returned by decrypting C under Ki. The
adversary cannot ask user i to decrypt a ciphertext that it previously
obtained from this user. In a scheme with n users, it follows via a
simple hybrid argument (see Section 6.5) that any AE-secure AEAD
scheme is also MUAE secure.

The convenience in using MUAE lies in the fact that we can leverage
the programmability of random oracles to implicitly map the hash
values H(ξe

i |1(K∗)|Ni) of the i-th query ξe
i to KCEnc, to a new ran-

domly and independently chosen key in the MUAE game. This also
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decouples the key used in encryption (i.e., H(ξe
i |1(K∗)|Ni)) from the

key-correlated messages ξe
i |2(K∗), key-correlated nonces ξe

i |3(K∗), and
key-correlated headers ξe

i |4(K∗). Overall, our reduction proceeds by
choosing a K∗, computing the key-correlated message, nonce, and
header, faithfully using this key, and implicitly setting H(ξe

i |1(K∗)|N)

to keys Ki in the MUAE game. For this analysis, we need that the keys
Ki remain hidden from the adversary’s point of view, which we argue
is the case as long the queried functions are key-unpredictable. We
now state and prove the security guarantees of SE

6.3 kca security of hwn

Theorem 6.1 (KCA security of HwN). Let SE be an AE-secure AEAD
scheme. Let Ξe and Ξd be two CDF sets. Then for any (Ξe, Ξd)-KC-AE
adversaryA against the scheme SE obtained by applying the HwN transform
to SE that makes q random oracle queries, qe encryption queries and qd
decryption queries, there are adversaries B, C1 and C2 such that

Advkc-ae
SE (Ξe, Ξd,A) ≤ 2 ·Advmu-ae

SE (B)+ 2 ·Advm-kup
Ξe (C1)+ 2 ·Advm-kup

Ξd (C2)

where adversary B makes at most qe + qd queries to Init, at most qe queries to
encryption, and at most qd queries to decryption, adversary C1 outputs two lists of
sizes at most qe and q, and adversary C2 outputs two lists of sizes at most qd and q.

Proof. The proof proceeds via a sequence of games as shown in Fig-
ure 6.2 and Figure 6.3. The three games in Figure 6.2 run according to
the KC-AE game with the HwN transform applied, and with b = 1.
When b = 1, all oracle queries to KCEnc return encryptions of key-
derived inputs under related keys. Queries to KCDec return the
plaintext, or the error symbol ⊥ if the ciphertext is deemed illegit-
imate. The three games in Figure 6.3 run according to the KC-AE
game with the HwN transform applied, and with b = 0. In this
scenario, all oracle queries to KCEnc return random ciphertexts, and
KCDec always returns the error symbol ⊥. All games, adversaries,
and transitions are outlined below.

Game0 describes the KC-AE game with respect to the transformed
scheme and b = 1.

Game1 is identical to Game0 with one conceptual change: it proceeds
by separating the book-keeping list for H into cases when H is
accessed within KCEnc and KCDec and when directly accessed
by the adversary. More precisely, in Game1, records of adversary
A’s queries to the random oracle H will be recorded in a list
L, whereas the oracle queries from KCEnc and KCDec will be
recorded in a list L′ by oracle denoted H′. A bad flag, Bad, is
set if H′ is queried on a key/nonce pair that has already been
queried by A to H. In this game, H and H′ jointly implement H



72 kca-secure symmetric encryption

GameΞe ,Ξd ,A
0 :

b← 1; K∗ � K
b′ � AKCEnc,KCDec,H

return (b′ = 1)

GameΞe ,Ξd ,A
1 :

b← 1; K∗ � K
b′ � AKCEnc,KCDec,H

return (b′ = 1)

GameΞe ,Ξd ,A
2 :

b← 1; K∗ � K
b′ � AKCEnc,KCDec,H

return (b′ = 1)

Proc. KCEnc(ξe):
(K, M, N, H)← ξe(K∗)
C1 ← Enc(H(K|N), M, N, H)

if T[H(K|N), M, N, H] = undef:
T[H(K|N), M, N, H]� {0, 1}|C1|

C0 ← T[H(K|N), M, N, H]

CL← CL : (K, Cb, N, H)

return Cb

Proc. KCEnc(ξe):
(K, M, N, H)← ξe(K∗)
C1 ← Enc( H′ (K|N), M, N, H)

if T[ H′ (K|N), M, N, H] = undef:

T[ H′ (K|N), M, N, H]� {0, 1}|C1|

C0 ← T[ H′ (K|N), M, N, H]

CL← CL : (K, Cb, N, H)

return Cb

Proc. KCEnc(ξe):
(K, M, N, H)← ξe(K∗)
C1 ← Enc(H′(K|N), M, N, H)

if T[H′(K|N), M, N, H] = undef:
T[H′(K|N), M, N, H]� {0, 1}|C1|

C0 ← T[H′(K|N), M, N, H]

CL← CL : (K, Cb, N, H)

return Cb

Proc. KCDec(ξd, C):
(K, N, H)← ξd(K∗)
if (K, C, N, H) ∈ CL: return ⊥
M1 ← Dec(H(K|N), C, N, H)

M0 ←⊥
return Mb

Proc. KCDec(ξd, C):
(K, N, H)← ξd(K∗)
if (K, C, N, H) ∈ CL: return ⊥
M1 ← Dec( H′ (K|N), C, N, H)

M0 ←⊥
return Mb

Proc. KCDec(ξd, C):
(K, N, H)← ξd(K∗)
if (K, C, N, H) ∈ CL: return ⊥
M1 ← Dec(H′(K|N), C, N, H)

M0 ←⊥
return Mb

Proc. H(K|N):
if (K|N, Kh) ∈ L: return Kh
else Kh � K
L← L : (K|N, Kh)

return Kh

Proc. H(K|N): // Public RO
if (K|N, Kh) ∈ L: return Kh
if (K|N, Kh) ∈ L′: Bad← >

return Kh
else Kh � K
L← L : (K|N, Kh)

return Kh

Proc. H(K|N): // Public RO
if (K|N, Kh) ∈ L: return Kh
if (K|N, Kh) ∈ L′: Bad← >
// return Kh

else Kh � K
L← L : (K|N, Kh)

return Kh

Proc. H′(K|N): // Private RO
if (K|N, Kh) ∈ L′: return Kh
if (K|N, Kh) ∈ L: Bad← >

return Kh
else Kh � K
L′ ← L′ : (K|N, Kh)

return Kh

Proc. H′(K|N): // Private RO
if (K|N, Kh) ∈ L′: return Kh
if (K|N, Kh) ∈ L: Bad← >
// return Kh

else Kh � K
L′ ← L′ : (K|N, Kh)

return Kh

Figure 6.2 – KC-AE to SE reduction with b = 1.

Game0 shows the
KC-AE game with
respect to SE and

challenge bit 1.
Game1 separates

the lists for H and
H′. There are no

functional changes.
Game2 then fully
decouples H and

H′.

in Game0 and event Bad prepares us to fully decouple H and H′

later:
Pr[GameA0 ] = Pr[GameA1 ] .

Game2 is identical to Game1 up to the point that Bad is set. If this
event occurs within H′, records are no longer returned. By
the fundamental lemma of game playing [BR06], we bound the
difference between Game2 and Game1 as

Pr[GameA1 ]− Pr[GameA2 ] ≤ Pr[GameA2 sets Bad] .

Event Bad corresponds to a non-empty intersection between the
two lists L and L′. Below, we will bound Pr[Bad] in Game1 by
showing that (1) this probability is close to the probability of
setting Bad in Game2 down to the MUAE security of SE; and
(2) the probability of setting Bad in Game2 is small down to the
key unpredictability of Ξe and Ξd.
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GameΞe ,Ξd ,A
3 :

b← 0 ; K∗ � K
b′ � AKCEnc,KCDec,H

return (b′ = 1)

GameΞe ,Ξd ,A
4 :

b← 0; K∗ � K
b′ � AKCEnc,KCDec,H

return (b′ = 1)

GameΞe ,Ξd ,A
5 :

b← 0; K∗ � K
b′ � AKCEnc,KCDec,H

return (b′ = 1)

Proc. KCEnc(ξe):
(K, M, N, H)← ξe(K∗)
C1 ← Enc(H′(K|N), M, N, H)

if T[H′(K|N), M, N, H] = undef:
T[H′(K|N), M, N, H]�{0, 1}|C1|

C0 ← T[H′(K|N), M, N, H]

CL← CL : (K, Cb, N, H)

return Cb

Proc. KCEnc(ξe):
(K, M, N, H)← ξe(K∗)
C1 ← Enc(H′(K|N), M, N, H)

if T[H′(K|N), M, N, H] = undef:
T[H′(K|N), M, N, H]�{0, 1}|C1|

C0 ← T[H′(K|N), M, N, H]

CL← CL : (K, Cb, N, H)

return Cb

Proc. KCEnc(ξe):
(K, M, N, H)← ξe(K∗)
C1 ← Enc( H (K|N), M, N, H)

if T[ H (K|N), M, N, H] = undef:
T[ H (K|N), M, N, H]�{0, 1}|C1|

C0 ← T[ H (K|N), M, N, H]

CL← CL : (K, Cb, N, H)

return Cb

Proc. KCDec(ξd, C):
(K, N, H)← ξd(K∗)
if (K, C, N, H) ∈ CL: return ⊥
M1 ← Dec(H′(K|N), C, N, H)

M0 ←⊥
return Mb

Proc. KCDec(ξd, C):
(K, N, H)← ξd(K∗)
if (K, C, N, H) ∈ CL: return ⊥
M1 ← Dec(H′(K|N), C, N, H)

M0 ←⊥
return Mb

Proc. KCDec(ξd, C):
(K, N, H)← ξd(K∗)
if (K, C, N, H) ∈ CL: return ⊥
M1 ← Dec( H (K|N), C, N, H)

M0 ←⊥
return Mb

Proc. H(K|N): // Public RO
if (K|N, Kh) ∈ L: return Kh
if (K|N, Kh) ∈ L′: Bad← >
// return Kh
else Kh � K
L← L : (K|N, Kh)

return Kh

Proc. H(K|N): // Public RO
if (K|N, Kh) ∈ L: return Kh
if (K|N, Kh) ∈ L′: Bad← >

return Kh
else Kh � K
L← L : (K|N, Kh)

return Kh

Proc. H(K|N):
if (K|N, Kh) ∈ L: return Kh
else Kh � K
L← L : (K|N, Kh)

return Kh

Proc. H′(K|N): // Private RO
if (K|N, Kh) ∈ L′: return Kh
if (K|N, Kh) ∈ L: Bad← >
// return Kh
else Kh � K
L′ ← L′ : (K|N, Kh)

return Kh

Proc. H′(K|N): // Private RO
if (K|N, Kh) ∈ L′: return Kh
if (K|N, Kh) ∈ L: Bad← >

return Kh
else Kh � K
L′ ← L′ : (K|N, Kh)

return Kh

Figure 6.3 – KC-AE to SE reduction with b = 0.

Game3 changes the
challenge bit to 0.
Game4 merges H
and H′.
Game5 is
functionally
identical to Game4
with merged H
and H′. Game5 is
the KC-AE game
with respect to SE
and challenge bit 0.

Game3 switches the challenge bit to b = 0. We show below that any
adversarial advantage in distinguishing Game2 and Game3 can
be converted, via an adversary B1, against the MUAE game:

Pr[GameA2 ]− Pr[GameA3 ] = Advmu-ae
SE (B1) .

Game4 reverses the change in Game2 and merges random oracles H
and H′. We have that

Pr[GameA3 ]− Pr[GameA4 ] ≤ Pr[GameA3 sets Bad] ,

where we choose Game3 to analyze the probability of Bad. Below
we construct adversaries to show that this probability is bounded
above by the key-unpredictability advantages against Ξe and Ξd.

Game5 is identical to Game4 except for a reversal of the conceptual
change seen between Game0 and Game1. The random oracles
are completely re-coupled, and all queries by A, KCEnc and
KCDec are written to a single list L. There are no procedural
changes in this game:

Pr[GameA4 ] = Pr[GameA5 ] .
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6.4 the reductions

We now give the details of the bounds for the three transitional
changes above.

adversary B1 plays the MUAE game and is built based on an ad-
versary A that attempts to distinguish Game2 and Game3 as
follows. Adversary B1 initializes q keys and chooses a K∗. It then
simulates the encryption and decryption oracles by explicitly
computing the actual key, and also message when answering
encryption, used using K∗. In doing so, B1 implicitly programs
H(ξe

i (K
∗), Ni) to Ki, one of the q keys initialized by B1’s chal-

lenger. Since nonces are not reused, and each Ki is chosen
randomly, this will constitute a perfect simulation of the random
oracle H′. When b = 0, this is a perfect simulation of Game4

environment for A by B1. However when b = 1, although simu-
lation encryption is good, care must be taken in decryption as
decryption of (K, C, N, H) is not allowed in the KC-AE game if
(K, C, N, H) was added to list CL. Adversary B1 thus keeps track
of these values and answers with ⊥ when such a query arises.
Note that B1 once again uses its knowledge K∗ and further that
this modification does not affect the simulation when b = 0.
Adversary B1 continues in this way and returns the bit that A
outputs. Hence,

Advmu-ae
SE (B1) = Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

= Pr[GameA2 ]− Pr[GameA3 ] .

adversaries Ci for i = 1, 2 are used to show that the probability
of Bad is small by the key-unpredictability of the queried func-
tions. Adversaries Ci for i = 1, 2 run A in Game3 by simply
simulating its encryption and decryption oracles with $ and ⊥ re-
spectively. They also lazily sample the random oracles H for
A. Adversary C1 keeps track of all queried functions to KCEnc

and adversary C2 keeps track of all queried functions to KCDec.
Both adversaries also keep track of all queries to H. When A
terminates, Ci simply outputs the list of all queried functions
that it keeps track of and H queries its two lists of guesses in the
multi-shot key-unpredictability game. (See Figure 6.4 (middle)
for the details.) Whenever flag Bad is triggered, either C1 or C2

wins the key-unpredictability game against Ξe or Ξd respectively:

Pr[GameA3 sets Bad] ≤ Advm-kup
Ξe (C1) + Advm-kup

Ξd (C2) .

adversary B2 is used to bound the difference between the proba-
bilities of setting Bad in games Game3 and Game4. This is done
via another reduction to the MUAE game which attempts to
decide the challenge bit by observing if Bad is set. Algorithm B2
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runs A similarly to algorithm B1. It however keeps track of the
queried functions to KCEnc and KCDec as well as H. It uses its
knowledge of K∗ to verify if Bad has occurred. When the MUAE
challenge bit of B2 is 1, algorithm B2 runs A in an environment
identical to that of Game2; hence the probability of B2 outputting
0 is exactly that of Bad in Game2. Similarly, the probability of B2

outputting 1 is exactly that of Bad occurring in Game3. Hence

Advmu-ae
SE (B2) = Pr[GameA2 sets Bad]− Pr[GameA3 sets Bad] .

The theorem follows by putting the bounds established above to-
gether, and noting that

Advkc-ae
SE (Ξe, Ξd,A) = Pr[GameA0 ]− Pr[GameA5 ] .

In the theorem statement, we choose B to be B1 or B2 having the
bigger advantage.

Adversary BInit,Enc,Dec

1 :
i← 0; K∗ � K
Call B1.Init qe + qd times
b′ � AKCEnc,KCDec,H

return b′

Adversary Ci:
K∗ � K
b′ � AKCEnc,KCDec,H

return (Li, L′)

Adversary BInit,Enc,Dec

2 :
i← 0; K∗ � K
Call B2.Init q times
b′ � AKCEnc,KCDec,H

for (ξ) ∈ L1 ∧ (K, N) ∈ L′

if ξ|1(K∗) = K ∧ ξ|3(K∗) = N:
return 1

return 0

KCEnc(ξe):
(K, M, N, H)← ξe(K∗)
if T[K, N] = undef:

i← i + 1; T[K, N]← i
C←B1.Enc(T[K, N], M, N, H)

CL← CL : (K, C, N, H)

return C

KCEnc(ξe):
L1 ← L1 : ξe

C� {0, 1}|M|+τ

return C

KCEnc(ξe):
L1 ← L1 : (ξe)

(K, M, N, H)← ξe(K∗)
if T[K, N] = undef:

i← i + 1; T[K, N]← i
C← B2.Enc(T[K, N], M, N, H)

CL← CL : (K, C, N, H)

return C

KCDec(ξd, C):
(K, N, H)← ξd(K∗)
if T[K, N] = undef:

i← i + 1; T[K, N]← i
if (K, C, N, H) ∈ CL: return ⊥
M←B1.Dec(T[K, N], C, N, H)

return M

KCDec(ξd, C):
L2 ← L2 : ξd

return ⊥

KCDec(ξd, C):
L1 ← L1 : (ξd)

(K, N, H)← ξd(K∗)
if T[K, N] = undef:

i← i + 1; T[K, N]← i
M← B2.Dec(T[K, N], C, N, H)

if (K, C, N, H) ∈ CL: return ⊥
return M

H(K|N):
if (K|N, Kh) ∈ L: return Kh
else Kh � K
L← L : (K|N, Kh)

return Kh

H(K|N):
if (K|N, Kh) ∈ L:

return Kh
else Kh � K
L← L : (K|N, Kh)

L′ ← L′ : K
return Kh

H(K|N):
if (K|N, Kh) ∈ L: return Kh
else Kh � K
L← L : (K|N, Kh)

L′ ← L′ : (K, N)

return Kh

Figure 6.4 – Code of the adversaries in the KC-AE to MUAE reduction.

On the left is the
description of
adversary B1
simulating the
challenger of A in
the KC-AE game
whilst interacting
in the MUAE
environment.
In the middle is
the description of
adversaries Ci
simulating the
oracle requests by
A in the KC-AE
game when b = 0
and whilst running
in the key
unpredictability
environment.
On the right is the
code for an
adversary B2

simulating A in
the KC-AE game
whilst interacting
in the MUAE
environment.

Remark. The above theorem can be extended to a misuse-resilient
and key-correlated setting, whereby nonces may be repeated at en-
cryption for a construction similar to HwN that also hashes the header
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Game MUAEASE:
b� {0, 1}; v← 0
b′ � AInit,Enc,Dec

return (b′ = b)

Proc. Init():
v← v + 1; Kv � K

Proc. Enc(i, M, N, H):
if ¬(1 ≤ i ≤ v): return ⊥
C1 ← Enc(Ki, M, N, H)

C0 � {0, 1}|C1|

CL← CL : (i, Cb, N, H)

return Cb

Proc. Dec(i, C, N, H):
if ¬(1 ≤ i ≤ v): return ⊥
if (i, C, N, H) ∈ CL: return ⊥
M1 ← Dec(Ki, C, N, H)

M0 ←⊥
return Mb

Figure 6.5 – Game MUAEAAE defining the multi-user AE-security of a authen-
ticated encryption scheme SE.

information. A similar proof strategy can be used to analyse its KC-
MRAE security at the expense of introducing three extra conditions:
(1) the base scheme is MRAE secure; (2) the sets Ξe and Ξd are claw-
free; and (3) (Ξe, Ξd) is xkcd so that illegal decryption queries can be
detected.

6.5 multi-user to single-user reduction for ae

This may not seem
very important, and

you may wonder
why it is included,
but this is the first

reduction I ever
wrote, and for that

reason, it’s super
important to me :)

For convenience, the KC-AE to AE proof was shown in the multi-
user setting. Here we show how to further reduce from multi-user to
single user AE.

Multi-user security. We define the MUAE-security of an authen-
ticated encryption scheme SE = (Gen, Enc,Dec) by considering the
game described in Figure 6.5. The MUAE advantage of an adversary
A against an MUAE game is defined by

Advmu-ae
SE (A) := 2 · Pr

[
MUAEASE

]
− 1 .

Note that nonces may not be repeated for each user in Enc.

Theorem 6.2. Let SE be an authenticated encryption scheme. Then for any
adversary A attacking the MUAE-security of SE while making at most n
queries to Init, there exist AE adversaries B1, . . . ,Bn such that

Advmu-ae
SE (A) ≤

n

∑
i=1

Advae
SE(Bi) .

Proof. The proof proceeds via a standard hybrid argument. We start
by defining a sequence of games Gamej (for 0 ≤ j < n) as shown in
Figure 6.6. Gamej runs similarly to the MUAE game except that if
i (the index of the key) is less than or equal to j, then ciphertext C
is randomly generated. For i > j, the encryption algorithm is used
under key Ki. Thus Game0 is identical to the MUAE game with b = 1
and Gamen is identical to the MUAE game with b = 0.
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GameAj :
b← 1; v← 0
b′ � AInit,Enc,Dec

return (b′ = 1)

Proc. Init():
v← v + 1; Kv � K

Proc. Enc(i, M, N, H):
if ¬(1 ≤ i ≤ v): return ⊥
C← Enc(Ki, M, N, H)

if i ≤ j : C← {0, 1}|C|

CL← CL : (i, C, N, H)

return C

Proc. Dec(i, C, N, H):
if ¬(1 ≤ i ≤ v): return ⊥
if (i, C, N, H) ∈ CL: return ⊥
if i ≤ j : M←⊥
M← Dec(Ki, C, N, H)

return M

Figure 6.6 – Gamej (with 0 ≤ j ≤ n) showing MUAE game which returns
random values when i ≤ j and an encryption under Ki otherwise.

Let A be any adversary in the MUAE game. To bound the advantage
of A, note that

Advmu-ae
SE (A) := Pr[GameA0 ]− Pr[GameAn ]

=
n−1

∑
j=0

(Pr[GameAj ]− Pr[GameAj+1]) .

Thus, for j = 0, . . . , n− 1 it remains to bound

Pr[GameAj ]− Pr[GameAj+1] .

To this end, we will rely on the underlying security of SE.

Claim 6.3. For any j, and for any adversary A, there exists a Bj such that

Pr[GameAj ]− Pr[GameAj+1] = Advae
SE(Bj) .

The key observation is that in Gamej, for the first j keys queried, j
uniform strings are returned as the ciphertext and for the remaining
keys, n− j encryptions are returned. In Gamej+1, j + 1 uniform strings
and n − j − 1 encryptions are returned. Leveraging this difference
of one real encryption at the j + 1 position, we can construct an AE
adversary Bj to emulate the environment of an MUAE adversary A
to break the single user AE security. Adversary Bj works as follows.

Adversary BEnc,Dec

j :

b′ � AInit,Enc,Dec

return b′

Init():
if i = j + 1: Ki ←⊥
else Ki � K

Enc(i, M, N, H):
C← Enc(Ki, M, N, H)

if i ≤ j:
C� {0, 1}|C|

if i = j + 1:
C← Bj.Enc(M, N, H)

return C

Dec(i, C, N, H):
if i ≤ j : M←⊥
if i = j + 1:

M← Bj.Dec(C, N, H)

else M← Dec(Ki, C, N, H)

return M

Figure 6.7 – Adversary B in the single-user AE game based on a multi-user
AE adversary A.

In the AE game that Bj is playing, if the challenge bit b = 1, ad-
versary A’s view of the environment is identical to Gamej. If Bj’s
challenge bit b = 0, A’s view is identical to Gamej+1. When A outputs
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a bit b = 1 if the envirnment appears to be that of Gamej, and b = 0 if
the guess is that Gamej+1 is observed. Bj outputs the same bit b and
wins the AE game if A has distingushed correctly. Thus, if bB is the
bit output by Bj and bA the bit output by A we conclude that

Advae
SE(Bj) = Pr[b′ = 1|bB = 1]− Pr[b′ = 0|bB = 0]

= Pr[GameAj ]− Pr[GameAj+1] .
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Abstract

In a recent paper [AJPS17d], Aggarwal, Joux, Prakash, and Santha
(AJPS) describe a simple public-key cryptosystem mimicking NTRU
over the integers. This algorithm relies on the properties of Mersenne
primes instead of polynomial rings. The security of the AJPS cryp-
tosystem relies on the conjectured hardness of the Mersenne Low
Hamming Ratio Assumption, defined in [AJPS17d].

We show that AJPS’ security estimates are too optimistic and de-
scribe an algorithm allowing to recover the secret key from the public
key much faster than foreseen in [AJPS17d].

In particular, our algorithm is experimentally practical (within the
reach of the computational capabilities of a large organization), at
least for the parameter choice {n = 1279, h = 17} conjectured in
[AJPS17d] as corresponding to a 2120 security level. The algorithm is
fully parallelizable.

This is joint work with Marc Beunardeau, Rémi Geraud, and David
Naccache. The corresponding paper was presented at the 5

th In-
ternational Conference on Cryptology and Information Security in
Latin America, Latincrypt 2017, in La Habana, Cuba; and has been
published as [BCGN17a].

Further to this, subsequent work by de Boer et al. [BDJW18], led
to a revision of the effective hardness, and led Aggarwal et al. to
amend the original cryptosystem substantially [AJPS18]. Ferradi and
Naccache further suggested slightly improved variants [FN17a] along
with several research directions.

We introduce a cryptosystem similar in spirit to the original Aggarwal–
Joux–Prakash–Santha cryptosystem (AJPS-1) but which relies on a
different hardness assumption. As a result, the lattice reduction attack
(à la [BCGN17a]) does not seem to apply. The resulting construction is
conceptually simpler than the “fixed” AJPS cryptosystem (AJPS-ECC),
and than Ferradi and Naccache’s “high-bandwidth” variant (AJPS-
FN-BT). This is joint work with Marc Beunardeau, Rémi Geraud, and
David Naccache.





7
O N T H E H A R D N E S S O F T H E M E R S E N N E L O W
H A M M I N G R AT I O A S S U M P T I O N

7.1 introduction

A Mersenne prime is a prime of the form 2n − 1, where n > 1 is
itself prime.

In a recent paper [AJPS17d], Aggarwal, Joux, Prakash, and Santha
(AJPS) describe an ingenious public-key cryptosystem mimicking
NTRU over the integers. This algorithm relies on the properties
of Mersenne numbers instead of polynomial rings. This scheme is
defined by four algorithms (Setup,Gen, Enc,Dec) described as follows:

— Setup(1λ) → pp, which chooses the public parameters pp =

(n, h) so that p = 2n − 1 is prime and so as to achieve a λ-bit
security level. In [AJPS17d] the following lower bound is derived(

n− 1
h− 1

)
> 2λ

which for instance is satisfied by λ = 120, pp = (n = 1279, h =

17).

— Gen(pp) → (sk, pk), which picks F, G two n-bit strings chosen
independently and uniformly at random from all n-bit strings
of Hamming weight h, and returns sk ← G and pk ← H =

F/G mod (2n − 1).

— Enc(pp, pk, b ∈ {0, 1}) → c, which picks A, B two n-bit strings
chosen independently and uniformly at random from all n-bit
strings of Hamming weight h, then computes

c← (−1)b(AH + B) mod (2n − 1).

— Dec(pp, sk, c)→ {⊥, 0, 1}, which computes D = ‖Gc mod (2n −
1)‖ and returns 

0 if D ≤ 2h2,

1 if D ≥ n− 2h2,

⊥ otherwise

We refer the reader to [AJPS17d] for more details on this cryptosystem
which does not require further overview because we directly attack
the public key to infer the secret key.

In particular, security rests upon the conjectured intractability of the
following problem:

83
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Mersenne Low Hamming Ratio Assumption. The Mersenne Low
Hamming Ratio Assumption states that given an n-bit Mersenne prime
p = 2n − 1 and an integer h, the advantage of any probabilistic poly-
nomial time adversary attempting to distinguish between F/G mod p
and R is at most poly(n)

2λ , where R is a uniformly random n-bit string,
and (F, G) are independently chosen n-bit strings each having Ham-
ming weight h.

We will argue that (F, G) can be experimentally computed from H,
at least for the parameter choice {n = 1279, h = 17} conjectured in
[AJPS17d] as corresponding to a 2120 security level.

7.2 outline of the analysis

The analysis uses the Lenstra–Lenstra–Lovász lattice basis reduction
algorithm (LLL, [LLL82]). We do not recall here any internal details of
LLL but just the way in which it can be used to solve a linear equation
with k unknowns when the total size of the unknowns is properly
bounded.

7.2.1 Using LLL to Spread Information

Let x1, . . . , xk ∈ N∗ be k unknowns. Let p ∈ N be a modulus and
a0, . . . , ak ∈N. Consider the equation:

a0 =
k

∑
i=1

aixi mod p.

Our goal is to use the LLL algorithm to x1, . . . , xk if ∏k
i=1 xi < p.

In particular, LLL can be adapted to provide any uneven split of
sizes between the xi as long as the sum of those sizes does not exceed
the size of p. More details on the theoretical analysis of LLL in that
setting and variants are given in [NS01, Sec. 3.2] and [Jou09, Chap.
13], in the context of generalised knapsack problems.

7.2.2 Partition and Try

The first observation that attracted our attention is that the size 1 of
F (and G) has an unusually small expectation σ(n, h):

σ(n, h) = n

(
1 +

(1− h
n )

n+1 − 1
h
n (n + 1)

)

The difference in size between n = 1279 and σ(1279, 17) is not huge 2

and cannot be immediately exploited. However, the same phenomenon

1. That is, the length of a number, once its leading zeros are discarded.
2. 1279− σ(1279, 17) ≈ 75 bits.
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also occurs at the least significant bits and further shortens the ex-
pected nonzero parts of F and G by 70 bits.

Similarly, assume that in the key generation procedure, both F and
G happen to have bits set to 1 only in their lower halves. When this
(rare event) happens, we can directly apply LLL to H to recover F and
G. We call this event T.

Is that event rare? Since F and G are chosen at random, T happens
with probability at least 2−2h. While T’s probability is not cryptograph-
ically negligible, this pre-attack only allows to target one key out of
22h. For the first suggested parameter set (λ = 120), one public key out
of 67 million can be attacked in this fashion and its F and G recovered,
i.e., a total break. The question is hence, can this phenomenon be
extended to any key? and if so, at what cost? In particular, can we
sacrifice work to increase the size of the vulnerable key space? The
answers to these questions turn out to be positive, as we will explain
hereafter.

random partitions . Instead of a fixed partition of {0, . . . , n− 1},
we can sample random partitions, for instance by sampling (without
replacement) m positions, which are interpreted as boundaries be-
tween regions of zeros and regions that possibly contain a 1. The total
number of regions, m + 1, determines the dimension of the lattice
being reduced.

For the sake of simplicity we consider balanced partitions.

Balanced partitions. A partition of {0, . . . , n− 1} into m/2 type Since n is odd, we
must accept a ± 1
excess.

1 blocks and m/2 + 1 type 2 blocks is balanced if the total size of the
type 1 blocks and the total size of the type 2 blocks differ by at most
one. There is room for

improvement here as
well, since rejection
sampling is a very
inefficient approach.
Nevertheless it will
be sufficient for our
discussion, and any
approach to
generating such
partitions would
work without
impacting the
analysis.

A randomly sampled partition is not necessarily a balanced parti-
tion, to rectify this, we use rejection sampling to ensure the balancing
property. We call the sought-after property of these partitions a correct
partition.

Correct partitions. Let X be a binary string of length n. A partition
of X into m/2 type 1 blocks and m/2 + 1 type 2 blocks is correct for X
if the type 2 blocks are completely made of zeros.

Figure 7.1 illustrates the partitions that we are interested in on a
simple example. Also note that the notion of correct partitions does
not put any constraint on type 1 blocks, which may contain zeros
or not; since they are not guaranteed to be zero we refer to them as
“non-zero” blocks. Accordingly, blocks of type 2 in a correct partition
are referred to as “zero” blocks. In Figure 7.1 a black square in F or
G represents a 1, while white squares represent 0s. The partitions f
and g are balanced and correct for F and G respectively, with “zero”
blocks coloured white, and “non-zero” blocks coloured black. The
vertical dashed lines show how F and G align with their respective
partitions.
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F

f

G

g

Figure 7.1 – Illustration of balanced and correct partitions of strings with low
Hamming weight.

The observation at the beginning of this section is that using a
balanced partition that is correct for F and another one that is correct
for G, we can recover F and G from H.

Since F and G are unknown, we cannot construct a correct partition
from them directly; but the probability that a random balanced parti-
tion is correct for F (resp. G) is lower bounded by 2−h. Assuming thatWe ignore the fact

that we sample
without replacement

here, as h� n.
Under this

conservative
approximation, all

the bits are sampled
uniformly and

independently, and
may fall with

probably 1/2 either
in a type 1 or a type

2 block.

F and G are independent, which they should be according to the key
generation procedure, we found a correct partition for both F and G
with a probability of 2−2h.

Remark. We may also consider imbalanced partitions which allow an
extra speed-up for a subtle reason: Given that the unknowns found
by LLL have a low Hamming density, the odds that these numbers
naturally begin by a sequence of zeros (and are hence shorter than
expected) is high. The interesting point is that the total length of such
natural gains sums up and allows to unbalance the partition in favor
of type 1 blocks. Consider the analogy of a fishing boat that can carry
up to 1000 kilograms of fish. The fishermen fishes with 3 nets having
maximal capacities of 200, 300 and 500 kilograms each. Because waters
are sparse in fish, the nets are expected to catch only 70% of their
maximal capacity. Hence, we see that larger nets (285, 428, 714) can
be used to optimize the boat’s fishing capacity. However, unlike the
boat, with LLL fish cannot be thrown back to the water and... excess
weight sinks the boat (the attack fails). Hence if this speed-up strategy
is used, we need to catch more than normal but not be too greedy.
Note as well that if all variables end by at least ` trailing (LSB) zeros
then these m` zeros add-up to the gain as well (because there is no
constant term in the equation a division of all variables by 2 has no
effect on the solution’s correctness). We did not exploit nor analyze
these tricks in detail.

trying partitions . The attack then consists in sampling a bal-
anced partition, running LLL, and checking whether the values of F
and G obtained from the reduction have the correct Hamming weight
and yield H by division. Concretely, the matrix to be reduced is
obtained as follows from the partitions f of F and g of G:
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1. Compute the size of the non-zero blocks in f and g, we call these
sizes u = {ui} and v = {vi} respectively, with i = 0, . . . , m/2−
1. Let w = maxi{ui, vi}.

2. Construct the vector s = si as follows:

si =

2w−vi if i < m/2

2w−ui if m/2 ≤ i < m

3. Construct the vector a = {aj} as follows: let fi (resp. gi) denote
the starting position of the non-zero blocks in F (rep. G), and set

aj =

H × 2gi mod p if j < m/2

p− 2 fi if m/2 ≤ j < m

4. Choose an integer K, and assemble the matrix M as follows:

M =

(
diag(s) Ka

0 Kp

)

where diag(s) is the diagonal matrix whose diagonal entries are
given by s. The coefficient K is a tuning parameter, which we set
to 21200.

5. Finally, we use LLL on M (using the Mathematica command
LatticeReduce) and recover the reduced row of the matrix that
complies with the Hamming density of F and G. This row is
expected to give the values of the non-zero blocks of F and G,
and we can check its correctness by computing its Hamming
weight, and checking that the ratio of the candidate values
modulo p yield H.

By the above analysis, a given partition is correct with probability 2−2h,
which for λ = 120 is only 2−34; if we can run LLL reasonably fast,
which is the case for m = 16, an efficient attack happens to be within
the reach of a well-equipped organization. Experimental evidence
indeed suggests the feasibility of the attack, see Section 7.3.

Remark. For larger security parameters λ, the ratio h/n deduced
from the analysis in [AJPS17d] asymptotically vanishes. It should be
checked if this influences imbalanced partition finding to the attacker’s
relative advantage for larger values of λ. We did not explore this
avenue left to the reader as a potential research question.

7.3 putting it together

To illustrate the attack’s feasibility, we fix a random tape in a de-
terministically verifiable way and implement our algorithm (see Fig-
ure 7.2).
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Use π as seed

Attack’s random tape
F and G

H

The attack described in this paper

F and G

Figure 7.2 – Deriving the attack’s random tape from a verifiable source in a
deterministic way, as well as the keys.

Proc Gen:
n, h← pp
I1 = {i1, . . . , ih} ← sample({0, . . . , n− 1}, h)
I2 = {i1, . . . , ih} ← sample({0, . . . , n− 1}, h)
F ← ∑h

i∈I1
2i

G ← ∑h
i∈I2

2i

return (sk = G, pk = F · G−1 mod p)

Figure 7.3 – The key generation procedure Gen(pp) for Mersenne-based
encryption.

We generated a nothing-up-our-sleeves key with the procedure of
Figure 7.3. The sample(S, h) procedure selects h indices without re-
placement in the range S. It is implemented by returning the h first
entries of a deterministic Fisher–Yates shuffle of S. The randomness
in sample(S, h) is simulated by iterating the SHA256 function, start-
ing with the seed given by the ASCII representation of the 100 first
decimals of π:

31415926535897932384626433832795028841971693993751

05820974944592307816406286208998628034825342117068

In a real attack we would simply use a fast non-cryptographic ran-
dom number generator, but the above choice serves the purpose of
reproducibility.

This gives the following (in hexadecimal notation, the zero MSBs
have not been written):

I1 = {33, 47, 8e, 95, a1, 134, 19f, 1ab, 1ac, 1ce, 25d, 301, 30a, 3ee, 444, 46b, 471}
I2 = {89, b5, de, 116, 141, 1dd, 1de, 2ae, 322, 37a, 388, 38a, 3f9, 48c, 48d, 4e9, 4f2}
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F = 208000000001000000000000000000000400000000000000000000000

000000000000000000000000000000000402000000000000000000000

000000000000000000020000000000000000000000000000000000040

000000180080000000000000000000000000100000000000000000000

000000000000200204000000000000000008000080000000000000000

G = 402000000000000000000000030000000000000000000000000000000

000002000000000000000000000000000500040000000000000000000

004000000000000000000000000000040000000000000000000000000

000000000000000000000000006000000000000000000000000000000

000004000000000200000000002000000000000000000000000000000

00000000000020000000000400000000

H = 1610fecf11dbd70f5d09da1244a85c3aa7aed7de75a6d1fe4e988b5f6

6d66e1bc27d46afd96800ff8b2b67316dff1046b88d205e620ba78a81

3c15f47ab8a7d2a8f7eb12fe0fcff882307d92d4c0f9296a7cf4390ce

3140e11e4b7c802fa67d3a8517d30b00980380bdf8992ed6a2d3f74e2

5f14bae21786672bddae4f2bf897f38741cdc10b319f8272d42f738cd

296d4907331518c3439621aefad5c3d1a7c

7.3.1 Recovering F and G from H

finding a winning partition. At this step, we generate ran-
dom balanced partitions and try LLL on the resulting decomposition.
Doing so we quickly find the following partitions

f = {2a, bf, 134, 1ec, 233, 253, 25a, 270, 2ee, 32d, 3e4, 41e, 42b, 4a7, 4f6, 4fd}
g = {7c, 142, 1d0, 22a, 289, 2c8, 2de, 2e7, 2eb, 33c, 372, 3a0, 3da, 3ff, 48a, 4fd}

respectively for F and G, which upon lattice reduction yield candidates
of the correct Hamming weight. Their ratio indeed gives H; however
one may debate our claim that this partition was found at random and
argue that we constructed it from our prior knowledge of F and G.

To counter this argument and insist that finding partitions is rea-
sonably easy, we derived them deterministically from the same seed as the
key. To achieve this, we proceed as follows: we draw two independent
sets of m/2− 1 indices in the range [0, n/2], which gives the sizes
of the zero blocks and the non-zero blocks. This guarantees that the
partitions are balanced. The randomness used for this sampling is
obtained by iterating SHA256 as for key generation.

As in the example above, we construct partitions for m = 16 — this
choice is not dictated by probability (as the likelihood to find a correct
partition is in theory independent of m), but rather by a trade-off
between the cost of LLL and the number of partitions explored. It
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is possible for instance to start with m = 2 partitions, then m = 3,
and so forth, but we settled for a random search which is easier to
implement.

We found the following partition for F at run #1,152,006 (in 116 s):

f = {27, b2, 10e, 13c, 198, 1cf, 24b, 27b, 2ac, 30f, 3e1, 456, 45a, 4ba, 4d6, 4fd}

Recovering F alone took about two minutes. Given that we haveExperiments with
random partitions

show that this
timing is quite

variable and follows
a Poisson

distribution, with a
correct partition

being typically found
earlier, with an

average of 217 tries.

a totally deterministic random tape, we regard our experiment as
legitimately reflecting reality. Because F and G are independent, this
brings the total effort to about the square of this number, i.e. about 234

attempts to get both partitions with certainty. Each of these attempts
must also involve one LLL, which is the main cost factor.

Using the same sequence, run #64,249 gave a partition for G too (in
7.6 s):

g = {7b, 11c, 13b, 181, 1cc, 1e1, 284, 2e6, 318, 329, 36f, 3e5, 3f1, 404, 476, 4fd}

Finally, note that the task is fully parallelizable and would benefit
from running on several independent computers, a remark that we
will later use in our final workfactor estimates.

computing the secret key Running our program as explained
in Section 7.2, we recover F, G, and confirm that H = F/G mod p.

7.3.2 Predicting the Total Execution Time

Putting all the above figures together and assuming no further
algorithmic improvements, the total expected effort is:

(LLL_Time + 2× Partition_Time)×Average_Partition_Tries2

Number_of_Processors

Where, in our basic scenario Average_Partition_Tries = 2h.
We performed LLL in Mathematica using the LatticeReduce func-

tion, which took less than a second in the worst case on a simple
laptop. We safely assume that this figure can be divided by 10 using a
dedicated and optimized code. We also assume that a credible attacker
can, for example, very easily afford buying or renting 150 TILE-Gx72

multicore processors.

1
10 × 1,152,006× 64,249

150× 72
× 1

60× 60× 24
≈ 7 days 22 hours.

Hence, according to the evidence exhibited in this paper, breaking
a 1279-bit key takes a week using 150 currently available multicore
processors (e.g. TILE-Gx72).
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7.4 conclusion

While we did not formally evaluate efficiency nor asymptotic com-
plexities, our quick and dirty experiments clearly suffice to show that
key recovery is fast and within reach. An obvious countermeasure
consists in increasing parameter sizes. Hence a precise re-evaluation
of parameter sizes and safety margins of the Mersenne Low Hamming
Ratio Assumption seems in order.

More systemic protections may consist in modifying the definition
of H (and possibly the underlying cryptosystem) which is clearly a
very interesting open problem.

Nonetheless the beautiful idea of Aggarwal, Joux, Prakash, and
Santha exploiting the fact that arithmetics modulo Mersenne numbers
is (somewhat) Hamming-weight preserving, is very elegant and seems
very rich in possibilities and potential cryptographic applications.





8
P U B L I C - K E Y C RY P T O S Y S T E M S B A S E D O N A N E W
C O M P L E X I T Y A S S U M P T I O N

8.1 introduction

In 2017, Aggarwal, Joux, Prakash, and Santha [AJPS17a; AJPS17b] in-
troduced a new public-key cryptosystem, inspired by NTRU [HPS98]
but conceptually much simpler, and tentatively immune to some of the
most classical attacks against NTRU. Since public-key cryptosystems
are relatively rare, Aggarwal et al.’s construction (henceforth AJPS-1,
following [FN17b]) garnered much attention from the cryptographic
community. In a matter of weeks, it was found that AJPS-1’s ini-
tial security estimates were optimistic, and a modified scheme with
larger parameters was proposed [AJPS17b]. Section 8.2 recalls the
construction and history of these cryptosystems, which we refer to as
Mersenne-based cryptosystems, in more details.

In this paper, we suggest a further modification of the underly-
ing hardness assumption, which are conjectured to be unaffected by
attacks against AJPS-1, yet which enable the construction of similarly-
elegant encryption schemes. The new assumption, dubbed “projected
Mersenne”, and a corresponding public-key encryption scheme are
introduced in Section 8.4.

8.2 preliminaries

notations . We denote by ‖x‖ the Hamming weight of x, and by
Hn,w the set of all n-bit strings of Hamming weight h. The notation
x � X means that x is the result of uniformly sampling from the
set X. Unless stated otherwise, log refers to the natural logarithm,
and log2 to the base 2 logarithm. The symbols ⊕ and ∧ stand for
the binary XOR and AND operations, respectively. We denote the
concatenation of x and y by x‖y. A q-ary error correcting code with
block length d, dimension k, and minimum Hamming distance δ will
be denoted [d, k, δ]q. We use the shorthand notation Zp to denote
Z/pZ. Algorithms are given as input the (unary) representation of
the security parameter λ. PPT stands for probabilistic polynomial
time.

93
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8.3 prior work

8.3.1 The Mersenne Low Hamming Ratio Assumption

Recall that a Mersenne number is an integer of the form 2n − 1 forIn particular, if
2n − 1 is prime, then

so is n.
some n, and that a Mersenne prime is a Mersenne number which is
prime.

Mersenne Low Hamming Ratio Search Problem (MLHR). Let
p = 2n − 1 be a Mersenne prime. Given n, w ∈ N and h ∈ Zp, findThe use of a

Mersenne prime is
not necessary for the
scheme’s correctness,
and in fact no attack
is currently known if

p is a Mersenne
composite. The

conservative choice
of a Mersenne prime

is recommended to
avoid potentially

unforeseen attacks
exploiting the

factorisation of p, cf.
[AJPS17b, §8].

f , g ∈ Zp such that ‖ f ‖ = ‖g‖ = w and f /g = h mod p, under the
promise that such a couple exists.

A brute-force attack on MLHR tries all possible couples { f , g},
which corresponds to a security level of

λ =

(
n− 1
w− 1

)
≈ w · log n bits.

A quantum variant of this search, exploiting the generic speed-ups
provided by Grover’s algorithm, correspondingly halves λ. Should
these attacks be optimal — as initially suggested by Aggarwal et
al. — the MLHR would enable the construction of conceptually-
simple and computationally-efficient post-quantum secure public-key
cryptosystems.

8.3.2 The Aggarwal–Joux–Prakash–Santha Cryptosystem (AJPS-1)

The original AJPS-1 scheme [AJPS17a] is defined by the following
algorithms:

— Setup(1λ)→ pp. Outputs the public parameters pp = {n, h}, so
that in particular p = 2n − 1 is prime. The choice of n and w is
such that the cryptosystem achieves some λ-bit security level.

— Gen(pp) → {sk, pk}. This algorithm generates the private and
public keys. It samples {F, G}� H2

n,w, and returns:

sk← G

pk← H = F/G mod p

— Enc(pp, pk, m) → C. This algorithm takes as input the public
parameters pp, the public key pk, and a message m ∈ {0, 1}. It
samples {A, B}� H2

n,w, and computes:

C ← (−1)m(AH + B) mod p.

— Dec(pp, sk, C) → {⊥, 0, 1}. This algorithm computes d ← ‖G ·
C mod p‖ and returns:

0 if d ≤ 2w2,

1 if d ≥ n− 2w2,

⊥ otherwise.
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Table 8.1 – Synoptic comparison of NTRU and AJPS-1.

NTRU [HPS98] AJPS-1 [AJPS17a]

Ciphertext space R = Z[X]/(XN − 1) R = F2[X]/(Xp − 1), p = 2n − 1

Message space M ∈ RM M ∈ {0, 1}
Private key F ∈ RF F ∈ Hn,w

Public key H = G/Fq mod q (G ∈ RG) H = G/F (G ∈ Hn,w)

Encryption C = prH + M mod q (r ∈ Rr) C = (−1)M(AH + B) (A, B ∈ Hn,w)

Decryption M = F−1
p (FC mod q) mod p M =


0 if ‖FC‖ ≤ 2w2

1 if ‖FC‖ ≥ n− 2w2

⊥ otherwise

Similarities with the NTRU cryptosystem. Mersenne-based cryp- NTRU stands for
N-th Degree
Truncated
Polynomial Ring
Units.

tosystems are reminiscent of NTRU [HPS98], which owes its name
to the polynomial ring R = Z[X]/(XN − 1) in which operations are
performed. In comparison, Mersenne-based cryptosystems work in
Zp ' F2[X]/(Xp − 1), where p = 2n − 1 is prime. 1

Table 8.1 shows the parallels between the two cryptosystems. No-
tations for NTRU follow [HPS98], except R f , Rg, Rr, Rm which are
subsets of R having a prescribed number of coefficients set to −1 and
1.

The hard problem underlying NTRU is the closest-vector problem
(CVP) in some special convolution modular lattices; namely, f and g
form a relatively short vector in a known lattice constructed from q
and h. Parameters for NTRU must be chosen to resist lattice reduction
attacks (e.g., [CS97; KF17]). In the original version of their paper
[AJPS17a], Aggarwal et al. consider and then dismiss two possible
types of attack that could be better than brute force, inspired by NTRU
cryptanalysis: a combinatorial meet-in-the-middle attack, which is
claimed to fail due to the presence of “approximate collisions”; and a
lattice-based attack, claimed to fail due to the presence of “parasitic
vectors”.

Beunardeau–Connolly–Géraud–Naccache attack. The latter
claim was rapidly challenged, when a faster experimental attack using
lattice reduction was discovered by Beunardeau et al. [BCGN17b] as
presented in Chapter 7, which successfully recovered private keys for
the initially suggested λ = 128 bit security level parameters. This
attack runs in time (2 + δ + o(1))2w, for some very small constant
δ > 0 [BDJW17], thereby collapsing the security of the original AJPS
construction to about 2w bits.

de Boer–Ducas–Jeffery–de Wolf attack. The former claim was
also challenged by de Boer et al. [BDJW17], who showed how to
circumvent the “approximate collision” problem by leveraging locality-

1. Bernstein et al. [BCLV16] argue against the use of such rings for NTRU.
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sensitive hashing. This resulted in a meet-in-the-middle attack, whose
complexity is approximately(

n/2
w/2

)
≈
(

n
w

)1/2

≈ 1
2

w log n.

A quantum version of this algorithm has runtime about(
n/3
w/3

)
≈
(

n
w

)1/3

≈ 1
6

w log n.

Pointing out similar work for the related NTRU cryptosystem [Buh98],
de Boer et al. conjecture that a combination of the MITM approach
with lattice reduction could lead to an even faster attack, reminiscent
for instance of Howgrave-Graham’s [How07].

8.3.3 Aggarwal–Joux–Prakash–Santha with Error Correction (AJPS-ECC)

To thwart the effect of the above attacks, Aggarwal et al. proposed
a new version of their cryptosystem.

The new version accomodates larger parameters and also improves
somewhat the cryptosystem’s bandwidth. As it makes use of an
error correction scheme ECC = {D, E}, we refer to it as AJPS-ECC
(following [FN17b]). The Setup algorithm is unmodified. The other
algorithms are modified as follows:

— Gen(pp) → {sk, pk}. Sample {F, G} � H2
n,w, R � {0, 1}n and

return:

sk← F

pk← {R, T} = {R, F · R + G mod p}

— Enc(pp, pk, M)→ C. Sample {A, B1, B2}� H3
n,w, and compute

C ←

C1 = A · R + B1 mod p

C2 = (A · T + B2 mod p)⊕ E(M)

— Dec(pp, sk, C)→ {⊥, M} is modified accordingly and returns

D((F · C1 mod p)⊕ C2).

An analysis of the parameter choices for ECC and for the cryptosystem,
including some additional discussion not relevant for our purpose,
can be found in the updated paper by Aggarwal et al. [AJPS17b].
The careful reader will notice that AJPS-ECC relies for security on
different assumption than that of the hardness of MLHR search; however,
Aggarwal et al. point out that slight modifications to the attack
presented in Chapter 7 also apply to this modified scheme and choose
the parameters accordingly.



8.4 the projected-mersenne cryptosystem 97

8.3.4 Ferradi–Naccache (AJPS-FN-BT)

An interesting collection of variants is described by Ferradi and
Naccache [FN17b]. Noticing that some of the random coins used
during encryption may be recovered, Ferradi and Naccache suggest
turning this into a feature, thereby increasing the cryptosystem’s band-
width. However, the security of most of these variants is not discussed
in depth. The core idea can be found in Ferradi and Naccache’s
“bivariate” variant AJPS-FN-BT2.

AJPS-FN-BT2 relies on the availability of an efficient function Solvex,y

which finds a low Hamming weight solution to a given Diophantine
equation of the form αx + βy + γ = 0 for given parameters α, β, γ.
They suggest implementing this function as a heuristic-based back-
tracking algorithm. Using this, it becomes possible to recover the
values A and B used during encryption, which have low Hamming
weight. One possibility is to use A and B to design a key-encapsulation
mechanism as follows:

— Setup and Gen are identical to those of AJPS-1, except that we
additionally agree on a block cipher BC : {0, 1}λ × {0, 1}λ →
{0, 1}λ, a cryptographic hash function H2 : {0, 1}∗ → {0, 1}λ,
and a cryptographic hash function H1 : {0, 1}∗ → H2

n,w.

— Enc(pp, pk, M)→ C is modified as follows. Sample r� {0, 1}λ

and compute {A, B}� H1(r‖M). Then compute K← H2(A‖B).
Finally, output

C = {C1, C2} = {AH + B mod p, BCk(r‖m)} .

— Dec(pp, sk, C)→ {⊥, M} is modified as follows: first recover

{A, B} ← Solvex,y [GC1 = Fx + Gy mod p] .

In case of failure, return ⊥. Otherwise, compute K← H2(A‖B),
and recover u ← BC−1

k (C2). If H1(u) 6= {A, B} then return ⊥.
Otherwise return M.

The correctness of this scheme (and other variants in [FN17b]) is not
formally analysed but is backed by numerical simulations.

8.4 the projected-mersenne cryptosystem

8.4.1 The Projected-Mersenne assumption

We introduce the following problem:

Projected-Mersenne Low Hamming Ratio Search Problem. Let
p = 2n − 1 be a Mersenne prime. Given n, w, d ∈N, M = 2d − 1, and
h ∈ Zp, find f , g ∈ Zp such that

1. ‖g‖ = w
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2. ‖ f ∧M‖ = 1

3. f /g = h mod p

under the promise that such a couple exists.
This search problem can be solved by brute-force enumeration much

like MLHR, as it suffices to find g, i.e., find one in (n−1
w−1) ≈ 2w log n

possibilities. We introduce the following assumption:

a-Projected Mersenne assumption. The a-projected Mersenne as-We choose to explicit
only one parameter,
namely the random

numerator’s size.
The other parameter
is the denominator’s

Hamming weight,
which will be the

same throughout our
different variants,

and therefore will not
be explicitly noted.

sumption states that given a Mersenne prime p = 2n− 1, an integer a in
poly(λ), any PPT distinguisher has a negligible chance to distinguish
between R/G and R′, where R � {0, . . . , 2a − 1}, G � Hn,w, and
R′ � Zp.

where the distinguishing advantage is defined as usual:
For a PPT distinguisher D that outputs a bit b ∈ 0, 1, the distin-

guishing advantage to distinguish between two random variables X
and Y is defined as:

∆D(X; Y) = |Pr[A(X) = 1]− Pr[D(Y) = 1]|

8.4.2 Projected-Mersenne Encryption

We now define our encryption scheme.
— Setup(1λ)→ pp. Choose p = 2n − 1 a Mersenne prime, and pa-

rameters w, a, b, c, d so as to achieve a λ-bit security level. Addi-
tional constraints on a, b, c, d to ensure correctness are discussed
below. We also agree on an error-correcting code ECC = (E ,D)A possibility is to

use BCH codes
[Hoc59; BRC60]

which are efficient
and give fine control

over the code’s
parameters, or

Reed–Solomon codes
[RS60] which are

MDS.

with codewords of size d bits.

— Gen(pp) → {sk, pk}. Sample G � Hn,w and a random a-bit
number R that has large Hamming weight (e.g., ‖R‖ = a/2).
Let F ← R · 2b + 2c mod p. Note that, in general, F /∈ Hn,w.
An illustration of F’s structure is given in Figure 8.1. The Gen

algorithm returns

sk← G

pk← F/G mod p

— Enc(pp, pk, M) → C. Sample B � Hn,w and return C ← E(M) ·
pk+ B mod p.

— Dec(pp, sk, C) → {M,⊥}. First compute D ← 2n−cC · sk mod p.
This should be

D = 2n−cCsk

= 2n−c (E(M) · H + B) · G mod p

= 2n−cE(M)F + 2n−cBG mod p

= 2n−cE(M) ·
(

2bR + 2c
)
+ 2n−cBG mod p

= E(M) + 2n+b−cRE(M) + 2n−cBG mod p
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n bits
n− a bits

c bits
b bits

F = random random

Figure 8.1 – An illustration of the structure in F, as used in our Gen algorithm.

A central region of
size n− a contains
only a single set
bit. Note that this
figure and the
following are not
to scale, we give
concrete
parameters later.

da + d

D = E(M)2n+b−cRE(M)

2n−cBG (at most w2 bits set)

N

Figure 8.2 – An illustration of the structure in D, as used in our Dec algorithm.

For appropriately
chosen parameters,
projecting by N
only retains a noisy
version of E(M).

Let N = 2d− 1, then the algorithm outputs D(N ∧D). Figure 8.2
illustrates this process.

8.4.3 Correctness

The correctness of this scheme is based upon two facts. The first
is that we can appropriately choose a, b, c, d so that the first and
second term in the expanded expression of D are disjoint (as depicted
in Figure 8.2). When this is the case, masking by N removes the
2n+b−cRE(M) term. The conditions for this to happen are easily found
by inspecting Figures 8.1 and 8.2:

n ≤ a + 2d and a + b− n < c < b

Assuming an ECC is given with block length d, we can choose the
following parameters, which correspond to maximising a:

a = n− 2d and b� {0, . . . , n} and c = b− d mod p.

The second key fact is that BG has low Hamming weight, namely at
most w2. This is not affected by multiplication by a power of 2, and
therefore 2n−cBD ∧M has Hamming weight at most η = min(d, w2). 2

If ECC can correct at least η errors, then the decoding algorithm
succeeds. 3 Even in the case that ECC can only correct t < η errors,

2. If ECC is a linear code, then w2 ≤ d− k + 1, or in other terms, k ≤ d− w2 + 1.
Therefore, η = d.

3. In fact, the noise considered here is additive, and may result in more than
w2 bits being affected due to the carry. We may choose a stronger error correction
capacity to account for such unlikely events.
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there is still a non-zero probability that Dec successfully recovers M,
which corresponds to the events where all η − t bits lay between 2d

and 2n − 1; this probability is roughly (1− 2d−n)η−t.

8.4.4 Semantic Security

As described above, the cryptosystem is vulnerable to a trivial cho-
sen ciphertext attack. Assume the attacker gets a challenge encryption
C∗ of Mb with b ∈ {0, 1} being the challenge bit they have to guess.
Indeed, we get

C∗ = E(M) · pk+ B mod p

Thanks to the knowledge of the public key they will be able to recover
the randomness (and break the semantic security). They compute the
encrpytion with the randomness being set to 0.

C0 = E(M0) · pk+ B mod p

C1 = E(M1) · pk+ B mod p

We then subtract the ciphertexts:

C∗ − C0 = (E(Mb)− E(M0)) · pk+ B mod p

C∗ − C1 = (E(Mb)− E(M1)) · pk+ B mod p

One of these equations is equal to B and has low hamming weight,
which allows the adversary to distinguish. This phenomenon is com-
mon to other cryptosystems, such as the McEliece code-based encryp-
tion scheme. Therefore our system is inherently not CCA-secure. We
can treat this problem by using a key encapsulation mechanism which
encrypts a random message, and derive the randomness used in the
encryption by hashing the random message. AJPS uses the same
method, but they only need it for chosen ciphertext attacks.

8.5 key encapsiation mechanism

To keep consistency with AJPS, we use the same notation to define
KEM to ease comparison.

Key encapsulation mechanism syntax. A key encapsulation mech-
anism KEM is a tuple of PPT algorithms (Gen, Encaps,Decaps) such
that:

1. The key generation algorithm Gen takes as input the security
parameter 1λ and outputs a public/private key pair (pk, sk).

2. The encapsulation algorithm Encaps takes as input a public key
pk and the security parameter 1λ. It outputs a ciphertext C
and a key k ∈ {0, 1}`(λ) where ` is the key length. We write
(C, K)← Encapspk(1λ)
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3. The deterministic decapsulation algorithm Decaps takes as input
a private key sk and a ciphertext C, and outputs a key K0 or
an error symbol ⊥ denoting failure. We write this as K0 :=
Decapssk(C).

It is required that with all but negligible probability over (sk, pk) output
by Gen(1λ), if Encapspk(1λ) outputs (c, k) then Decapssk(C) outputs K0.

KEM semantic security. The key-encapsulation mechanism KEM

(Gen, Encaps,Decaps) is said to be semantically secure if for any prob-
abilistic polynomial time distinguisher, given the public key pk, the
advantage for distinguishing (C, K0) and (C, K1), where (C, K0) �
Encaps(pk) and K1 is uniform and independent of C is negligible in λ.

KEM Semantic Security Under Chosen Ciphertext Attack.
The key-encapsulation mechanism KEM = (Gen, Encaps,Decaps) is

said to be secure under chosen ciphertext attacks if for any prob-
abilistic polynomial time distinguisher that is given access to the
decapsulation oracle and the public key pk, the advantage for distin-
guishing (C, K0) and (C, K1), where (C, K0) � Encaps(pk) and K1 is
uniform and independent of C is negligible in λ under the assumption
that the distinguisher does not query the oracle with C.

We now describe our KEM. Its purpose is to avoid encrpytion with
randomness set to 0 as in the attack against our encyption scheme.
To achieve this, we will sample a key at random, and use it with a
random oracle to generate the randomness to encrypt the key. Let H
be a random oracle from the key space {0, 1}λ be the random tape of
our encryption scheme (ie. low hamming weight numbers).

— Gen remains unchanged from the encryption scheme.
— Encaps(pk) draws uniformly at random a key K, produces the

ciphertext Enc(K) · pk+ H(K) and the key K.
— Decaps(sk, C) produces the key K′ = Dec(sk, C), reencrypts its

own randomness C′ = Enc(K′) · pk+ H(K′), and checks C = C′.
If C 6= C′ output ⊥, else output K.

Our KEM is trivially 1− δ-correct with δ negligible in λ from the
correctness of the encryption scheme.

8.5.1 Security Analysis

In this section we show that the KEM’s semantic security (Def-
inition 8.5) relies on the Projected- Mersenne Assumption (Defini-
tion 8.4.1), and discuss the attacks that can apply to this assumption.

8.5.1.1 Semantic Security of the Key Encapsulation Mechanism

Theorem 8.1. [Semantic Security] Our KEM is semantically secure (Defi-
nition 8.5) under the a-Projected-Mersenne Assumption (Definition 8.4.1),
with a as defined in Figure 8.1.
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Before proving Theorem 8.1 we give a few lemmas that we will use
later. The main thing to prove is that the public key is indistinguishable
from random, which is shown in Lemma 8.5.

Lemma 8.2. Given a PPT computable function f on two random variables
X and Y , if there is no PPT distinguisher D that can distinguish between X
and Y with non negligible advantage, then there is no PPT distinguisher D′

that can distinguish between X and Y with non negligible advantage.

The proof of Lemma 8.2 is well known and can be found easily.

Lemma 8.3. If x ∈ Z∗p is of hamming weight 1, then x− 1 is of hamming
weight 1.

Proof. Since the multiplicative group Z∗p is of order p− 1, we have
x−1 = xp−2. Since we work modulo a Mersenne prime, multipliying
by a number of hamming weight 1 is equivalent to shifting. Therefore
taking the product of two numbers of hamming weight 1 is also of
hamming weight 1. Since x−1 is the product of numbers of hamming
weight 1, it is itself of hamming weight 1.

Lemma 8.4 also gives
an intuition about

our security. For
example doing the

same computation on
the public key of

AJPS-1, we would
get a much smaller

number of
contributions (17/2

for 128-bits of
security).

Lemma 8.4. Every bit of the public key is the sum of an average of a/2 bits
of R omitting the contribution of the carry 4.

Proof. First we notice that although 1/G is not random looking (as
shown in [BCGN17c]), it has a random hamming weight (n/2 on
average). Indeed 1/G = Gp − 2. So its low hamming weight increases
since we perform approximately n squarings to come to the inverse.
Second, since R is of size a, every bit of the public key is influenced
by a copy of R if a bit in the a bits preceding it is set to 1 in 1/G.
Combining the two observations gives the result.

The intuition of the
security of our

scheme is in this
lemma. The message
is written using this
2c in the public key.

We basically show
that dividing by G

makes that the 2c

that will contain the
message masked by

R.

Lemma 8.5. Assuming the a-Projected-Mersenne Assumption (Def. 8.4.1),
given a Mersenne prime p = 2n−1, an integer a output by Setup, any PPT
disinguisher has a negligible chance to distinguish between

pkR′

where pk is the public key generated from Gen and R′ � Zp

Proof. Let pk = 2b · R/G + 2c · 1/G mod p. Applying Lemma 8.2
with f being the division by 2b, the adversary tries to distinguish
chal = R/G + 2c−b

G . By Lemma 8.3, 2c−b is of hamming weight 1. So
we can rewrite chal = R+2i

G for some i. Applying Lemma 8.4, withHere we see the
reduction is not tight

: for 128-bits of
security the

probability is
1− 269.

overwhelming probability, every additional 1 coming from 2i/G will
be in a copy of R. Since there are as many copies of R as there are 1s
coming from 2i/G (this number being ||1/G||, the hamming weight
of 1/G), we can rewrite the challenge:

4. We omit the the carry’s influence to simplify analysis: we only need a bound.
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chal =
||1/G||

∑
i=0

2ui Ri

for some ui with Ri = R + 2x and with x � 0, a − 1. We now
show that we can replace one Ri by R. Since x is taken at random
with overwhelming probability an Ri is indistinguishable from R
since their distributions are statistically close. Indeed R � [0, 2a−1] Once again the

reduction is not
tight. One could try
to make it tighter by
choosing which R
goes with which 1, to
minimize x

and Ri � [2x, 2x + 2a−1]. X is on average a/2, and the statistical
distance is a/2. With overwhelming probability the statistical distance
is negligible.

Since there are polynomially many Ris, one can replace them one
by one to get from chal to R/G while staying indistinguishable.

Lemma 8.6. Assuming the a-Projected Mersenne Assumption (Def. 8.4.1),
given a Mersenne prime p = 2n−1, an integer a, any PPT distinguisher has
a negligible chance to distinguish between G/R and R′ whereR� [0, 2a−1],
G� Hn,w and R′ � Zp.

Proof. This is shown by applying Lemma 8.2 with f being the modular
inversion.

We can now prove our main theorem 8.1.

Proof. For any PPT distinguisher D, we have by the triangle inequality:

δD((pk, C); (pk, R)) ≤ δD((pk, C); (R, Enc(M)R + B))

+ δD((R, Enc(M)R + B); (R, R′))

+ δD((R, R′); (pk, R))

where pk is a public key genrated from Gen, M is drawn at random,
B � Hn,w, C = Enc(M)pk+ B is a ciphertext, and R, R′ � Zp. This
suffices to show the semantic security.

We now have to show that the three bounding terms are negligible:
— δD((pk, C); (R,Enc(M)R + B)). By Lemma 8.5 we have that pk

is indistinguishable from a random, applying Lemma 8.2 with
f (X) = (X,Enc(M)X + B) with M a message drawn at random
and B� Hn,w

— δD((R, Enc(M)R + B); (R, R′)). By Lemma 8.6 we have that B/R
is indistinguishable from random, applying Lemma 8.2 with
f (X) = (R, X · R′ + Enc(M)) we get that

δD((R, Enc(M)R + B); (R, R · R′ + Enc(M)))

is negligible. By observing that R · R′ + Enc(M) is uniformly
distributed, δD((R, Enc(M)R + B); (R, R′)) is negligible.

— δD((R, R′); (pk, R)). This is shown to be negligible by Lemma 8.5
and Lemma 8.2 with f (X) = (X, R) where R� Zp
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8.5.1.2 Chosen Ciphertext Security

We now show that security holds against chosen ciphertext (Defi-
nition 8.5). For this we only need to show that the queries will not
help the adversary, and then conclude with semantic security. The
key point is that the decapsulation oracle to which the adversary has
access will answer with overwhelming probability if the ciphertext
are not made ’honestly’. Since once the key is fixed and the random
oracle called with it the encapsulation procedure is deterministic, the
adversary can simulate it easily.

Theorem 8.7. [Semantic Security under Chosen Ciphertext Attack] Our
KEM is semantically secure under chosen ciphertext attack (Definition 8.5)
under the a-Projected-Mersenne Assumption (Definition 8.4.1), with a as
defined in Figure 8.1.

Proof. There are two cases, either the random oracle was called on the
answer of a query to the decapsulation mechanism, or it was not (ie.
the adversary tries ‘malicious’ queries).

— If the adversary queries Decaps with a ciphertext, and receives
K, which was previously queried to the random oracle, then
simulation is trivial.

— The probability of the second event is Pr[K ← Decaps(C �
Adv)] = Pr[Enc(Dec(C)) · pk+ H(K) = C � Adv] ≤ (n

w) since
it requires guessing the random oracle response. The second
event is therefore negligible.

8.5.2 Attacks on the Underlying Assumption

Due to the similarity with AJPS, it is natural to discuss the attacks
that are most efficient against it, and to measure to what extent such
attacks apply to our new construction.

8.5.2.1 Lattice Attacks

As with other versions of Mersenne encryption the attack presented
in Chapter 7 is also applicable here and has an experimental cost of
finding the right partitions for the low Hamming weight. We then set
w = λ.

8.5.2.2 Brute Force Attacks

A brute force exhaustion of sk is always possible, and takes an effort
of (n−1

w−1). Thus the bare minimum requirement for security is that this
quantity exceeds 2λ
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8.5.2.3 Meet-in-the-Middle Attacks

The key result of de Boer et al. is backed by [BDJW17, Lemma
3.1], which assumes that F has constant small Hamming weigth w.
Without this assumption, the likelihood that a locality-sensitive hash
function H is “good” for g does not have a lower bound, so that the
meet-in-the-middle attack is no longer guaranteed to succeed. We can
compare simulations from [BDJW17, Appendix A.1] with the same
experiment on our scheme, which shows that de Boer et al.’s Heuristic
3.2, which is reasonable against AJPS-1, does not hold for our scheme.

8.5.3 Conclusion

Altough our scheme is vulnerable to the same attacks as AJPS, it is
simpler in the sense that we do not need two ciphertexts. We hoped
that the size of the random R would have twart our lattice attack. This
is not the case experimentally, but since the analysis of our attack is
not complete, there is still hope that our scheme is of interest. We also
think that it is simpler to analyse our assumption than AJPS’s.
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Abstract

The provably secure Schnorr signature scheme is popular and efficient.
However, each signature requires a fresh modular exponentiation,
which is typically a costly operation. As the increased uptake in
connected devices revives the interest in resource-constrained signa-
ture algorithms, we introduce a variant of Schnorr signatures that
mutualises exponentiation efforts.

Combined with precomputation techniques (which would not yield
as interesting results for the original Schnorr algorithm), we can
amortise the cost of exponentiation over several signatures: these
signatures share the same nonce. Sharing a nonce is a deadly blow
to Schnorr signatures, but is not a security concern for our variant,
dubbed ReSchnorr.

ReSchnorr is provably secure, asymptotically-faster than Schnorr
when combined to efficient precomputation techniques, and exper-
imentally 2 to 6 times faster than Schnorr for the same number of
signatures when using 1 MB of static storage.

This is joint work with Marc Beunardeau, Rémi Geraud, David
Naccache, and Damien Vergnaud. This work was accepted at the 22

nd

European Symposium on Research in Computer Security, ESORICS
2017, Oslo (Norway) and published as [BCGNV17].
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R E U S I N G N O N C E S I N S C H N O R R S I G N AT U R E S

9.1 introduction

The increased popularity of lightweight implementations invigo-
rates the interest in resource-preserving protocols. Interestingly, this
line of research was popular in the late 1980’s, when smart-cards
started performing public-key cryptographic operations (e.g. [FS87]).
Back then, cryptoprocessors were expensive and cumbersome, and the
research community started looking for astute ways to identify and
sign with scarce resources.

In this work we revisit a popular signature algorithm published
by Schnorr in 1989 [Sch90] and seek to lower its computational re-
quirements assuming that the signer is permitted to maintain some
read-only memory. This storage allows for time-memory trade-offs,
which are usually not very profitable for typical Schnorr parameters.

We introduce a new signature scheme, ReSchnorr, which is provably
secure in the random oracle model (ROM) under the assumption
that the partial discrete logarithm problem (see below) is intractable.
This scheme can benefit much more from precomputation techniques,
which results in faster signatures.

Implementation results confirm the benefits of this approach when
combining efficient precomputation techniques, when enough static
memory is available (of the order of 250 couples of the form (x, gx)).
We provide comparisons with Schnorr for several parameters and
pre-computation schemes.

Intuition. The Schnorr signature algorithm uses a large prime
modulus p and a smaller prime modulus q dividing p− 1. The security
of the signature scheme relies on the discrete logarithm problem in a
subgroup of order q of the multiplicative group of the finite field Zp

(with q | p− 1). Usually the prime p is chosen to be large enough to
resist index-calculus methods for solving the discrete-log problem (e.g.
3072 bits for a 128-bit security level), while q is large enough to resist
the square-root algorithms [Sha71] (e.g. 256 bits for 128-bit security
level).

The intuition behind our construction is to consider a prime p such
that p− 1 has several different factors qi large enough to resist these
birthday attacks, i.e.

p = 1 + 2
`

∏
i=1

qi

111
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then several “orthogonal” Schnorr signatures can share the same
commitment component r = gk mod p. This is not the case with
standard Schnorr signatures where, if a k is reused then the secret
signing key is revealed.

It remains to decide how r can be computed quickly. In the original
Schnorr protocol k is sampled uniformly at random from Zq. However,
to be secure, our construction requires that k is chosen from the
larger set Zp−1. which means that a much higher effort is required
to compute r. Here we cut corners by generating an r with pre-
computation techniques which allow an exponentiation to be sub-
linear. The trick is that once the exponentiation is sub-linear, we are
more effective in our setting than in the original Schnorr setting.

We start by reminding how the original Schnorr signature scheme
works and explain our extension assuming that k is randomly drawn
from Zp−1. We then present applications of our construction, by
comparing several pre-processing schemes.

9.2 schnorr signatures

Schnorr signatures [Sch90] are an offspring ElGamal signatures
[ElG86] which are provably secure in the Random Oracle Model under
the assumed hardness of solving generic instances of the Discrete
Logarithm Problem (DLP) [PS96]. For convenience, we restate the
definition from Chapter 2 for ease of comparison here.

Schnorr Syntax. The Schnorr signature scheme is a tuple of algo-
rithms defined as follows:

— Setup(1λ): Large primes p, q are chosen, such that q ≥ 2λ and
p− 1 = 0 mod q. A cyclic group G ⊂ Zp of prime order q is
chosen, in which it is assumed that the DLP is hard, along with
a generator g ∈ G. A hash function H : {0, 1}∗ → G is chosen.
Public parameters are pp = (p, q, g, G, H).

— Gen(pp): Pick an integer x uniformly at random from [2, q− 1]
as the signing key sk, and publish y← gx as the public key pk.

— Sign(pp, sk, M): Pick k uniformly at random in Z∗q , compute
r ← gk mod q, e ← H(M, r), and s ← k − ex mod q. Output
σ← {r, s} as a signature.

— Verify(pp, pk, M, σ): Let (r, s) ← σ, compute e ← H(M, r) and
return True if gsye = r, and False otherwise.

Schnorr Security. We recall the strong 1 EUF-CMA security notion:
A signature scheme Σ is secure against existential forgeries in a chosen-
message attack (strongly EUF-CMA-secure) if the advantage of any

1. In contrast to the weak version, the adversary is allowed to forge for a message
that they have queried before, provided that their forgery is not an oracle response.
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Game EUF-CMAAΣ (λ):
(sk, pk)� Gen(1λ)

(M∗, σ∗)← ASign(·),Verify(·,·),H(·)(1λ)

if (M∗, σ∗) 6∈ L

return Verify(pk, M∗)
return ⊥

Sign(M):
σ� Sign(sk, M)

L← L∪ {M, σ}
return σ

Verify(M, σ):
return Verify(pk, M, σ)

Figure 9.1 – The strong EUF-CMA experiment for digital signature schemes.

PPT adversary A against the EUF-CMA game defined in Figure 9.1 is
negligible:

Adveuf-cma
Σ,A (λ) = Pr

[
EFAΣ (λ) = 1

]
∈ Negl(λ)

9.3 reschnorr signatures

Our construction relies on using a prime p of the form mentioned
in the introduction. This is not a trivial change, and requires care as
we discuss below.

Technically, our construction is a stateful signature scheme (see
e.g. [KL07, Chapter 12]), in which we simultaneously sign only one
message and keep a state corresponding to the values k, gk and the
index i for the current prime number. However, it is more compact and
convenient to describe it as a signature for ` simultaneous messages.

ReSchnorr signature scheme. Similar to the Schnorr signature
scheme, Reschnorr is a tuple of algorithms (Setup, Gen, Sign, and
Verify), which we define as follows:

— Setup(1λ): Generate ` primes q1, . . . , q` of size ≥ 2λ and ` groups
G1, . . . , G` respectively of order q1, . . . q` such that the DLP is
hard in the respective Gi, and such that p = 1 + 2 ∏ qi is prime.
This is easily achieved by selecting (`− 1) primes qi and varying
the last one until p is prime. Choose a cryptographic hash
function H : {0, 1}∗ → {0, 1}q1 . The hash function will be used
to produce elements of Zqi . For this we will denote by Hi the
composition of H and a conversion function from {0, 1}q1 to
Zqi

2 Finally, choose g a generator of the group Z∗p of order p− 1.
The public parameters are therefore

pp =
(

p, {qi}`i=1, H, g, {Gi}`i=1

)
.

— Gen(pp): The signer chooses x � Z∗p−1 and computes y ←
gx mod p. The key sk = x is kept private to the signer, while the
verification key pk = y is made public.

2. This conversion function can read the string as a binary number and reduce it
modqi for example.
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— Sign(pp, sk, m1, . . . , m`): The signer chooses k � Zp, such that
k 6= 0 mod qi for all i, and computes r ← gk mod p.
The signer can now sign the ` messages mi as:

ρi � {0, 1}λ, ei ← Hi(mi, r, ρi), and si ← k− eix mod qi

outputting the ` signatures σi = {r, si, ρi}—or, in a more compact
form,

σ = {r, s1, . . . , s`, ρ1, . . . , ρ`}.

— Verify(pp, pk, mi, (r, si, ρi), i) : Verifying a signature is achieved by
slightly modifying the original Schnorr scheme: First check that
si ∈ {0, . . . qi − 1} and compute ei ← Hi(mi, r, ρi), then observe
that for a correct signature 3:

(gsi yei)
p−1
qi = r

p−1
qi mod p.

The signature is valid if and only if this equality holds, otherwise
the signature is invalid (see Section 9.3).

Remark. Note that unlike Schnorr, in the Sign algorithm we add a
random ρi for a signature to make the argument of the hash function
unpredictable. This will be useful for the proof of Theorem 9.1 in the
ROM.

Remark. Note also that one almost recovers the original Schnorr
construction for ` = 1—the only differences being in the verification
formula, where both sides are squared in our version, and the addition
of a fresh random to hash.

ReSchnorr correctness. The ReSchnorr signature scheme is correct.

Proof. Let g, y, r, si, and ρi be as generated by the Gen and Sign

algorithms for a given message mi. We check that,

(
(gsi yei)si

r

) p−1
qi

= 1 mod p.

By the definition of si, there exists λ ∈ Z such that gsi = gk−eix+λqi ,
hence

gsi yei g−k = gλqi mod p.

Raising this to the power of p−1
qi

we get gλ(p−1) = 1 since the order the
multiplicative group Z∗p is p− 1.

3. One can note, p−1
qi

= 2q1 · · · qi−1qi+1 · · · q`.
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Reschnorr Security.
To aid in the proof of security, we introduce the following problem

which we call the partial discrete logarithm problem (PDLP). Intu-
itively it corresponds to solving a discrete logarithm problem in the
subgroup of our choice.

PDLP. Let ` ≥ 2 be an integer, q1, . . . , q` distinct prime numbers and
q = q1 . . . q`. Let G be a group of order q and g a generator of G. Given
g, q, q1, . . . , ql , and y = gx, the partial discrete logarithm problem (PDLP)
consists in finding i ∈ [`] and xi ∈ Zqi such that xi = x mod qi.

In our context, we are chiefly interested in a subgroup of order q
of a multiplicative group of a finite field Z∗p, where q divides p− 1—
ideally, q = (p− 1)/2. The best known algorithms to solve the PDLP
are index-calculus based methods in Z∗p and square-root algorithms in
subgroups of prime order qi for some i ∈ [`]. With p of bit-size 3072,
q = (p − 1)/2, ` = 12 and q1, . . . , q` of bit-size 256, we conjecture
that solving the PDLP requires about 2128 elementary operations. In
Section 9.3.1, we provide security argument in the generic group model
on the intractability of the PDLP for large enough prime numbers
q1, . . . , q`.

Theorem 9.1 (Existential unforgeability). ReSchnorr is provably EUF-CMA-
secure assuming the hardness of solving the PDLP, in the ROM.

To prove this result, we will exhibit a reduction from an efficient
EUF-CMA forger to an efficient PDLP solver. To that end we first
show a sequence of indistinguishability results between the output
distributions of

— Our signature algorithm Sign = Sign0 on user inputs.
— A modified algorithm Sign1 (see Figure 9.2), where the hash of

user inputs is replaced by a random value. This situation is
computationally indistinguishable from the previous one in the
ROM.

— A modified algorithm Sign2 (see Figure 9.2), that has no access
to the signing key x. The output distribution of this algorithm is
identical to the output of Sign1 (Theorem 9.2).

Then we use the forking lemma [PS00; BN06] to show that an efficient
EUF-CMA-adversary against Sign2 can be used to construct an efficient
PDLP solver. Finally we leverage the above series of indistinguishably
results to use an adversary against Sign0. Let CRT (for Chinese Re-
mainder Theorem) be the isomorphism that maps Zq1 × · · ·×Zq` ×Z2

to Zp−1.

Theorem 9.2. The output distributions of Sign1 and Sign2 are identical.

Proof. This theorem builds on several intermediate results described
in ??. We denote δ the output distribution of Sign1 and δ′ the output
distribution of Sign2. The structure of the proof is the following:
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Sign1:
ρ� {0, 1}λ

k� Zp \
(⋃`

i=1{qi, 2qi, . . . , p− 1}
)

r ← gk mod p
for i = 1 to `:

ei � Zqi

si ← k− eix mod qi
ρi � {0, 1}λ

return (r, e1, . . . , e`, s1, . . . , s`, ρ1 . . . , ρ`)

Sign2:
for i = 1 to `

ei � Zqi

si � Zqi

ρi � {0, 1}λ

a� {0, 1}
b� {0, 1}
S← CRT(s1, . . . , s`, a)
E← CRT(e1, . . . , e`, b)
r ← gSyE

for i = 1 to `

if r 6= 1 mod qi,
Else abort

return
(r, e1, . . . , e`, s1, . . . , s`, ρ1 . . . , ρ`)

Figure 9.2 – The algorithms used in Theorem 9.2, as part of the proof of
Theorem 9.1 (ReSchnorr signatures are EUF-CMA).

Theorem 9 .3 shows that the output of Sign2 is a subset of the output
of Sign1.

Theorem 9 .4 shows that in Sign1 there is a unique random tape per
output.

Theorem 9 .5 shows that in Sign2 there are exactly two random tapes
per output.

Theorem 9 .7 shows that there are twice as many random tapes
possible for Sign2 than for Sign1

This demonstrates that by uniformly choosing the random tape, the
resulting distributions for Sign1 and Sign2 are identical, which is the
uniform distribution on the set of valid signatures.

Lemma 9.3. Every tuple of δ′ is a valid signature tuple. Therefore δ′ ⊆ δ.

Proof. Let (r, e1, . . . , e`, s1, . . . , s`, ρ1, . . . , ρ`) ∈ δ′. Let i ∈ [`]. By the
Chinese Remainder Theorem we have:

S = si mod qi and E = ei mod qi.

So there exists λ, µ ∈ Z such that

S = si + λqi and E = ei + µqi.

Hence:

r
p−1
qi =

(
gSyE

) p−1
qi

=
(

gsi+λqi yei+µqi
) p−1

qi

= (gsi yei)
p−1
qi gλ(p−1)yµ(p−1)

= (gsi yei)
p−1
qi
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The last equality holds since the order of the multiplicative group Z∗p is
p− 1, and this concludes the proof with the fact that r 6= 1 mod qi.

Lemma 9.4. There is exactly one random tape upon which Sign1 can run to
yield each particular tuple of δ.

of Theorem 9.4. Let k, e1, . . . , e`, ρ1, . . . , ρ` and k′, e′1, . . . , e′`, ρ′1, . . . , ρ′` be
random choices of δ that both yield (r, e1, . . . , e`, s1, . . . , s`, ρ1, . . . , ρ`).
It is immediate that ei = e′i and ρi = ρ′i for all i ∈ [`]. Also since
gk = gk′ , g is of order p− 1 and since k and k′ are in [p] then k = k′.

Lemma 9.5. There are exactly two random tapes over k, ρ1, . . . , ρ`, e1, . . . , e`
that output each tuple of δ′.

Proof. Let e1, . . . , e`, s1, . . . , s`, a, b, ρ1, . . . , ρ` and e′1, . . . , e′`, s′1, . . . , s′`, a′,
b′, ρ′1, . . . , ρ′` be random choices that both give (r, e1, . . . , e`, s1, . . . , s`,
ρ1, . . . , ρ`). It is immediate that ei = e′i, si = s′i, and ρi = ρ′i for all i ∈ [`].
Let S, S′, E, and E′ be the corresponding CRT images. We have gSyE =

gS′yE′ , which is gS+xE = gS′+xE′ , and S + xE = S′ + xE′ mod (p− 1).
Since x is odd (it is invertible mod p− 1), it follows that S + E and
S′ + E′ have the same parity. Therefore a + b = a′ + b′ mod 2 and we
have two choices: a = b, or a = 1− b, both of which are correct.

Lemma 9.6. #
(

Zp \
(⋃`

i=1{qi, 2qi, . . . , p− 1}
))

= 2 ∏`
i=1(qi − 1).

Proof. The number of invertible elements mod p is ∏`
i=1(qi− 1)× (2−

1) so the number of invertible mod qi for all i (and not necessarily for
2) is 2 ∏`

i=1(qi − 1). This is exactly the cardinality of the set(
Zp \

(⋃̀
i=1

{qi, 2qi, . . . , p− 1}
))

,

Lemma 9.7. There are twice as many possible random choices in δ′ as there
are in δ.

Proof. For the number of random choices in δ we use Theorem 9.6
to count the number of k and then count the number of ei and get
2 ∏`

i=1(qi − 1) ×∏`
i=1 qi. For δ′, having r 6= 1 mod qi is equivalent

to having si 6= −eix. Therefore it has the same number of random
choices as a distribution picking the si from Zqi \ {eix} which is
∏`

i=1 qi ×∏`
i=1(qi − 1)× 2× 2.

It follows from the above results that the two distributions are the
same, i.e. the uniform distribution over the set of valid signatures.
This concludes the proof of Theorem 9.2.
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A

H

Osign

pp, pk m∗, r∗, s∗, ρ∗, i

Figure 9.3 – An efficient EUF-CMA adversary A against ReSchnorr, with
random oracle H and a signing oracle O.

RAR.Hi

R.Sign

A′R.H′i

R.Sign′

R.Init R.Fingx , g, p, q1, . . . , q` xi , i

Figure 9.4 – An efficient solver R for the PDLP, using a polynomial number
of queries to A.

R implements the
random oracle as
R.H and the

signing oracle as
R.Sign. The

rewinded
adversary and

oracles are
indicated with a

prime symbol.

Theorem 9.8 (Security under Chosen Message Attack). An efficient
attacker against Sign2 can be turned into an efficient PDLP solver in the
ROM.

Proof. LetA be an attacker that wins the EUF-CMA game for ReSchnorr,
illustrated in Figure 9.3. We construct in ?? an algorithm R that uses
A to solve the PDLP. A′ is equivalent to A (with the same random
tape which we omit in the notation), the difference being that it inter-
acts with different oracles. Abusing notation we denote by R.Hi the
composition of the hash function and the conversion function. If L is
a list of pairs, we denote by L−1[e] the index of the element e in the
list, and by L[i] the i-th element of the list. If they cannot (i.e. if e is
not in the list, or the list does not have an i-th element) they abort.

The algorithm R aborts in four possible ways during the simulation
(denoted (?), (†), (‡) and (§)) in ??. We upper-bound the probability
of these events in the following list:

— (?) This occurs with negligible probability since the ρ is a fresh
random which is unpredictable by the adversary.

— (†) This occurs with non overwhelming probability since the
adversary is efficient.

— (‡) The element is in the list with non negligible probability
because if the adversary forges on an unqueried hash in the
ROM, it has a negligible chance to succeed.

— (§) This happens with non overwhelming probability due to the
forking lemma [PS00].
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R.Init(y = gx, g, p, q1, . . . , q`):
Σ← ∅
j← 1
k← 0
l ← 0
pk← y
pp← {p, {qi}`i=1, g}
return (pk, pp)

R.H(x):
if ∃(x′, h′) ∈ L s.t. x′ = x

return h′

Else
h� Zp

L← L∪ {(x, h)}
return h

R.Sign′(M):
l ← 0
return [i]
l ← l + 1

R.Fin(pk, pp):
(M∗, r∗, s∗, ρ∗, i∗)� A(pp, pk)
e∗ ← R.Hi∗(M∗, r∗ mod qi∗ , ρ∗)

a← L−1[((M∗, r∗ mod qi∗ , ρ∗), e∗)]‡
if not Verifypp,pk(M∗, r∗, s∗, i∗)

abort †
(M′∗, r′∗, s′∗, ρ′∗, i′∗)� A′(pp, pk)
if i∗ 6= i′∗ then abort §
if r∗ 6= r′∗ then abort §
e′∗ ← R.Hi∗(M′∗, r∗ mod qi∗ , ρ′∗)

if e∗ = e′∗ then abort §
if not Verifypp,pk(M′∗, r∗, s′∗, i∗)

abort †
∆s← s∗ − s′∗

∆e← e′∗ − e∗

return (i∗, ∆s/∆e)

R.H′(x):
k← 0
if ∃(x′, h′) ∈ L′ s.t. x′ = x

return h′

else
if i ≤ a
(x′, h′)← L.[i]
returnh′

k← k + 1
L′ ← L′ ∪ {(x, h)}

else
h� Zp

L′ ← L′ ∪ {(x, h)}
h

R.Sign(M):
if j = 1
(r, e1, . . . , e`, s1, . . . , s`, ρ1, . . . , ρ`)� δ′

if ∃h s.t. ((M, r mod q1, ρ1), h) ∈ L

abort ?
L← L∪ {((M, r mod q1, ρ1), e1)}
j← j + 1 mod `

return (s1, r, ρ1, 1)
Σ← Σ ∪ {(s1, r, ρ1, 1)}

else
if ∃h s.t. ((M, r mod qj, ρj), h) ∈ L

abort ?
L← L∪ {(M, r mod qj, ρj), ej}
j← j + 1 mod `

return (sj, r, ρj, j)
Σ← Σ ∪ {(sj, r, ρj, j)}

Figure 9.5 – An efficient solver for the PDLP, constructed from an efficient
EUF-CMA adversary against ReSchnorr.

If R does not abort, then
(

gs∗ye∗) p−1
qi∗ = (r∗)

p−1
qi∗ =

(
gs̃∗yẽ∗) p−1

qi∗ mod p.
Then s∗ + e∗x = s̃∗ + ẽ∗ mod qi∗ . It follows that the value returned by
R is equal to x mod qi∗ .
R succeeds with non negligible probability, as explained earlier. The
probability of forking is polynomial in the number of queries to the
random oracle, the number of queries to the signature oracle, and `.
Note that the reduction is ` times looser than [PS00]. This concludes
the proof of Theorem 9.8.

of Theorem 9.1. Using Theorem 9.2, we can use Sign0 instead of Sign2
as a target for the attacker in Theorem 9.8.

9.3.1 Generic Security of the Partial Discrete Logarithm Problem

In this section, we prove that the partial discrete logarithm problem
introduced in Section 9.3 is intractable in the generic group model.
This model was introduced by Shoup [Sho97] for measuring the exact
difficulty of solving classical discrete logarithm problems. Algorithms
in generic groups do not exploit any properties of the encodings
of group elements. They can access group elements only via a ran-
dom encoding algorithm that encodes group elements as random
bit-strings.
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Proofs in the generic group model provide heuristic evidence of
some problem hardness when an attacker does not take advantage
of group elements’ encoding. However, they do not necessarily say
anything about the difficulty of specific problems in a concrete group.

Let ` be some non-negative integers, let q1, . . . , q` be some distinct
prime numbers and let q = q1 · · · q`. We consider a cyclic group G

of (composite) order q generated by g. We assume without loss of
generality that q1 = max(q1, . . . , q`). A classical method [PH78] to
solve the partial discrete logarithm problem in G given h = gx ∈ G

is to compute hq2···q` , an element of order diving q1 (that belongs
to the subgroup generated by gq2···q`) and to compute its discrete
logarithm x1 in base gq2···q` using a square root method such as Shanks
“baby-step giant-step” algorithm [Sha71]. It is easy to see that x1 is
equal to x mod q1 and is obtained within time complexity O(

√
q1 +

log(q2 · · · q`)) group operations.
Our goal is to prove that this time complexity is essentially optimal

in the generic group model. Let A be a generic group adversary that
solves the partial discrete logarithm problem in G. As usual, the
generic group model is implemented by choosing a random encoding
σ : G −→ {0, 1}m. Instead of working directly with group elements,
A takes as input their image under σ. This way, all A can test is
string equality. A is also given access to an oracle computing group
multiplication and division: taking σ(g1) and σ(g2) and returning
σ(g1 · g2) and σ(g1/g2) respectively. Finally, we can assume that A
submits to the oracle only encodings of elements it had previously
received. This is because we can choose m large enough so that
the probability of choosing a string that is also in the image of σ is
negligible.

Theorem 9.9. LetA be a generic algorithm that takes as input two encodings
σ(g) and σ(h) (where g is a generator of G and h = gx ∈ G) and makes
at most τ group oracle queries, then A’s advantage in outputting a partial
discrete logarithm (i, xi) with i ∈ {1, . . . , `} and xi = x mod qi is upper-
bounded by O(τ2/q1).

Proof. We consider an algorithm B playing the following game with
A. Algorithm B picks two bit strings σ1, σ2 uniformly at random
in {0, 1}m. Internally, B keeps track of the encoded elements using
elements in the ring Zq1 [X1]× · · · ×Zq` [X`]. To maintain consistency
with the bit strings given to A, B creates a lists L of pairs (F, σ)

where F is a polynomial vector in the ring Zq1 [X1] × · · · ×Zq` [X`]

and σ ∈ {0, 1}m is the encoding of a group element. The polynomial
vector F represents the exponent of the encoded element in the group
Zq1 × · · · ×Zq` . Initially, L is set to

{((1, 1, . . . , 1), σ1) , ((X1, . . . , Xn), σ2)}

Algorithm B starts the game providing A with σ1 and σ2. The simula-
tion of the group operations oracle goes as follows:



9.4 provably secure pre-computations 121

group operation : Given two encodings σi and σj in L, B recovers
the corresponding vectors Fi and Fj and computes Fi + Fj for
multiplication (or Fi − Fj for division) termwise. If Fi + Fj (or
Fi − Fj) is already in L, B returns to A the corresponding bit

string; otherwise it returns a uniform element σ
R←− {0, 1}m and

stores (Fi + Fj, σ) (or (Fi − Fj, σ)) in L.

After A queried the oracles, it outputs a pair (i∗, x∗i ) ∈ {1 . . . , `}×Zqi∗

as a candidate for the partial discrete logarithm of h in base g. At this
point, B chooses uniform random values x1, . . . , xn ∈ Zq1 × · · · ×Zq` .
The algorithm B sets Xi = xi for i ∈ {1, . . . , n}.

If the simulation provided by B is consistent, it reveals nothing
about (x1, . . . , x`). This means that the probability of A guessing the
correct value for (i∗, x∗i ) ∈ {1, . . . , `} ×Zqi∗ is 1/qi∗ . The only way
in which the simulation could be inconsistent is if, after we choose
value for x1, . . . , xn, two different polynomial vectors in L happen to
produce the same value.

It remains to compute the probability of a collision happening due
to a unlucky choice of values. In other words, we have to bound the
probability that two distinct vectors Fi, Fj in L evaluate to the same
value after the substitution, namely Fi(x1, . . . , xn)− Fj(x1, . . . , xn) = 0.
This reduces to bound the probability of hitting a zero of Fi − Fj. By
the simulation, this happens only if Fi − Fj is a vector of polynomials
where at least one coordinate — say the k-th — is a non-constant
polynomial (and thus of degree one) denoted (Fi − Fj)

(k).
Recall that the Schwartz-Zippel lemma says that, if F is a degree d

polynomial in Zqk [Xk] and S ⊆ Zqk then

Pr[F(xk) = 0 mod qk] ≤
d
|S|

where xk is chosen uniformly from S. Going back to our case, we
obtain by applying the Schwartz-Zippel lemma :

Pr[(Fi − Fj)
(k)(xk) = 0 ∈ Zqk ] ≤ 1/qk ≤ 1/q1.

Therefore, the probability that the simulation provided by B is incon-
sistent is upper-bounded by τ(τ − 1)/q1 (by the union bound) and
the result follows.

9.4 provably secure pre-computations

Often the bottleneck in implementations centers around modular
exponentiation. In this section we briefly outline several proposed
pre-computation techniques, as well as presenting in more detail two
pre-computation schemes which were used in our implementation to
compare timings between classical Schnorr and ReSchnorr.
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9.4.1 Brief overview

The problem of computing modular exponentiations is well-known
to implementers of both DLP-based and RSA-based cryptosystems.
In the specific case that we want to compute gx mod p, the following
strategies have been proposed but their security is often heuristic:

— Use signed expansions (only applicable to groups where inver-
sion is efficient);

— Use Frobenius expansions or the GLV/GLS method (only appli-
cable to certain elliptic curves);

— Batch exponentiations together, as suggested by M’Raïhi and
Naccache [MN96].

The above approaches work for arbitrary values of x. Alternatively,
one may choose a particular value of x with certain properties which
make computation faster; however there is a possibility that doing so
weakens the DLP:

— Choose x with low Hamming weight as proposed by Agnew et
al. [AMOV91];

— Choose x to be a random Frobenius expansion of low Hamming
weight, as discussed by Galbraith [Gal12, Sec. 11.3];

— Choose x to be given by a random addition chain, as proposed
by Schroeppel et al. [SOOS95];

— Choose x to be a product of low Hamming weight integers as
suggested by Hoffstein and Silverman [HS03]—broken by Cheon
and Kim [CK08];

— Choose x to be a small random element in GLV representation—
broken by Aranha et al. [AFGKTZ14];

Finally, a third branch of research uses large amounts of pre-computation
to generate random pairs (x, gx mod p). The first effort in this direc-
tion was Schnorr’s [Sch90], quickly broken by de Rooij [de 97]. Other
constructions are due to Brickell et al. [BGMW93], Lim and Lee [LL94],
and de Rooij [de 95]. The first provably secure solution is due to Boyko
et al. [BPV98], henceforth BPV, which was extended and made more
precise by [NSS01; CMT01; NS99]. This refined algorithm is called
E-BPV (extended BPV).

9.4.2 The E-BPV Pre-Computation Scheme

E-BPV 4 relies on pre-computing and storing a set of pairs (ki, gki mod
p); then a “random” pair (r, gr mod p) is generated by choosing a
subset of the ki, setting r to be their sum, and computing the corre-
sponding exponential by multiplying the gki mod p.

4. BPV is a special case of E-BPV where h = 2. As such they share the same
precomputing step.
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(E-)BPV.Preprocessing:
k1, . . . , kn � Z∗p
for j ∈ [n]

L← L∪ {(k j, Kj = gk j mod p)}
return L

E-BPV.GetRandomPair:
pick S ⊆ [n] s.t. |S| = k
(di, Di)� D
r ← 0
R← 1
for j ∈ S

xj � [h− 1]
r ← r + k jxj mod φ(p)
R← R · Kxj

j mod p
return (r, R)

Figure 9.6 – The E-BPV algorithm for generating random pairs (x, gx mod p).
The BPV algorithm is a special case of E-BPV for h = 2.

To guarantee an acceptable level of security, and resist lattice reduc-
tion attacks, the number n of precomputed pairs must be sufficiently
large; and enough pairs must be used to generate a new couple.

Nguyen et al. [NSS01] showed that using E-BPV instead of standard
exponentiation gives an adversary an advantage bounded by

m

√
K

(n
k)(h− 1)k

with m the number of signature queries by the adversary, (k, n, h)
E-BPV parameters, and K the exponent’s size. 5

We fix conservatively m = 2128. For ReSchnorr, at 128-bit security,
we have K = P = 3072. As suggested in [NSS01] we set n = k, and
constrain our memory:

hk ≥ 23400

Optimizing 2k + h under this constraint, we find (h, k) = (176, 455).
This corresponds to 1087 modular multiplications, i.e., an amortized
cost of 90 multiplications per signature, for about 170 kB of storage.

Alternatively, we can satisfy the security constraints by setting
n = 2048, h = 100, k = 320, which corresponds to about 770 kB of
storage, giving an amortized cost of 62 modular multiplications per
signature.

In the implementation (Section 9.5), we solve the constrained opti-
misation problem to find the best coefficients (i.e., the least number of
multiplications) for a given memory capacity.

Remark. To achieve the claimed bounds on modular multiplications,
one should not compute R← K

xj
j mod p directly; rather, an efficient

speedup due to Brickell et al. [BGMW93] (BGMW) may be used. To
illustrate the importance of this remark, we also give timings for a
“naive” implementation in Table 9.3.

5. For Schnorr, the exponent’s size is Q; for ReSchnorr, it is P.
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Halving storage cost The following idea can halve the amount of
storage required for the couples (x, gx): instead of drawing the values
x at random, we draw a master secret s once, and compute xi+1 ←
gxi ⊕ s (or, more generally/securely, a PRF with low complexity xi+1 =

PRFs(gxi)). Only s, x0, and the values gxi need to be stored; instead of
all the couples (xi, gxi). This remark applies to both BPV and E-BPV.

9.4.3 Lim and Lee Pre-Computation Scheme

We also consider a variation on Lim and Lee’s fast exponentiation
algorithm [LL94]. Their scheme originally computes gr for r known in
advance, but it is easily adapted to the setting where r is constructed on
the fly. The speed-up is only linear, however, which ultimately means
we cannot expect a sizable advantage over Schnorr. Nevertheless,
Lim and Lee’s algorithm is less resource-intensive and can be used in
situations where no secure E-BPV parameters can be found (e.g., in
ultra-low memory settings).

The Lim-Lee scheme (LL) has two parameters, h and v. In the
original LL algorithm, the exponent is known in advance, but it is
easily modified to generate an exponent on the fly. Intuitively, it
consists in splitting the exponent in a “blocks” of size h, and dividing
further each block in b sub-blocks of size v. The number of modular
multiplications (in the worst case) is a + b− 2, and we have to store
(2h − 1)v pairs. The algorithms are given in Figure 9.7.

For a given amount of memory M, it is easy to solve the constrained
optimization problem, and we find

hopt =
1

ln(2)

(
1 + W

(
1 + M

e

))
where W is the Lambert function. For a memory M of 750 kB, this
gives h ≈ 8.6. The optimal parameters for integers are h = 9 and
v = 4. 6

Remark. For LL, Figure 9.4.2 on halving storage requirements does
not apply, as x need not be stored.

A summary of the properties for the pre-computations techniques
E-PBV and LL can be found in Table 9.1.

9.5 implementation results

Reschnorr, using the algorithms described in ??, has been imple-
mented in C using the GMP library. In the interest of timing com-
parison we have also implemented the classical Schnorr scheme. The

6. In practice, it turns out that h = v = 8 performs slightly better, due to various
implementation speed-ups possible in this situation
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LimLee.Preprocessing(h, v):
g0 ← g
for i = 0 to h− 1

gi ← g2a

i−1
for i = 0 to 2h−1

let i = eh−1 . . . e1 in binary
g0,i = geh−1

h−1 . . . ge1
1

for i = 0 to 2h − 1
for j = 0 to v− 1

gj,i ← g2b

j−1,i
L← L∪ {gj,i}

return L

LimLee.GetRandomPair:
R←1

r ← 0
for i = b− 1 to 0

R← R2

r ← r + r
for j = v− 1 to 0

ri,j � {0, . . . , 2h − 1}
R← R× gj,ri,j

r ← r + ri,j
return (r, R)

Figure 9.7 – The LL algorithm for generating random pairs (x, gx mod p).

results for several scenarios are outlined in Table 9.2 (at 128-bit secu-
rity) and Table 9.3 (at 192-bit security). Complete source code and
timing framework are available upon request from the authors.

These experiments show that ReSchnorr is faster than Schnorr when
at least 250 pairs (i.e., 750 kB at 128-bit security) have been precom-
puted. This effect is even more markedly visible at higher security
levels: ReSchnorr benefits more, and more effectively, from the E-
BPV+BGMW optimisation as compared to Schnorr. The importance
of combining E-BPV and BGMW is also visible: E-BPV using naive
exponentiation does not provide any speed-up.

Schnorr and ReSchnorr achieve identical performance when using
Lim and Lee’s optimisation, confirming the theoretical analysis. When
less than 1 MB of memory is alloted, this is the better choice.

9.5.1 Heuristic Security

Several papers describe server-aided precomputation techniques
(e.g., [KU16]), which perform exponentiations with the help of a
(possibly untrusted) server, i.e., such techniques allow to outsource
the computation of gx mod n, with public g and n, without revealing
x to the server.

Algorithm Storage Multiplications Security

Square-and-multiply 0 1.5 log P Always

BPV [BPV98] nP k− 1 m
√

P
(n

k)
< 2−λ

E-BPV [NSS01] nP 2k + h− 3 m
√

P
(n

k)(h−1)k < 2−λ

Lim and Lee [LL94] 2h × v× P log P
h (1 + 1

v )− 3 Always

Table 9.1 – Precomputation/online computation trade-offs for ReSchnorr.
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Scheme Storage Precomp. Time (per sig.)

Schnorr – – 6.14 ms

Schnorr + [NSS01] 170 kB 33 s 105 ms

Schnorr + [NSS01] + [BGMW93] 170 kB 33 s 2.80 ms

Schnorr + [NSS01] + [BGMW93] 750 kB 33 s 2.03 ms

Schnorr + [NSS01] + [BGMW93] 1 MB 34 s 2.00 ms

Schnorr + [NSS01] + [BGMW93] 2 MB 37 s 2.85 ms

Schnorr + [LL94] 165 kB 3 s 949 ns

Schnorr + [LL94] 750 kB 3 s 644 ns

Schnorr + [LL94] 958 kB 3 s 630 ns

Schnorr + [LL94] 1.91 MB 3 s F 472 ns

ReSchnorr – – 5.94 ms

ReSchnorr + [NSS01] 170 kB 33 s 9.2 ms

ReSchnorr + [NSS01] + [BGMW93] 170 kB 33 s 1.23 ms

ReSchnorr + [NSS01] + [BGMW93] 750 kB 33 s 426 ns

ReSchnorr + [NSS01] + [BGMW93] 1 MB 34 s 371 ns

ReSchnorr + [NSS01] + [BGMW93] 2 MB 37 s F 327 ns

ReSchnorr + [LL94] 165 kB 3 s 918 ns

ReSchnorr + [LL94] 750 kB 3 s 709 ns

ReSchnorr + [LL94] 958 kB 3 s 650 ns

ReSchnorr + [LL94] 1.91 MB 3 s 757 ns

Table 9.2 – Timing results for Schnorr and ReSchnorr, at 128-bit security (P =
3072, Q = 256). Computation was performed on an ArchLinux
single-core 32-bit virtual machine with 128 MB RAM. Averaged
over 256 runs.

Scheme Storage Time (/sig.)

Schnorr – 35.2 ms

Schnorr + [LL94] 715 kB 508 ns

Schnorr + [NSS01] + [BGMW93] 750 kB 2.08 ms

Schnorr + [NSS01] + [BGMW93] 1.87 MB 1.62 ms

Schnorr + [LL94] 1.87 MB F 476 ns

ReSchnorr – 33.0 ms

ReSchnorr + [LL94] 715 kB 486 ns

ReSchnorr + [LL94] 1.87 MB 467 ns

ReSchnorr + [NSS01] + [BGMW93] 1.87 MB F 263 ns

Table 9.3 – Timing results for Schnorr and ReSchnorr, at 192-bit security (P =
7680, Q = 384). Computation was performed on an ArchLinux
single-core 32-bit virtual machine with 128 MB RAM. Averaged
over 256 runs.

Interestingly, the most efficient algorithms in that scenario (which of
course we could leverage) use parameters provided by Hohenberger
and Lysyanskaya [HL05] for E-BPV. A series of papers took these
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parameters for granted (including [KU16]), but we should point out
that these are not covered by the security proof found in [NSS01].

Despite this remark, it seems that no practical attack is known
either; therefore if we are willing to relax our security expectations
somewhat it is possible to compute the modular exponentiation faster.
Namely, a Q-bit exponent can be computed in O(log Q2) modular
multiplications.

ReSchnorr uses an exponent that is ` times bigger than Schnorr,
which is amortized over ` signatures. Comparing ReSchnorr to
Schnorr, the ratio is ` log(Q)2

(log `Q)2 . With Q = 256 we get a ratio of ap-
proximately 5.7.

Note that as Q increases, so does `, and therefore so does the
advantage of ReSchnorr over Schnorr in that regime.

9.5.2 Reduction-Friendly Moduli

As part of computing gk mod p, a very costly operation is the re-
duction mod p. An interesting question is whether some particular
moduli p can be found, for which reduction is particularly easy.

An example of such moduli are those that start with a 1 followed
by many 0.

Example 9.1. For P = 3072 and Q = 256, using (in hexadecimal notation)

∆i = {12d, 165, 1e7, 247, 2f5, 31b, 327, 34f, 3a3, 439, 56b, 4fe7}

and qi = 2Q + ∆i, we have that p equals:

2[60]e0e8[56]18058164[53]1479d1e16e8[51]aa09581f139be[48]3

a9dc2e99b080dd[47]dfe705c4e9b3a45678[43]25a378c4e6b62835f4

01[42]471d330fbde56ef2c80281e[39]5c5388621a308a5425f007648

[37]4e506ba1a5b68dc5faca1155e64[35]270051399124b193e6716e0

8b4408[34]8a07b85ed815e7eac1135861bd67e3

where [x] denotes a sequence of x hexadecimal zeros.

9.6 conclusion

We have introduced a new digital signature scheme variant of
Schnorr signatures, that reuses the nonce component for several signa-
tures. Doing so does not jeopardise the scheme’s security; attempting
to do the same with classical Schnorr signatures would immediately
reveal the signing key. However the main appeal of our approach
is that precomputation techniques, whose benefits can only be seen
for large enough problems, become applicable and interesting. As a
result, without loss of security, it becomes possible to sign messages
using fewer modular multiplications.
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C O N C L U S I O N

Let us continue our historical stroll before it comes time to conclude,
for now, and put the pen down.

10.1 the teenage years of modern cryptography

The year is 2019. Since you started your journey, there have been
even more shocks to the system. You have learned of Cambridge
Analytica and their ilk, which made you become increasingly worried
about the state of democracy. Digital advertising is the new religion,
social networks the sacred spaces, and influencers the prophets. You
see that choice, decision, information, only partially reside in the
hands of the individual. You’ve seen the rise of voice-, and facial-
recognition software fueling the surveillance state. You’ve seen this
move so quickly, with monumental mistakes, and you worry, because
it seems that there are very few who even notice. And you still can’t
send an encrypted email! It’s chaos.

Yet, at the same time, you see digital currency and its supporters I refuse to write the
word ‘crypto’
pertaining to
anything other than
cryptography in this
thesis.

unanimously wanting anonymity. You see messengers gaining popular-
ity and think maybe you don’t actually need encrypted email. Maybe
there are other ways to communicate. Maybe there are other ways to
compute. You catch machine learning and cryptography’s eyes meet-
ing across the room. The lawyers and engineers start to hold hands.
You’re growing up! It’s confusing now, and you’re left with more
questions than you ever thought possible, but don’t worry. This is a
period of change, a moment of growth. You will understand more
when you’re older, but for now, my dear, let’s sit down, and think
about where we should go from here.

10.2 open problems

10.2.1 Key-Correlated Security

One of the greatest lessons learned while working towards the idea
of key-correlated attacks was that although related key attacks and
key-dependent message attacks have been widely studied, and even
the idea of key-dependent messages encrypted under related keys has
been mentioned, there are a number of subtleties that went unnoticed
for many years. Furthermore, although KCA does not seem very The most notable

obstacle was solved
by the xkcd property
:)

different to RKA + KDM, there were many interesting obstacles that
needed to be overcome when trying to deduce the proofs. This work
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really displayed the richness that can be found in cryptography, and
teaches the lesson that we should not content ourselves with following
only intuition, more digging is often needed. As such, we named
the part ‘Try Again’. The advent of a new security notion can open
a multitude of directions to follow. We aimed to address as many as
possible in the work carried out in Part II, but there are still a number
of questions to be addressed:

analysis of feistel construction. In Chapter 5 we looked at
the KCA-security of blockciphers and showed that 3-rounds of
Even–Mansour are sufficient to achieve KCA-security for a class
of functions. One could further extend this analysis by looking
at other block cipher models. For example, how many rounds of
Feistel are needed to ensure KCA-security.

analysis of modes of operation. Another direction would be
to look at blockciphers in a broader context and ask whether
any of the currently used modes of operation are secure under
key-correlated attacks.

concrete constructions . As well as looking at the broader con-
text, it would be interesting to know if the notion of key-correlated
attacks aids in the cryptanalysis of concrete constructions, for
example, of AES.

kcx . A small, but technical detail arose while thinking about key-
correlated security. Depending on the model, keys are XORed
with functions in different ways. It would be interesting to ex-
tend the idea of key-correlated attacks to key-correlated XORing.

10.2.2 New Assumptions and PKE Schemes

Public-key encryption is fundamental in cryptography. It was noted
several times that this is what caused the revolution in the 1970’s. Today
there remain very few PKE schemes, and the hunt to find more is
still ongoing. Furthermore, as we move closer to having quantum
computing as a reality, there is an urgency to find schemes that are
resistant to quantum attacks. In 2017, [AJPS17c] described such an
encryption scheme. Furthermore, it was based on the hardness of
a new assumption. This is doubly exciting because not only do we
(potentially) have a new PKE scheme, we also have an entirely new
toy from which we can start to think about building other schemes.
Two new developments such as this will garner much attention from
those wanting to try to break the new toys, but also from those who
want to design new things. The work in Chapter 7 aimed at the former
and tried to break the scheme. Given the parameters suggested in the
original work, we managed to find the secret key, given only the public
key, in only a number of days. The work in Chapter 8 aimed at the
latter and proposed a modification to the assumption and described
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another public-key encryption scheme. Both of these works were
quite reactionary and so did not perform very formal analysis. More
formal analysis was carried out in [BDJW18] and eventually the AJPS
cryptosystem was modified and published as [AJPS18]. This was an
exciting time to work in the area and one of the main lessons learned
was that even with careful consideration of cryptographic schemes,
there can exist small ‘tricks’ that allow to exploit a particular feature.
It was a nice reminder to a young researcher that although sometimes
you may strike gold, more often than not, and over and over, you are
going to ‘fail again’, and hence the title for this part. In any case, these
initial analyses barely scratch the surface of the research opened up in
this space, and there are a number of areas left to be addressed:

more efficient attacks . The AJPS encryption scheme is not en-
tirely dissimilar to NTRU constructions, so it would be inter-
esting to see if more of the analysis performed on NTRU also
applies to AJPS. In particular whether Lattice attacks and the
Meet-in-the-Middle attacks can be combined to gain efficiency,
as was done for NTRU. This is a question asked by Adi Shamir
following the presentation of [BCGN17a].

quantum attacks . The scheme is supposed to be post-quantum
secure. The analysis in [BDJW18] looked at methods based on
Grover’s algorithm, but leave open the question of whether less
generic approaches would work better.

other schemes . Given a new hardness assumption, what other
primitives can be build from it? As we saw with the DL and RSA
problems, can we build signature schemes to provide integrity
with such an assumption?

10.2.3 Efficient Signature Schemes

We saw with key-correlated security that working in very general
models can lead to some security oversights. One of the most inter-
esting points working towards the results in Part IV is that when we
come out of the very general model and start to look at the specific
construction, there can also be room for improvement. By taking
advantage of the group structure and by choosing our primes in a
particular way, we can gain efficiency. The greatest lesson learned
here is that it is important to have a global view of how a primitive
works, but there’s also much to be gained by looking at the specifics Ok, there may have

been some artistic
license in the naming
of these parts. . .

and hence the naming of this part ‘fail better’.

can we generalise? ‘Reusing nonces’ as we did with Schnorr
signatures can be thought of as somewhat similar to related key
notions of security. An interesting question would be to ask
whether we can retain some notion of security for Schnorr-like
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signature schemes where all inputs are related, or derived, or
correlated.

more exploitation Are there other schemes in which we can look
at the details, group structure or otherwise, and gain efficiency,
or stronger security?

10.3 beyond the technicalities

There are so many big ideas, tiny intricacies, and alluring notions,
that now, coming to the end of this thesis, I feel that I am only beginning
to discover the beauty of this field. There are a number of changes
that the field is experiencing at the moment. Cryptography is moving
beyond the “all or nothing” paradigm it used to be known for; it is no
longer the case that an adversary can learn nothing about a message.
Actually, maybe to gain functionality, we’re happy for them to learn
a very controlled something. We’re seeing the rise of homomorphic
and functional encryption, of MPC, and all the ideas that allow us
to compute on encrypted data. This opens a can of worms so that
now, all of a sudden, we can ‘peek’ inside the ciphertext. There are
huge implications of this for all manner of data analytics and machine
learning. It begs the question of who do we allow to look at our
ciphertexts? How can we enforce this?

And what of quantum computers? How will they affect us? Are we
ready? Or even closer still, 5G there are attacks, right? But they’re still
going ahead with it? What about these digital currencies? Will they
last? How about the community? Even this is changing. We’re no
longer just academics or military personnel. We’re lawyers, engineers,
social scientists, managers. There’s a lot to look forward to, and still
many questions to answer.

A final remark. I have often been told that a popular question
asked of PhD students when talking about a piece of scientific work,
or research, is “How do you know when you’re done?” I have thought
about this a lot over the years and, being a PhD student, posed my
answers as questions:I quickly learned the

first one is a very
wrong answer

— “I’m done when.. I think I’m done?”
— “When my advisor tells me I’m done?”
— “When reviewer n◦ 2 has run out of stuff to complain about?”
— “When it’s 5:59 am on a Saturday morning and there’s a deadline

in 1 minute?”
— “When the coffee machine breaks? Or when my laptop dies?”
— “When am I done?!”
If there is one thing I have learned throughout the course of this

PhD, it’s a definite answer to that question. Open your mind enough
to an idea, and you’ll never be done; for the things you truly think
about, reward you with a lifetime of problems to solve, questions to
ask, answers to twist, papers to write, books to read, students to te. . .



B I B L I O G R A P H Y

[AJPS17a] Divesh Aggarwal, Antoine Joux, Anupam Prakash,
and Miklos Santha. A New Public-Key Cryptosystem
via Mersenne Numbers, version 20170530:001542. Cryp-
tology ePrint Archive, Report 2017/481. https://
eprint.iacr.org/2017/481. 2017.

[AJPS17b] Divesh Aggarwal, Antoine Joux, Anupam Prakash,
and Miklos Santha. A New Public-Key Cryptosystem
via Mersenne Numbers, version 20171206:004924. Cryp-
tology ePrint Archive, Report 2017/481. https://
eprint.iacr.org/2017/481. 2017.

[AJPS17c] Divesh Aggarwal, Antoine Joux, Anupam Prakash,
and Miklos Santha. A New Public-Key Cryptosystem
via Mersenne Numbers. Cryptology ePrint Archive,
Report 2017/481. http://eprint.iacr.org/2017/
481. 2017.

[AJPS17d] Divesh Aggarwal, Antoine Joux, Anupam Prakash,
and Miklos Santha. A New Public-Key Cryptosystem
via Mersenne Numbers. Cryptology ePrint Archive,
Report 2017/481. http://eprint.iacr.org/2017/
481. 2017.

[AJPS18] Divesh Aggarwal, Antoine Joux, Anupam Prakash,
and Miklos Santha. “A New Public-Key Cryptosys-
tem via Mersenne Numbers.” In: CRYPTO 2018,
Part III. Ed. by Hovav Shacham and Alexandra Boldyreva.
Vol. 10993. LNCS. Springer, Heidelberg, Aug. 2018,
pp. 459–482. doi: 10.1007/978-3-319-96878-0_16.

[AMOV91] Gordon B. Agnew, Ronald C. Mullin, I. M. Onyszchuk,
and Scott A. Vanstone. “An Implementation for a
Fast Public-Key Cryptosystem.” In: Journal of Cryptol-
ogy 3.2 (Jan. 1991), pp. 63–79. doi: 10.1007/BF00196789.

[AFPW11] Martin R. Albrecht, Pooya Farshim, Kenneth G. Pa-
terson, and Gaven J. Watson. “On Cipher-Dependent
Related-Key Attacks in the Ideal-Cipher Model.” In:
FSE 2011. Ed. by Antoine Joux. Vol. 6733. LNCS.
Springer, Heidelberg, Feb. 2011, pp. 128–145. doi:
10.1007/978-3-642-21702-9_8.

[App16] Benny Applebaum. “Garbling XOR Gates “For Free”
in the Standard Model.” In: Journal of Cryptology 29.3
(July 2016), pp. 552–576. doi: 10.1007/s00145-015-
9201-9.

135

https://eprint.iacr.org/2017/481
https://eprint.iacr.org/2017/481
https://eprint.iacr.org/2017/481
https://eprint.iacr.org/2017/481
http://eprint.iacr.org/2017/481
http://eprint.iacr.org/2017/481
http://eprint.iacr.org/2017/481
http://eprint.iacr.org/2017/481
https://doi.org/10.1007/978-3-319-96878-0_16
https://doi.org/10.1007/BF00196789
https://doi.org/10.1007/978-3-642-21702-9_8
https://doi.org/10.1007/s00145-015-9201-9
https://doi.org/10.1007/s00145-015-9201-9


136 bibliography

[AFGKTZ14] Diego F. Aranha, Pierre-Alain Fouque, Benoît Gérard,
Jean-Gabriel Kammerer, Mehdi Tibouchi, and Jean-
Christophe Zapalowicz. “GLV/GLS Decomposition,
Power Analysis, and Attacks on ECDSA Signatures
with Single-Bit Nonce Bias.” In: ASIACRYPT 2014,
Part I. Ed. by Palash Sarkar and Tetsu Iwata. Vol. 8873.
LNCS. Springer, Heidelberg, Dec. 2014, pp. 262–281.
doi: 10.1007/978-3-662-45611-8_14.

[BF15] Manuel Barbosa and Pooya Farshim. “The Related-
Key Analysis of Feistel Constructions.” In: FSE 2014.
Ed. by Carlos Cid and Christian Rechberger. Vol. 8540.
LNCS. Springer, Heidelberg, Mar. 2015, pp. 265–284.
doi: 10.1007/978-3-662-46706-0_14.

[BCK11] Mihir Bellare, David Cash, and Sriram Keelveedhi.
“Ciphers that securely encipher their own keys.” In:
ACM CCS 2011. Ed. by Yan Chen, George Danezis,
and Vitaly Shmatikov. ACM Press, Oct. 2011, pp. 423–
432. doi: 10.1145/2046707.2046757.

[BCM11] Mihir Bellare, David Cash, and Rachel Miller. “Cryp-
tography Secure against Related-Key Attacks and
Tampering.” In: ASIACRYPT 2011. Ed. by Dong
Hoon Lee and Xiaoyun Wang. Vol. 7073. LNCS.
Springer, Heidelberg, Dec. 2011, pp. 486–503. doi:
10.1007/978-3-642-25385-0_26.

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip
Rogaway. “A Concrete Security Treatment of Sym-
metric Encryption.” In: 38th FOCS. IEEE Computer
Society Press, Oct. 1997, pp. 394–403. doi: 10.1109/
SFCS.1997.646128.

[BK11] Mihir Bellare and Sriram Keelveedhi. “Authenticated
and Misuse-Resistant Encryption of Key-Dependent
Data.” In: CRYPTO 2011. Ed. by Phillip Rogaway.
Vol. 6841. LNCS. Springer, Heidelberg, Aug. 2011,
pp. 610–629. doi: 10.1007/978-3-642-22792-9_35.

[BK03] Mihir Bellare and Tadayoshi Kohno. “A Theoretical
Treatment of Related-Key Attacks: RKA-PRPs, RKA-
PRFs, and Applications.” In: EUROCRYPT 2003. Ed.
by Eli Biham. Vol. 2656. LNCS. Springer, Heidelberg,
May 2003, pp. 491–506. doi: 10.1007/3-540-39200-
9_31.

[BN06] Mihir Bellare and Gregory Neven. “Multi-signatures
in the plain public-Key model and a general forking
lemma.” In: ACM CCS 2006. Ed. by Ari Juels, Re-
becca N. Wright, and Sabrina De Capitani di Vimer-

https://doi.org/10.1007/978-3-662-45611-8_14
https://doi.org/10.1007/978-3-662-46706-0_14
https://doi.org/10.1145/2046707.2046757
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1007/978-3-642-22792-9_35
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31


bibliography 137

cati. ACM Press, 2006, pp. 390–399. doi: 10.1145/
1180405.1180453.

[BR93] Mihir Bellare and Phillip Rogaway. “Random Ora-
cles are Practical: A Paradigm for Designing Efficient
Protocols.” In: ACM CCS 93. Ed. by Dorothy E. Den-
ning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,
and Victoria Ashby. ACM Press, Nov. 1993, pp. 62–
73. doi: 10.1145/168588.168596.

[BR06] Mihir Bellare and Phillip Rogaway. “The Security of
Triple Encryption and a Framework for Code-Based
Game-Playing Proofs.” In: EUROCRYPT 2006. Ed. by
Serge Vaudenay. Vol. 4004. LNCS. Springer, Heidel-
berg, 2006, pp. 409–426. doi: 10.1007/11761679_25.

[BCLV16] Daniel J. Bernstein, Chitchanok Chuengsatiansup,
Tanja Lange, and Christine van Vredendaal. “NTRU
Prime.” In: IACR Cryptology ePrint Archive 2016 (2016),
p. 461. url: http://eprint.iacr.org/2016/461.

[BCGN17a] Marc Beunardeau, Aisling Connolly, Rémi Géraud,
and David Naccache. “On the Hardness of the Mersenne
Low Hamming Ratio Assumption.” In: Progress in
Cryptology - LATINCRYPT 2017 - 5th International
Conference on Cryptology and Information Security in
Latin America, Havana, Cuba, September 20-22, 2017,
Revised Selected Papers. 2017, pp. 166–174. doi: 10.
1007/978-3-030-25283-0\_9. url: https://doi.
org/10.1007/978-3-030-25283-0\_9.

[BCGNV17] Marc Beunardeau, Aisling Connolly, Remi Geraud,
David Naccache, and Damien Vergnaud. “Reusing
nonces in Schnorr signatures.” In: Proceedings of the
22nd European Symposium on Research in Computer
Security, ESORICS 2017, Oslo, Norway, September 11–
15. 2017.

[BCGN17b] Marc Beunardeau, Aisling Connolly, Rémi Géraud,
and David Naccache. On the Hardness of the Mersenne
Low Hamming Ratio Assumption. Cryptology ePrint
Archive, Report 2017/522. https://eprint.iacr.
org/2017/522. 2017.

[Bih94a] Eli Biham. “New Types of Cryptanalytic Attacks
Using Related Keys.” In: Journal of Cryptology 7.4
(Dec. 1994), pp. 229–246. doi: 10.1007/BF00203965.

[Bih94b] Eli Biham. “New Types of Cryptanalytic Attacks
Using related Keys (Extended Abstract).” In: EU-
ROCRYPT’93. Ed. by Tor Helleseth. Vol. 765. LNCS.

https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/11761679_25
http://eprint.iacr.org/2016/461
https://doi.org/10.1007/978-3-030-25283-0\_9
https://doi.org/10.1007/978-3-030-25283-0\_9
https://doi.org/10.1007/978-3-030-25283-0\_9
https://doi.org/10.1007/978-3-030-25283-0\_9
https://eprint.iacr.org/2017/522
https://eprint.iacr.org/2017/522
https://doi.org/10.1007/BF00203965


138 bibliography

Springer, Heidelberg, May 1994, pp. 398–409. doi:
10.1007/3-540-48285-7_34.

[BS97] Eli Biham and Adi Shamir. “Differential Fault Anal-
ysis of Secret Key Cryptosystems.” In: CRYPTO’97.
Ed. by Burton S. Kaliski Jr. Vol. 1294. LNCS. Springer,
Heidelberg, Aug. 1997, pp. 513–525. doi: 10.1007/
BFb0052259.

[BK09] Alex Biryukov and Dmitry Khovratovich. “Related-
Key Cryptanalysis of the Full AES-192 and AES-
256.” In: ASIACRYPT 2009. Ed. by Mitsuru Matsui.
Vol. 5912. LNCS. Springer, Heidelberg, Dec. 2009,
pp. 1–18. doi: 10.1007/978-3-642-10366-7_1.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic.
“Distinguisher and Related-Key Attack on the Full
AES-256.” In: CRYPTO 2009. Ed. by Shai Halevi.
Vol. 5677. LNCS. Springer, Heidelberg, Aug. 2009,
pp. 231–249. doi: 10.1007/978-3-642-03356-8_14.

[BW99] Alex Biryukov and David Wagner. “Slide Attacks.”
In: FSE’99. Ed. by Lars R. Knudsen. Vol. 1636. LNCS.
Springer, Heidelberg, Mar. 1999, pp. 245–259. doi:
10.1007/3-540-48519-8_18.

[Bla06] John Black. “The Ideal-Cipher Model, Revisited: An
Uninstantiable Blockcipher-Based Hash Function.”
In: FSE 2006. Ed. by Matthew J. B. Robshaw. Vol. 4047.
LNCS. Springer, Heidelberg, Mar. 2006, pp. 328–340.
doi: 10.1007/11799313_21.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton.
“Black-Box Analysis of the Block-Cipher-Based Hash-
Function Constructions from PGV.” In: CRYPTO 2002.
Ed. by Moti Yung. Vol. 2442. LNCS. Springer, Hei-
delberg, Aug. 2002, pp. 320–335. doi: 10.1007/3-
540-45708-9_21.

[BRS03] John Black, Phillip Rogaway, and Thomas Shrimp-
ton. “Encryption-Scheme Security in the Presence
of Key-Dependent Messages.” In: SAC 2002. Ed.
by Kaisa Nyberg and Howard M. Heys. Vol. 2595.
LNCS. Springer, Heidelberg, Aug. 2003, pp. 62–75.
doi: 10.1007/3-540-36492-7_6.

[BDJW18] Koen de Boer, Léo Ducas, Stacey Jeffery, and Ronald
de Wolf. “Attacks on the AJPS Mersenne-Based Cryp-
tosystem.” In: Post-Quantum Cryptography - 9th In-
ternational Conference, PQCrypto 2018. Ed. by Tanja
Lange and Rainer Steinwandt. Springer, Heidelberg,

https://doi.org/10.1007/3-540-48285-7_34
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-642-03356-8_14
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/11799313_21
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-36492-7_6


bibliography 139

2018, pp. 101–120. doi: 10.1007/978-3-319-79063-
3_5.

[BDJW17] Koen de Boer, Léo Ducas, Stacey Jeffery, and Ronald
de Wolf. Attacks on the AJPS Mersenne-based cryptosys-
tem. Cryptology ePrint Archive, Report 2017/1171.
https://eprint.iacr.org/2017/1171. 2017.

[BDH14] Florian Böhl, Gareth T. Davies, and Dennis Hofheinz.
“Encryption Schemes Secure under Related-Key and
Key-Dependent Message Attacks.” In: PKC 2014. Ed.
by Hugo Krawczyk. Vol. 8383. LNCS. Springer, Hei-
delberg, Mar. 2014, pp. 483–500. doi: 10.1007/978-
3-642-54631-0_28.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lip-
ton. “On the Importance of Checking Cryptographic
Protocols for Faults (Extended Abstract).” In: EU-
ROCRYPT’97. Ed. by Walter Fumy. Vol. 1233. LNCS.
Springer, Heidelberg, May 1997, pp. 37–51. doi: 10.
1007/3-540-69053-0_4.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and
Rafail Ostrovsky. “Circular-Secure Encryption from
Decision Diffie-Hellman.” In: CRYPTO 2008. Ed. by
David Wagner. Vol. 5157. LNCS. Springer, Heidel-
berg, Aug. 2008, pp. 108–125. doi: 10.1007/978-3-
540-85174-5_7.

[BV98] Dan Boneh and Ramarathnam Venkatesan. “Break-
ing RSA May Not Be Equivalent to Factoring.” In:
EUROCRYPT’98. Ed. by Kaisa Nyberg. Vol. 1403.
LNCS. Springer, Heidelberg, 1998, pp. 59–71. doi:
10.1007/BFb0054117.

[BRC60] Raj Chandra Bose and Dwijendra K. Ray-Chaudhuri.
“On a class of error correcting binary group codes.”
In: Information and control 3.1 (1960), pp. 68–79.

[BDMN16] Lilian Bossuet, Nilanjan Datta, Cuauhtemoc Mancillas-
López, and Mridul Nandi. “ELmD: A Pipelineable
Authenticated Encryption and Its Hardware Imple-
mentation.” In: IEEE Trans. Computers 65.11 (2016),
pp. 3318–3331. doi: 10.1109/TC.2016.2529618. url:
https://doi.org/10.1109/TC.2016.2529618.

[BPV98] Victor Boyko, Marcus Peinado, and Ramarathnam
Venkatesan. “Speeding up Discrete Log and Factor-
ing Based Schemes via Precomputations.” In: EU-
ROCRYPT’98. Ed. by Kaisa Nyberg. Vol. 1403. LNCS.
Springer, Heidelberg, 1998, pp. 221–235. doi: 10.

1007/BFb0054129.

https://doi.org/10.1007/978-3-319-79063-3_5
https://doi.org/10.1007/978-3-319-79063-3_5
https://eprint.iacr.org/2017/1171
https://doi.org/10.1007/978-3-642-54631-0_28
https://doi.org/10.1007/978-3-642-54631-0_28
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1109/TC.2016.2529618
https://doi.org/10.1109/TC.2016.2529618
https://doi.org/10.1007/BFb0054129
https://doi.org/10.1007/BFb0054129


140 bibliography

[BGMW93] Ernest F. Brickell, Daniel M. Gordon, Kevin S. Mc-
Curley, and David Bruce Wilson. “Fast Exponentia-
tion with Precomputation (Extended Abstract).” In:
EUROCRYPT’92. Ed. by Rainer A. Rueppel. Vol. 658.
LNCS. Springer, Heidelberg, May 1993, pp. 200–207.
doi: 10.1007/3-540-47555-9_18.

[Bro16] Daniel R. L. Brown. “Breaking RSA May Be As Diffi-
cult As Factoring.” In: Journal of Cryptology 29.1 (Jan.
2016), pp. 220–241. doi: 10.1007/s00145-014-9192-
y.

[Buh98] Joe Buhler, ed. Algorithmic Number Theory, Third In-
ternational Symposium, ANTS-III, Portland, Oregon,
USA, June 21-25, 1998, Proceedings. Vol. 1423. Lecture
Notes in Computer Science. Springer, 1998. isbn: 3-
540-64657-4. doi: 10.1007/BFb0054849. url: https:
//doi.org/10.1007/BFb0054849.

[CCS09] Jan Camenisch, Nishanth Chandran, and Victor Shoup.
“A Public Key Encryption Scheme Secure against
Key Dependent Chosen Plaintext and Adaptive Cho-
sen Ciphertext Attacks.” In: EUROCRYPT 2009. Ed.
by Antoine Joux. Vol. 5479. LNCS. Springer, Heidel-
berg, Apr. 2009, pp. 351–368. doi: 10.1007/978-3-
642-01001-9_20.

[CL01] Jan Camenisch and Anna Lysyanskaya. “An Iden-
tity Escrow Scheme with Appointed Verifiers.” In:
CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. LNCS.
Springer, Heidelberg, Aug. 2001, pp. 388–407. doi:
10.1007/3-540-44647-8_23.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. “The
Random Oracle Methodology, Revisited (Prelimi-
nary Version).” In: 30th ACM STOC. ACM Press,
May 1998, pp. 209–218. doi: 10.1145/276698.276741.

[CK08] Jung Hee Cheon and HongTae Kim. “Analysis of
Low Hamming Weight Products.” In: Discrete Applied
Mathematics 156.12 (2008), pp. 2264–2269.

[Cli96] William J. Clinton. “Administration of Export Con-
trols on Encryption Products.” In: Executive Order
13026 (1996).

[CPS14] Benoit Cogliati, Jacques Patarin, and Yannick Seurin.
“Security Amplification for the Composition of Block
Ciphers: Simpler Proofs and New Results.” In: SAC
2014. Ed. by Antoine Joux and Amr M. Youssef.
Vol. 8781. LNCS. Springer, Heidelberg, Aug. 2014,
pp. 129–146. doi: 10.1007/978-3-319-13051-4_8.

https://doi.org/10.1007/3-540-47555-9_18
https://doi.org/10.1007/s00145-014-9192-y
https://doi.org/10.1007/s00145-014-9192-y
https://doi.org/10.1007/BFb0054849
https://doi.org/10.1007/BFb0054849
https://doi.org/10.1007/BFb0054849
https://doi.org/10.1007/978-3-642-01001-9_20
https://doi.org/10.1007/978-3-642-01001-9_20
https://doi.org/10.1007/3-540-44647-8_23
https://doi.org/10.1145/276698.276741
https://doi.org/10.1007/978-3-319-13051-4_8


bibliography 141

[CS15] Benoit Cogliati and Yannick Seurin. “On the Prov-
able Security of the Iterated Even-Mansour Cipher
Against Related-Key and Chosen-Key Attacks.” In:
EUROCRYPT 2015, Part I. Ed. by Elisabeth Oswald
and Marc Fischlin. Vol. 9056. LNCS. Springer, Hei-
delberg, Apr. 2015, pp. 584–613. doi: 10.1007/978-
3-662-46800-5_23.

[U.S. Const.] Constitution of the United States. 1787.

[CS97] Don Coppersmith and Adi Shamir. “Lattice Attacks
on NTRU.” In: Advances in Cryptology - EUROCRYPT
’97, International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Konstanz, Ger-
many, May 11-15, 1997, Proceeding. Ed. by Walter
Fumy. Vol. 1233. Lecture Notes in Computer Sci-
ence. Springer, 1997, pp. 52–61. isbn: 3-540-62975-
0. doi: 10.1007/3- 540- 69053- 0_5. url: https:
//doi.org/10.1007/3-540-69053-0_5.

[CMT01] Jean-Sébastien Coron, David M’Raïhi, and Christophe
Tymen. “Fast Generation of Pairs (k, [k]P) for Koblitz
Elliptic Curves.” In: Selected Areas in Cryptography,
8th Annual International Workshop, SAC 2001 Toronto,
Ontario, Canada, August 16-17, 2001, Revised Papers.
Ed. by Serge Vaudenay and Amr M. Youssef. Vol. 2259.
Lecture Notes in Computer Science. Springer, 2001,
pp. 151–164. isbn: 3-540-43066-0.

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick
Seurin. “The Random Oracle Model and the Ideal
Cipher Model Are Equivalent.” In: CRYPTO 2008.
Ed. by David Wagner. Vol. 5157. LNCS. Springer,
Heidelberg, Aug. 2008, pp. 1–20. doi: 10.1007/978-
3-540-85174-5_1.

[DSST17] Yuanxi Dai, Yannick Seurin, John P. Steinberger,
and Aishwarya Thiruvengadam. “Indifferentiabil-
ity of Iterated Even-Mansour Ciphers with Non-
idealized Key-Schedules: Five Rounds Are Neces-
sary and Sufficient.” In: CRYPTO 2017, Part III. Ed.
by Jonathan Katz and Hovav Shacham. Vol. 10403.
LNCS. Springer, Heidelberg, Aug. 2017, pp. 524–555.
doi: 10.1007/978-3-319-63697-9_18.

[Den02] Alexander W. Dent. “Adapting the Weaknesses of
the Random Oracle Model to the Generic Group
Model.” In: ASIACRYPT 2002. Ed. by Yuliang Zheng.
Vol. 2501. LNCS. Springer, Heidelberg, Dec. 2002,
pp. 100–109. doi: 10.1007/3-540-36178-2_6.

https://doi.org/10.1007/978-3-662-46800-5_23
https://doi.org/10.1007/978-3-662-46800-5_23
https://doi.org/10.1007/3-540-69053-0_5
https://doi.org/10.1007/3-540-69053-0_5
https://doi.org/10.1007/3-540-69053-0_5
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/3-540-36178-2_6


142 bibliography

[Des00] Anand Desai. “The Security of All-or-Nothing En-
cryption: Protecting against Exhaustive Key Search.”
In: CRYPTO 2000. Ed. by Mihir Bellare. Vol. 1880.
LNCS. Springer, Heidelberg, Aug. 2000, pp. 359–375.
doi: 10.1007/3-540-44598-6_23.

[DH76] Whitfield Diffie and Martin E. Hellman. “New Di-
rections in Cryptography.” In: IEEE Transactions on
Information Theory 22.6 (1976), pp. 644–654.

[ElG84] Taher ElGamal. “A Public Key Cryptosystem and a
Signature Scheme Based on Discrete Logarithms.” In:
CRYPTO’84. Ed. by G. R. Blakley and David Chaum.
Vol. 196. LNCS. Springer, Heidelberg, Aug. 1984,
pp. 10–18.

[ElG86] Taher ElGamal. “On Computing Logarithms Over Fi-
nite Fields.” In: CRYPTO’85. Ed. by Hugh C. Williams.
Vol. 218. LNCS. Springer, Heidelberg, Aug. 1986,
pp. 396–402. doi: 10.1007/3-540-39799-X_28.

[EM93] Shimon Even and Yishay Mansour. “A Construction
of a Cipher From a Single Pseudorandom Permuta-
tion.” In: ASIACRYPT’91. Ed. by Hideki Imai, Ronald
L. Rivest, and Tsutomu Matsumoto. Vol. 739. LNCS.
Springer, Heidelberg, Nov. 1993, pp. 210–224. doi:
10.1007/3-540-57332-1_17.

[FKV17] Pooya Farshim, Louiza Khati, and Damien Vergnaud.
“Security of Even–Mansour Ciphers under Key-Dependent
Messages.” In: IACR Trans. Symm. Cryptol. 2017.2
(2017), pp. 84–104. issn: 2519-173X. doi: 10.13154/
tosc.v2017.i2.84-104.

[FP15] Pooya Farshim and Gordon Procter. “The Related-
Key Security of Iterated Even-Mansour Ciphers.” In:
FSE 2015. Ed. by Gregor Leander. Vol. 9054. LNCS.
Springer, Heidelberg, Mar. 2015, pp. 342–363. doi:
10.1007/978-3-662-48116-5_17.

[FN17a] Houda Ferradi and David Naccache. Integer Recon-
struction Public-Key Encryption. Cryptology ePrint
Archive, Report 2017/1231. https://eprint.iacr.
org/2017/1231. 2017.

[FN17b] Houda Ferradi and David Naccache. Integer Recon-
struction Public-Key Encryption. Cryptology ePrint
Archive, Report 2017/1231. https://eprint.iacr.
org/2017/1231. 2017.

https://doi.org/10.1007/3-540-44598-6_23
https://doi.org/10.1007/3-540-39799-X_28
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.13154/tosc.v2017.i2.84-104
https://doi.org/10.13154/tosc.v2017.i2.84-104
https://doi.org/10.1007/978-3-662-48116-5_17
https://eprint.iacr.org/2017/1231
https://eprint.iacr.org/2017/1231
https://eprint.iacr.org/2017/1231
https://eprint.iacr.org/2017/1231


bibliography 143

[FS87] Amos Fiat and Adi Shamir. “How to Prove Your-
self: Practical Solutions to Identification and Signa-
ture Problems.” In: CRYPTO’86. Ed. by Andrew M.
Odlyzko. Vol. 263. LNCS. Springer, Heidelberg, Aug.
1987, pp. 186–194. doi: 10.1007/3-540-47721-7_12.

[Gal12] Steven D. Galbraith. Mathematics of Public Key Cryp-
tography. Cambridge University Press, 2012. isbn:
9781107013926. url: https://www.math.auckland.
ac.nz/~sgal018/crypto-book/crypto-book.html.

[GM84] Shafi Goldwasser and Silvio Micali. “Probabilistic
Encryption.” In: Journal of Computer and System Sci-
ences 28.2 (1984), pp. 270–299.

[GOR11] Vipul Goyal, Adam O’Neill, and Vanishree Rao.
“Correlated-Input Secure Hash Functions.” In: TCC 2011.
Ed. by Yuval Ishai. Vol. 6597. LNCS. Springer, Hei-
delberg, Mar. 2011, pp. 182–200. doi: 10.1007/978-
3-642-19571-6_12.

[Gre13] Glenn Greenwald. “NSA collecting phone records
of millions of Verizon customers daily.” In: The
Guardian 6.06 (2013).

[HRC16] United Nations HRC. 33/2. The safety of journalists.
Resolution adopted by the 33rd Session of the United
Nations Human Rights Council. Oct. 2016. url: http:
//ap.ohchr.org/documents/dpage_e.aspx?si=A/

HRC/RES/33/2.

[HK07] Shai Halevi and Hugo Krawczyk. “Security under
key-dependent inputs.” In: ACM CCS 2007. Ed. by
Peng Ning, Sabrina De Capitani di Vimercati, and
Paul F. Syverson. ACM Press, Oct. 2007, pp. 466–475.
doi: 10.1145/1315245.1315303.

[Hoc59] Alexis Hocquenghem. “Codes correcteurs d’erreurs.”
In: Chiffres 2.2 (1959), pp. 147–56.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silver-
man. “NTRU: A Ring-Based Public Key Cryptosys-
tem.” In: Algorithmic Number Theory, Third Interna-
tional Symposium, ANTS-III, Portland, Oregon, USA,
June 21-25, 1998, Proceedings. Ed. by Joe Buhler. Vol. 1423.
Lecture Notes in Computer Science. Springer, 1998,
pp. 267–288. isbn: 3-540-64657-4. doi: 10 . 1007 /

BFb0054868. url: https://doi.org/10.1007/BFb0054868.

[HS03] Jeffrey Hoffstein and Joseph H. Silverman. “Random
small Hamming weight products with applications
to cryptography.” In: Discrete Applied Mathematics
130.1 (2003), pp. 37–49.

https://doi.org/10.1007/3-540-47721-7_12
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
https://doi.org/10.1007/978-3-642-19571-6_12
https://doi.org/10.1007/978-3-642-19571-6_12
http://ap.ohchr.org/documents/dpage_e.aspx?si=A/HRC/RES/33/2
http://ap.ohchr.org/documents/dpage_e.aspx?si=A/HRC/RES/33/2
http://ap.ohchr.org/documents/dpage_e.aspx?si=A/HRC/RES/33/2
https://doi.org/10.1145/1315245.1315303
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868


144 bibliography

[HL05] Susan Hohenberger and Anna Lysyanskaya. “How
to Securely Outsource Cryptographic Computations.”
In: TCC 2005. Ed. by Joe Kilian. Vol. 3378. LNCS.
Springer, Heidelberg, Feb. 2005, pp. 264–282. doi:
10.1007/978-3-540-30576-7_15.

[How07] Nick Howgrave-Graham. “A Hybrid Lattice-Reduction
and Meet-in-the-Middle Attack Against NTRU.” In:
Advances in Cryptology - CRYPTO 2007, 27th Annual
International Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2007, Proceedings. Ed. by Alfred
Menezes. Vol. 4622. Lecture Notes in Computer Sci-
ence. Springer, 2007, pp. 150–169. isbn: 978-3-540-
74142-8. doi: 10.1007/978-3-540-74143-5_9. url:
https://doi.org/10.1007/978-3-540-74143-5_9.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Pe-
trank. “Extending Oblivious Transfers Efficiently.”
In: CRYPTO 2003. Ed. by Dan Boneh. Vol. 2729.
LNCS. Springer, Heidelberg, Aug. 2003, pp. 145–
161. doi: 10.1007/978-3-540-45146-4_9.

[IK04] Tetsu Iwata and Tadayoshi Kohno. “New Security
Proofs for the 3GPP Confidentiality and Integrity
Algorithms.” In: FSE 2004. Ed. by Bimal K. Roy and
Willi Meier. Vol. 3017. LNCS. Springer, Heidelberg,
Feb. 2004, pp. 427–445. doi: 10.1007/978-3-540-
25937-4_27.

[Jou09] Antoine Joux. Algorithmic cryptanalysis. CRC Press,
2009.

[JLNT09] Antoine Joux, Reynald Lercier, David Naccache, and
Emmanuel Thomé. “Oracle-Assisted Static Diffie-
Hellman Is Easier Than Discrete Logarithms.” In:
12th IMA International Conference on Cryptography and
Coding. Ed. by Matthew G. Parker. Vol. 5921. LNCS.
Springer, Heidelberg, Dec. 2009, pp. 351–367.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to
Modern Cryptography. Chapman and Hall/CRC Press,
2007. isbn: 978-1-58488-551-1.

[KR01] Joe Kilian and Phillip Rogaway. “How to Protect
DES Against Exhaustive Key Search (an Analysis
of DESX).” In: Journal of Cryptology 14.1 (Jan. 2001),
pp. 17–35. doi: 10.1007/s001450010015.

[KU16] Mehmet Sabir Kiraz and Osmanbey Uzunkol. “Effi-
cient and verifiable algorithms for secure outsourc-
ing of cryptographic computations.” In: Int. J. Inf.
Sec. 15.5 (2016), pp. 519–537. doi: 10.1007/s10207-

https://doi.org/10.1007/978-3-540-30576-7_15
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-25937-4_27
https://doi.org/10.1007/978-3-540-25937-4_27
https://doi.org/10.1007/s001450010015
https://doi.org/10.1007/s10207-015-0308-7
https://doi.org/10.1007/s10207-015-0308-7
https://doi.org/10.1007/s10207-015-0308-7


bibliography 145

015-0308-7. url: http://dx.doi.org/10.1007/
s10207-015-0308-7.

[KF17] Paul Kirchner and Pierre-Alain Fouque. “Revisit-
ing Lattice Attacks on Overstretched NTRU Parame-
ters.” In: Advances in Cryptology - EUROCRYPT 2017 -
36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part I. Ed. by Jean-
Sébastien Coron and Jesper Buus Nielsen. Vol. 10210.
Lecture Notes in Computer Science. 2017, pp. 3–26.
isbn: 978-3-319-56619-1. doi: 10.1007/978-3-319-
56620-7_1. url: https://doi.org/10.1007/978-3-
319-56620-7_1.

[Knu93] Lars R. Knudsen. “Cryptanalysis of LOKI91.” In:
AUSCRYPT’92. Ed. by Jennifer Seberry and Yuliang
Zheng. Vol. 718. LNCS. Springer, Heidelberg, Dec.
1993, pp. 196–208. doi: 10.1007/3-540-57220-1_62.

[KM15] Neal Koblitz and Alfred J. Menezes. “The random
oracle model: a twenty-year retrospective.” In: Des.
Codes Cryptography 77.2-3 (2015), pp. 587–610.

[LS13] Rodolphe Lampe and Yannick Seurin. “How to Con-
struct an Ideal Cipher from a Small Set of Public
Permutations.” In: ASIACRYPT 2013, Part I. Ed. by
Kazue Sako and Palash Sarkar. Vol. 8269. LNCS.
Springer, Heidelberg, Dec. 2013, pp. 444–463. doi:
10.1007/978-3-642-42033-7_23.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and
László Lovász. “Factoring polynomials with rational
coefficients.” In: Mathematische Annalen 261.4 (1982),
pp. 515–534.

[LL94] Chae Hoon Lim and Pil Joong Lee. “More Flexible
Exponentiation with Precomputation.” In: CRYPTO’94.
Ed. by Yvo Desmedt. Vol. 839. LNCS. Springer, Hei-
delberg, Aug. 1994, pp. 95–107. doi: 10.1007/3-540-
48658-5_11.

[MN96] David M’Raïhi and David Naccache. “Batch Expo-
nentiation: A Fast DLP-Based Signature Generation
Strategy.” In: CCS ’96, Proceedings of the 3rd ACM
Conference on Computer and Communications Security,
New Delhi, India, March 14-16, 1996. Ed. by Li Gong
and Jacques Stearn. ACM, 1996, pp. 58–61.

[Mau94] Ueli M. Maurer. “Towards the Equivalence of Break-
ing the Diffie-Hellman Protocol and Computing
Discrete Algorithms.” In: CRYPTO’94. Ed. by Yvo

https://doi.org/10.1007/s10207-015-0308-7
https://doi.org/10.1007/s10207-015-0308-7
https://doi.org/10.1007/s10207-015-0308-7
http://dx.doi.org/10.1007/s10207-015-0308-7
http://dx.doi.org/10.1007/s10207-015-0308-7
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/3-540-57220-1_62
https://doi.org/10.1007/978-3-642-42033-7_23
https://doi.org/10.1007/3-540-48658-5_11
https://doi.org/10.1007/3-540-48658-5_11


146 bibliography

Desmedt. Vol. 839. LNCS. Springer, Heidelberg, Aug.
1994, pp. 271–281. doi: 10.1007/3-540-48658-5_26.

[MP04] Ueli M. Maurer and Krzysztof Pietrzak. “Compo-
sition of Random Systems: When Two Weak Make
One Strong.” In: TCC 2004. Ed. by Moni Naor. Vol. 2951.
LNCS. Springer, Heidelberg, Feb. 2004, pp. 410–427.
doi: 10.1007/978-3-540-24638-1_23.

[NSS01] Phong Q. Nguyen, Igor E. Shparlinski, and Jacques
Stern. “Distribution of modular sums and the secu-
rity of the server aided exponentiation.” In: Cryp-
tography and Computational Number Theory. Springer,
2001, pp. 331–342.

[NS99] Phong Q. Nguyen and Jacques Stern. “The Hard-
ness of the Hidden Subset Sum Problem and Its
Cryptographic Implications.” In: CRYPTO’99. Ed. by
Michael J. Wiener. Vol. 1666. LNCS. Springer, Hei-
delberg, Aug. 1999, pp. 31–46. doi: 10.1007/3-540-
48405-1_3.

[NS01] Phong Q. Nguyen and Jacques Stern. “The Two Faces
of Lattices in Cryptology.” In: Cryptography and Lat-
tices, International Conference, CaLC 2001, Providence,
RI, USA, March 29-30, 2001, Revised Papers. Ed. by
Joseph H. Silverman. Vol. 2146. Lecture Notes in
Computer Science. Springer, 2001, pp. 146–180. isbn:
3-540-42488-1. doi: 10.1007/3- 540- 44670- 2_12.
url: https://doi.org/10.1007/3- 540- 44670-
2_12.

[PUB77] NIST FIPS PUB. “46-3. Data Encryption Standard.”
In: Federal Information Processing Standards, National
Bureau of Standards, US Department of Commerce (1977).

[PH78] Stephen C. Pohlig and Martin E. Hellman. “An im-
proved algorithm for computing logarithms over
GF(p) and its cryptographic significance.” In: IEEE
Trans. Information Theory 24.1 (1978), pp. 106–110.
doi: 10.1109/TIT.1978.1055817. url: http://dx.
doi.org/10.1109/TIT.1978.1055817.

[PS96] David Pointcheval and Jacques Stern. “Security Proofs
for Signature Schemes.” In: EUROCRYPT’96. Ed. by
Ueli M. Maurer. Vol. 1070. LNCS. Springer, Heidel-
berg, May 1996, pp. 387–398. doi: 10.1007/3-540-
68339-9_33.

https://doi.org/10.1007/3-540-48658-5_26
https://doi.org/10.1007/978-3-540-24638-1_23
https://doi.org/10.1007/3-540-48405-1_3
https://doi.org/10.1007/3-540-48405-1_3
https://doi.org/10.1007/3-540-44670-2_12
https://doi.org/10.1007/3-540-44670-2_12
https://doi.org/10.1007/3-540-44670-2_12
https://doi.org/10.1109/TIT.1978.1055817
http://dx.doi.org/10.1109/TIT.1978.1055817
http://dx.doi.org/10.1109/TIT.1978.1055817
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/3-540-68339-9_33


bibliography 147

[PS00] David Pointcheval and Jacques Stern. “Security Ar-
guments for Digital Signatures and Blind Signa-
tures.” In: Journal of Cryptology 13.3 (June 2000),
pp. 361–396. doi: 10.1007/s001450010003.

[RS60] Irving S. Reed and Gustave Solomon. “Polynomial
codes over certain finite fields.” In: Journal of the
society for industrial and applied mathematics 8.2 (1960),
pp. 300–304.

[Reg16] General Data Protection Regulation. “Regulation
(EU) 2016/679 of the European Parliament and of
the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of per-
sonal data and on the free movement of such data,
and repealing Directive 95/46.” In: Official Journal of
the European Union (OJ) 59.1-88 (2016), p. 294.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adle-
man. “A Method for Obtaining Digital Signature
and Public-Key Cryptosystems.” In: Communications
of the Association for Computing Machinery 21.2 (1978),
pp. 120–126.

[Sch90] Claus-Peter Schnorr. “Efficient Identification and
Signatures for Smart Cards.” In: CRYPTO’89. Ed. by
Gilles Brassard. Vol. 435. LNCS. Springer, Heidel-
berg, Aug. 1990, pp. 239–252. doi: 10.1007/0-387-
34805-0_22.

[SOOS95] Richard Schroeppel, Hilarie K. Orman, Sean W. O’Malley,
and Oliver Spatscheck. “Fast Key Exchange with El-
liptic Curve Systems.” In: CRYPTO’95. Ed. by Don
Coppersmith. Vol. 963. LNCS. Springer, Heidelberg,
Aug. 1995, pp. 43–56. doi: 10.1007/3-540-44750-
4_4.

[Sha71] Daniel Shanks. “Class number, a theory of factoriza-
tion, and genera.” In: Proc. of Symp. Math. Soc., 1971.
Vol. 20. 1971, pp. 41–440.

[Sho97] Victor Shoup. “Lower Bounds for Discrete Loga-
rithms and Related Problems.” In: EUROCRYPT’97.
Ed. by Walter Fumy. Vol. 1233. LNCS. Springer, Hei-
delberg, May 1997, pp. 256–266. doi: 10.1007/3-
540-69053-0_18.

[Uni07] European Union. Consolidated version of the Treaty on
the Functioning of the European Union. Dec. 2007. url:
http://eur-lex.europa.eu/resource.html?uri=

cellar:c382f65d-618a-4c72-9135-1e68087499fa.

0006.02/DOC_3&format=PDF.

https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-44750-4_4
https://doi.org/10.1007/3-540-44750-4_4
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18
http://eur-lex.europa.eu/resource.html?uri=cellar:c382f65d-618a-4c72-9135-1e68087499fa.0006.02/DOC_3&format=PDF
http://eur-lex.europa.eu/resource.html?uri=cellar:c382f65d-618a-4c72-9135-1e68087499fa.0006.02/DOC_3&format=PDF
http://eur-lex.europa.eu/resource.html?uri=cellar:c382f65d-618a-4c72-9135-1e68087499fa.0006.02/DOC_3&format=PDF


148 bibliography

[Uni12] European Union. Charter of Fundamental Rights of
the European Union. Oct. 2012. url: http://www.

europarl.europa.eu/charter/pdf/text_en.pdf.

[de 95] Peter de Rooij. “Efficient Exponentiation using Pro-
computation and Vector Addition Chains.” In: EU-
ROCRYPT’94. Ed. by Alfredo De Santis. Vol. 950.
LNCS. Springer, Heidelberg, May 1995, pp. 389–399.
doi: 10.1007/BFb0053453.

[de 97] Peter de Rooij. “On Schnorr’s Preprocessing for Dig-
ital Signature Schemes.” In: Journal of Cryptology 10.1
(Dec. 1997), pp. 1–16. doi: 10.1007/s001459900016.

[den90] Bert den Boer. “Diffie-Hellman is as Strong as Dis-
crete Log for Certain Primes (Rump Session).” In:
CRYPTO’88. Ed. by Shafi Goldwasser. Vol. 403. LNCS.
Springer, Heidelberg, Aug. 1990, pp. 530–539. doi:
10.1007/0-387-34799-2_38.

http://www.europarl.europa.eu/charter/pdf/text_en.pdf
http://www.europarl.europa.eu/charter/pdf/text_en.pdf
https://doi.org/10.1007/BFb0053453
https://doi.org/10.1007/s001459900016
https://doi.org/10.1007/0-387-34799-2_38


P E R S O N A L P U B L I C AT I O N S

[ABCGMRR18] Arash Atashpendar, Marc Beunardeau, Aisling Con-
nolly, Remi Geraud, David Mestel, A. W. Roscoe, and
Peter Y. A. Ryan. “From Clustering Supersequences
to Entropy Minimizing Subsequences for Single and
Double Deletions.” In: CoRR abs/1802.00703 (2018).
arXiv: 1802.00703. url: http://arxiv.org/abs/
1802.00703.

[BCGN16a] Marc Beunardeau, Aisling Connolly, Remi Geraud,
and David Naccache. “Cdoe Obofsucaitn: Securing
Software from Within.” In: IEEE Security & Privacy
14.3 (2016), pp. 78–81.

[BCGN16b] Marc Beunardeau, Aisling Connolly, Remi Geraud,
and David Naccache. “Fully Homomorphic Encryp-
tion: Computations with a Blindfold.” In: IEEE Secu-
rity & Privacy 14.1 (2016), pp. 63–67.

[BCGN16c] Marc Beunardeau, Aisling Connolly, Remi Geraud,
and David Naccache. “White-Box Cryptography: Se-
curity in an Insecure Environment.” In: IEEE Security
& Privacy 14.5 (2016), pp. 88–92.

[BCGN17a] Marc Beunardeau, Aisling Connolly, Rémi Géraud,
and David Naccache. “On the Hardness of the Mersenne
Low Hamming Ratio Assumption.” In: Progress in
Cryptology - LATINCRYPT 2017 - 5th International
Conference on Cryptology and Information Security in
Latin America, Havana, Cuba, September 20-22, 2017,
Revised Selected Papers. 2017, pp. 166–174. doi: 10.
1007/978-3-030-25283-0\_9. url: https://doi.
org/10.1007/978-3-030-25283-0\_9.

[BCGN17b] Marc Beunardeau, Aisling Connolly, Remi Geraud,
and David Naccache. “The Case for System Com-
mand Encryption.” In: ACM Asia Conference on Com-
puter and Communications Security (ASIACCS) 2017,
Abu Dhabi, UAE. 2017.

[BCGNV17] Marc Beunardeau, Aisling Connolly, Remi Geraud,
David Naccache, and Damien Vergnaud. “Reusing
nonces in Schnorr signatures.” In: Proceedings of the
22nd European Symposium on Research in Computer
Security, ESORICS 2017, Oslo, Norway, September 11–
15. 2017.

149

https://arxiv.org/abs/1802.00703
http://arxiv.org/abs/1802.00703
http://arxiv.org/abs/1802.00703
https://doi.org/10.1007/978-3-030-25283-0\_9
https://doi.org/10.1007/978-3-030-25283-0\_9
https://doi.org/10.1007/978-3-030-25283-0\_9
https://doi.org/10.1007/978-3-030-25283-0\_9


150 bibliography

[Con18] Aisling Connolly. “Freedom of Encryption.” In: IEEE
Security & Privacy 16.1 (2018), pp. 102–103. doi: 10.
1109/MSP.2018.1331023. url: https://doi.org/10.
1109/MSP.2018.1331023.

[CFF19] Aisling Connolly, Pooya Farshim, and Georg Fuchs-
bauer. “Key-Correlated Security for Symmetric Prim-
itives.” In: (2019). To appear.

https://doi.org/10.1109/MSP.2018.1331023
https://doi.org/10.1109/MSP.2018.1331023
https://doi.org/10.1109/MSP.2018.1331023
https://doi.org/10.1109/MSP.2018.1331023




RÉSUMÉ

Cette thèse présente des résultats nouveaux portant sur trois domaines fondamentaux de la cryptographie : les propriétés
de sécurité, les hypothèses cryptographiques, et l’efficacité algorithmique.
La première partie s’intéresse à la sécurité des primitives symétriques. Nous introduisons une nouvelle propriété de sécu-
rité correspondant à la plus forte sécurité pour les primitives symétriques prouvées sûres dans le modèle de l’oracle aléa-
toire. Les attaques par clé corrélées capturent les scénarios dans lesquels toutes les entrées (clés, messages, et éventuelle-
ment nonces et en-têtes) sont corrélées avec avec la clé secrète. Sous des hypothèses relativement faibles nous prouvons
la sécurité contre les attaques par clé corrélées pour les algorithmes de chiffrement par bloc, et montrons que trois tours
d’Even-Mansour sont nécessaires pour cela. Nous étendons ensuite les attaques par clés corrélées au chiffrement au-
thentifié basé sur les nonces, et fournissons une transformation en boîte noire qui, partant d’un chiffrement authentifié à
utilisateurs multiples, donne un chiffrement authentifié démontré résistant aux attaques par clés corrélés dans le modèle
de l’oracle aléatoire. Nous établissons les relations et séparations avec les notions déjà existantes (sécurité contre les at-
taques par clés apparentées et par message dépendant de la clé) pour montrer que la sécurité contre les attaques par clé
corrélés est strictement plus forte, et implique les autres.
La partie suivante porte sur la cryptographie à clé publique, et analyse les hypothèses sous-jacentes au nouveau cryp-
tosystème introduit dans AJPS17. La cryptanalyse de cette hypothèse, reposant sur l’arithmétique modulo un premier
de Mersenne, nous permet de reconstruire la clé secrète à partir de la clé publique uniquement. Nous proposons alors
une variante de ce sytème à clé publique, fondée sur une modification de l’hypothèse précédente, résistant aux attaques
connues (classiques et quantiques).
La dernière partie aborde l’efficacité algorithmique du schéma de signature de Schnorr. En mettant à profit la structure
de groupe nous pouvons tirer parti du nonce pour produire un lot de signatures. Combinant ceci avec des méthodes de
précalcul nous permet de rendre plus efficace l’algorithme de signature de Schnorr . La sécurité est préservée sous une
hypothèse nouvelle, dont on montre qu’elle est vraie dans le modèle du groupe générique.

MOTS CLÉS

Cryptographie Symétrique, Cryptographie Asymétrique, Signatures Numériques, Preuve de sécurité, Crypt-
analyse.

ABSTRACT

This thesis presents new results addressing three fundamental areas of cryptography: security notions, assumptions, and
efficiency.
The first part encompasses the security of symmetric primitives. We give a new security notion that provides the strongest
security for symmetric primitives proven in the random oracle model (ROM). Key-correlated attacks (KCA) model the
scenario where all inputs (keys, messages, and possibly nonces and headers) are correlated with the secret key. Under
mild assumptions, we prove KCA security of blockciphers, and show that 3-rounds of Even-Mansour are necessary to
achieve this. Then, we define a KCA-security notion for nonce-based authenticated encryption (AE), and provide a
black-box transformation that turns a multiuser-secure AE into an AE scheme that is provably KCA secure in the ROM.
We show relations and separations with older notions (related-key and key-dependent message security) to show that
security under KCA is strictly stronger, and implies the others.
The next part turns to public-key cryptography, and analyses the assumptions underlying the new public-key cryp-
tosystem of AJPS17. Cryptanalysis of their assumption, based on arithmetic modulo a Mersenne prime, allowed us to
reconstruct the secret key, given only the public key. Based on a modified version of the assumption, we propose a variant
post-quantum secure public-key cryptosystem.
The last part turns to efficiency, and studies the Schnorr Signature scheme. Exploiting the group structure we can generate
multiple nonces (instead of just one) with which we can then generate a batch of signatures. This, together with some
preprocessing tricks, allow us to increase efficiency of Schnorr signature generation. Security is maintained under a new
assumption shown intractable in the Generic Group Model.

KEYWORDS

Symmetric Cryptography, Public-key Cryptography, Digital Signatures, Provable Security, Cryptanalysis.
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